Лучший формат данных для хранения pandas.DataFrame

Лучший формат данных для хранения pandas.DataFrame


На сегодняшний день существует огромное количество форматов для хранения данных, и, используя библиотеку Pandas при обработке большого объёма данных, возникает вопрос – а какой формат, с которыми Pandas работает «из коробки», даст наибольшую производительность, при дальнейшем использовании, обработанного DataFrame?

Ремарка: поиск информации по этой теме, привёл меня к репозиторию, за авторством Devforfu (ссылка), но так как информация в нём датируется 2019 годом, а за этот период вышло множество обновлений, я решил написать «свежий» бенчмарк, основываясь на принципах автора – ссылка на обновленный бенчмарк. Отмечу, что из-за слишком большой разницы в полученных результатах, я склоняюсь к тому, что мог совершить ошибку, поэтому далее в статье будет указана информация по оригиналу.

В качестве тестируемых форматов использовались следующие варианты: CSV (как самый популярный текстовый формат), Pickle, Feather, Parquet, Msgpack, HDF. Для сравнения будем использовать следующие метрики: размер сериализованного файла, время загрузки DataFrame из файла, время сохранения DataFrame в файл, потребление оперативной памяти при сохранении и загрузке DataFrame.

Тестовые данные – сгенерированный DataFrame с 1 миллионом строк, 15 столбцами цифр и 15 столбцами строковых значений. Генерация численных данных проводилась с помощью numpy. random.normal, в качестве строчных данных использовались UUID. С появлением в Pandas, категориального типа данных (Categorical data), который использует гораздо меньше памяти и более производительней в обработке (обширный материал для другой статьи), интересно также сравнить насколько изменится производительность форматов, поэтому ещё одним этапом сравнения в тестовых данных стал перевод формата «object» к формату «category».

Бенчмарк

Метрики собирались в течении 20 раундов, после чего группировались в результирующий DataFrame по среднему значению. Посмотрим на результаты:

Результаты:

  • Лидером по скорости сохранения и загрузки является Parquet, за ним на втором месте Feather, аутсайдером выступил формат CSV.
  • По росту потребления памяти лидирует текстовый формат CVS, хорошая дельта во время загрузки файла у Msgpack, но высокая при сохранении, поэтому второе место занимает Feather, а на третьем месте Parquet.
  • По размеру сериализованного файла, с огромным отрывом побеждает Parquet.


Далее, посмотрим на результаты с категориальным типом данных:

Так как CSV, на фоне остальных, сильно проигрывает, приведём график без него, для наглядности.

Результаты:

  • Лидер по скорости изменился и им стал Feather, за ним на втором месте Pickle.
  • По росту потребления памяти также есть изменения: на первом месте feather, второе делят между собой Pickle/Msgpack и аутсайдером при загрузке файла выступил Parquet.
  • По размеру сериализованного файла, у Parquet уже нет безоговорочного лидерства.

Файл или База данных?

Получив данные по форматам, стало интересно сравнение производительности с базами данных (далее по тексту – БД). Тут нужно учесть, что основное преимущество хранения в БД — это конкурентный доступ. В случаях, когда он не требуется, хранение данных в файлах обеспечит более прямой и очевидный доступ.

Такое сравнение, с использованием Microsoft SQL Server, привелось в статье – architecture-performance. Краткая выжимка результатов: по скорости чтения БД отстаёт от файлового хранения, а самым быстрым драйвером является Turbodbc.

Итоги

Так как, в одной из первых строк документации Pickle, указано предупреждение о том, что формат небезопасен, можно выделить двух лидеров бенчмарка: Feather и Parquet.

Если в DataFrame не используется категориальный тип данных Pandas, то для долгосрочного хранения больших данных, лучше всего подойдёт формат «Parquet», за счёт минимального размера сериализованного файла. В остальных случаях, формат «Feather» будет самым оптимальным вариантом и позволит с большей скоростью обрабатывать данные, потребляя при этом меньше ресурсов.

Report Page