Магнитная обработка промышленных вод - Геология, гидрология и геодезия реферат

Магнитная обработка промышленных вод - Геология, гидрология и геодезия реферат




































Главная

Геология, гидрология и геодезия
Магнитная обработка промышленных вод

Феномен влияния магнитного поля на водные растворы и другие немагнитные системы. Проблема снижения величины отложений из жесткой воды на поверхностях трубопроводов при магнитной обработке воды. Основные различия кристаллохимического состава отложений.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В статье представлены две обширные группы результатов экспериментального исследования магнитной обработки промышленной воды, имеющего целью изучение изменений при формировании отложений. Во-первых, это четырехмесячный эксперимент, в котором изучалось состояние двух теплообменных устройств мощностью по 25 кВт, причем один из них функционировал на воде, обработанной магнито-гидродинамическим методом. Из каждого теплообменника были извлечены отложения и подвергнуты комплексному исследованию методами химического анализа, дифракции рентгеновских лучей (R-лучей), PIXE PIXE (Proton Induced X-ray Emission) индуцирование протонов под воздействием Рентгеновского излучения и ИК-спектроскопии. Количество отложений из необработанной воды, состоящих главным образом из кальцита, возрастало экспоненциально с увеличением температуры, и достигало 20 г/м трубы в горячей части теплообменника. Масса отложений из очищенной магнитным методом воды не зависела от температуры и была приблизительно 0.5 г/м трубы. Их состав в основном представлен некристаллическим, богатым кремнеземом, материалом. Дальнейшие результаты были получены на трех промышленных энергоблоках электростанции с мощностью 1 GW. Мягкие, аморфные отложения при магнитной обработке воды имели удельную площадь поверхности 80 м2/г и инфракрасный спектр, подобный кремнекислому гидрогелю. Таким образом, создавалось впечатление что, в результате прохода через магнитное устройство, кристаллизация карбонатов в воде была блокирована из-за инициирования другого, конкурентного процесса. Этот процесс - активация коллоидного кремнезема, который адсорбирует кальций, магний или другие металлические ионы и затем осаждается из раствора как коагулирующийся агломерат. Наиболее вероятный механизм, ответственный за активацию кремнезема - сила Лоренца, вызывающая деформацию диффузионного слоя, и ведущая к увеличению концентрации противо-ионов в адсорбционном слое отрицательно заряженного кремнезема.
Феномен влияния магнитного поля на водные растворы и другие немагнитные системы является интересным предметом изучения. Проблема снижения величины отложений из жесткой воды на поверхностях трубопроводов при магнитной обработке воды (MWT) все еще остается во многом неизученной. Известно, что образование отложений накипи во всех процессах, где вода нагревается или используется как хладагент, является широко распространенной и дорогостоящей проблемой. Начиная с первого патента Вермейрена [Vermeiren] [1] и по настоящее время, многочисленные типы широко распространенных устройств магнитной обработки воды, обычно используют поле низкой напряженности, ориентированное перпендикулярно к водному потоку. В случае соответствующего выбора параметров MWT могут быть получены следующие результаты: образование малого количества шлама и легко смывающихся отложений вместо твердой карбонатной (цементообразной) накипи, замедление растворения и удаления старых отложений, осветление воды, содержащей вещество в виде суспензии [2-6]. Однако сообщения о MWT эффектах иногда бывают несодержательными или не воспроизводимыми. Вероятно, это возникает из-за вариаций водного состава, а также различий в ходе процесса обработки и сложности процессов, которые происходят в водных растворах. Именно это затруднение объясняет, почему MWT почти всегда дает полезный эффект в производственных условиях. Другая интересная проблема - положительное влияние MWT на биологические процессы [7].
Более ранние исследования, проведенные в течение 1960 - 1980 годов, преимущественно в Российских институтах [2, 4, 5, 8, 9], не привели к возникновению удовлетворительной физико-химической модели, способной объяснять все стороны наблюдаемого явления. Идея об изменениях собственно в структуре воды, как результата магнитного воздействия, была подвергнута критике [8] из-за низкой интенсивности используемого поля. В течение длительного времени в качестве основного метода исследования изменений, происходящих в водных растворах и отложениях при обработке магнитным устройством, использовался простой качественный анализ. Очень часто даже не было определено: были ли шламовые отложения образованы только карбонатами, или в их состав входили и некоторые другие вещества. Общепринятой гипотезой было предположение о том, что в обработанной магнитным способом воде, кристаллизация карбонатов происходит не на поверхности нагрева, а внутри всего объема жидкости. Испытанием эффективности метода обычно было определение размера зерен кальцита: чем меньше размер кальцитовых зерен, образовавшихся в обработаной воде, тем выше эффективность обработки.
В последнее время в научном сообществе наблюдается возрастание усилий для решения проблемы объяснения MWT эффекта. Так как природная вода представляет собой сложную систему, в которой помимо гидратированных ионов, молекул и газовых пузырьков находятся дисперсные коллоидные частицы органического и неорганического состава, представляется вероятным, что объяснение может быть основано на изменениях в ионном распределении диффузионных слоев. Влияние MWT на электрокинетический -потенциал суспензии CaCO3 был измерен уже в [9]. В данном случае по мнению авторов уменьшение -потенциала было связано с ускоренной коагуляцией. Позже Хагашитани с соавторами (Higashitani et al.) провели серию хорошо контролируемых экспериментов по изучению магнитных эффектов в статических (неподвижных) водных растворах [10 - 13]. В работе [10] было обнаружено, что высокая скорость коагуляции немагнитных коллоидных частиц зависит от плотности магнитного потока и эффект влияния магнитного поля в большей мере проявлялся для частиц меньшего размера. Уменьшение -потенциала можно было обнаружить по меньшей мере в течение 6 дней [11]. В статье [12] авторы использовали микроскоп, функционирующий на основе метода AFM AFM - atomic force microscope , чтобы получить информацию о влиянии магнитного поля на молекулярном уровне. Толщина адсорбированного слоя на поверхности водных растворов изменялась после воздействия магнитного поля, она зависела от концентрации электролита и демонстрировала эффект памяти по меньшей мере в течение одного дня. В работе [13] в 1999 году та же самая группа провела AFM измерения для импульсных и переменных магнитных полей и сравнила полученные результаты с данными для статического поля. Было обнаружено, что результат влияния зависел от частоты импульсов магнитного поля и что время, требуемое для достижения максимального эффекта, было намного меньше для импульсных и переменных полей чем для статического поля. Несомненно, что представленные выше AFM результаты представляют важное экспериментальное подтверждение явлений, ответственных за противонакипный эффект MWT.
Баррет и Парсонс [Barret and Parsons] [14] провели критический обзор работ, посвященных аналитическим измерениям влияния магнитных полей на физические явления и химическую кинетику в водных растворах. Они обнаружили, что результаты измерения pH, удельной электропроводности, размера частиц, мутности и дзэта потенциала часто были несогласованны или даже противоречивы. Для объяснения этого было принято допущение о существовании двух вероятных механизмов MWT: воздействия микропримесей и силы Лоренца влияющих на поверхность раздела жидкость-твердое тело. Последнее включает изменения в гидратационных оболочках вокруг ионов и двойных электрических слоев. В другой статье, основанной на слепых лабораторных тестах, опубликованной Сои и Кэссом [Coey and Cass] [15] было показано, что результат влияния MWT, осуществленной в статическом магнитном поле 0.1 T, сохранялся в течение больше чем двух сотен часов.
Было уже упомянуто, что магнитная обработка индустриальных вод обычно эффективна и помогает уменьшать образование накипи. С другой стороны, имеется понятное нежелание использовать промышленные установки для научного эксперимента с надлежащим контролем. Однако период с 1985 по 1990 год для нас оказался благоприятным и нам удалось провести широкомасштабный эксперимент на электростанции в Польше. Первая часть статьи описывает этот уникальный эксперимент. Вода протекала через два идентичных контура, имитирующих промышленные теплообменники. В одном случае входящая вода обрабатывалась магнитным способом. Анализ отложений, извлеченных из каждого контура после четырех месячного пробега показал замечательные изменения, вызванные магнитной обработкой. Полная масса отложений из MWT контура была приблизительно в 25-раз меньше чем масса отложений из неочищенной воды. Содержание кальцита в отложениях было пониженным. На основании этого были созданы большие оптимизированные магнитогидродинамические устройства для системы охлаждения станции с мощностью 1GW. Эффективность обработки была превосходной. Результаты исследований отложений были совместимы с полученными в широкомасштабном эксперименте и разрешили нам прийти к лучшему пониманию сущности MWT эффекта. Недавняя модель Липуса с соавторами [Lipus at al.] [16], относительно поверхности нейтрализации, возникающей благодаря ионным сдвигам (смещениям) из основного объема раствора к поверхностям частиц дает хорошее обоснование для наших выводов.
Для проведения эксперимента были сконструированы два идентичных контура В и М, моделирующие теплообменник электростанции. Каждый контур был изготовлен из 16 латунных секций (трубы 1 м длиной, внутренний диаметр = 30 мм, толщина стенки 1 мм) и согнутой части, помещенной в середине. Трубы нагревались перменным током, мощностью 1.5 кВт, используемым для каждой секции. MWT устройство было установлено на входе одного из контуров, обозначенного как М-контур. Схематическая диаграмма эксперимента приводится на Рисунке 1. Рисунок 2a представляет схему устройства. Прибор имел цилиндрическую симметрию и использовал пакет постоянных магнитов из феррита стронция, помещенных в ферромагнитную трубу.
Магниты имели цилиндрическую форму с наружным диаметром 35 мм, внутренним диаметром 5 мм, высотой, равной 15 мм и устанавливались с чередованием
Рис.1 Схема экспериментальных контуров.
полярности, с прокладкой между ними полюсных наконечников из магнитной стали.
Рис. 2. Схема используемых устройств MWT: (a) крупномасштабный эксперимент, описанный в Разделе II; (b) индустриальное применение, описанное в Разделе IV; (c) магнитное поле, распределение скорости и давления вдоль направления водного потока.
Кольца (постоянные магниты) были намагничены параллельно их осям симметрии. Диаметр полюсных наконечников был больше диаметра магнитов на 4 мм, благодаря этому скорость водного потока периодически изменялась (от 1.0 до 1.6 м/с) в дополнение к изменению профиля поля. Амплитуда поля составляла 120 кА/м (1.5 kOe kOe - kOersted = Oersted10 3 (79.58*10 3 А/м = 10 -1 Тл)). Давление в потоке воды также периодически изменялось, характер этих изменений показан на Рисунке 2c.
Забор воды происходил непосредственно от близлежащего озера. Результаты химического анализа, усредненные за 4 месяца, следующие: Ca 63 мг/л, Mg 27 мг/л, Fe 0.11 мг/л, (SO4)-2 37.0 мг/л ( 0.77 mval/l), (NO3)- 0.15 мг/л (0.002 mval/l), Cl- 20.2 мг/л (0.57 mval/l), отсутствовал свободный CO2, pH = 8.3, = 67 мСм/м, общая жесткость - 5.45mval/l, карбонатная жесткость 5.2 mval/l, общее количество взвешенных частиц 14.7 мг/л, SiO2 10 мг/л, общее количество твердого остатка 356 мг/л. Объемная скорость водяного потока в каждом контуре была 1.2 м3/ч. Эксперимент продолжался в течение осени и зимы, в общей сложности 4 месяца. В течение этого времени через контуры прошло приблизительно 5000 м3, и приблизительно 150 000 кВтч было использовано для ее нагрева.
Отложения, извлеченные из обоих контуров после 4 месяцев эксперимента были подвергнуты химическому анализу, а также изучались методами рентгеновской дифракции и PIXE (протонной индукции под действием Рентгеновского излучения). Позже были измерены спектры поглощения в инфракрасной области спектра.
Обзор условий осадконакопления палеоценовых отложений в долине р. Дарья. Стратиграфия палеоценовых отложений центральной части Северного Кавказа. Определение фаций, в которых сформировались осадки, возраста отложений, эвстатических колебаний уровня моря. дипломная работа [8,3 M], добавлен 06.04.2014
Положения теории нафтидогенеза. Характеристика материнских отложений. Параметры, определяющие температуру отложений. Зоны катагенеза интенсивной генерации УВ. Модель распространения тепла в разрезе осадочной толщи. Теплофизические свойства отложений. презентация [2,1 M], добавлен 28.10.2013
Стратиграфическое положение отложений баженовской свиты. Нефтегазоносность отложений баженовской свиты. Вещественный состав литотипов, по результатам рентгенофазового анализа. Пустотно-поровое пространство и распределение битумоидов в литотипах. дипломная работа [9,0 M], добавлен 13.06.2016
Изучение плотностных, электрических и тепловых свойств горных пород. Определение влажности грунта методом высушивания до постоянной массы, анализ его плотности. Исследование гранулометрического и минерального состава намывных отложений ситовым методом. курсовая работа [1,3 M], добавлен 28.01.2013
Охрана труда при проведении работ в грунтовой лаборатории и компьютерном классе. Условия осадконакопления аллювиальных отложений. Надпойменные террасы реки Сож. Структурно-текстурные особенности аллювиальных отложений долинного комплекса реки Сож. курсовая работа [962,1 K], добавлен 17.02.2014
Геологическое строение, стратиграфия, генезис отложений, тектоника территории района изысканий. Коррозионная активность грунтов и воды. Закономерности изменения и взаимовлияния физических характеристик специфических глинистых грунтов и давления набухания. дипломная работа [1,4 M], добавлен 16.02.2016
Анализ палеозойской эратемы. Особенности отложений нижнего карбона. Минералогический состав толщи мезозойской эратемы. Отложения палеогеновой системы в городе Томск. Новомихайловская свита, мощность отложений. Верхнечетвертичное и современное звено. доклад [9,9 K], добавлен 07.10.2012
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Магнитная обработка промышленных вод реферат. Геология, гидрология и геодезия.
Контрольная Работа Царство Грибы 7 Класс
Реферат по теме Виды принтеров и их идентификация
Реферат по теме Душа животных и человека
Дипломная работа по теме Факторы успешности профессиональной деятельности спортсменов
Курсовая работа по теме Аудит финансовых результатов на примере ОАО "Орскнефтеоргсинтез"
Реферат по теме Архитектура
Курсовая работа по теме Регламентация социальной поддержки инвалидов нормами трудового права
Лабораторная Работа Биология Класс
Тема Сочинение Береги Честь С Молоду
Сочинение В Деловом Стиле Пример
Сочинение: Судьба Базарова и отношение автора к герою в романе И. С. Тургенева Отцы и дети
Реферат: Инфекционные болезни влагалища. Скачать бесплатно и без регистрации
Контрольная работа: The Rise of Parliament in XIII AD. Скачать бесплатно и без регистрации
Дипломная Цена
Реферат по теме Технология изготовления детали Головка
Управление Издержками Предприятия Курсовая
Реферат по теме Анализ сочинения Цицерона "Тускуланские Беседы"
Роль Фторидов В Профилактике Кариеса Зубов Реферат
Реферат На Тему Пути Повышения Конкурентоспособности За Счет Улучшения Системы Управления Качеством
Что Такое Жизненные Ценности Сочинение Рассуждение 15.3
Бухгалтерский учет внешнеэкономической деятельности организации - Бухгалтерский учет и аудит дипломная работа
Хищные животные и растения - Биология и естествознание презентация
Характеристика Турции - География и экономическая география презентация


Report Page