Липецк закладки Кокс

Липецк закладки Кокс

Липецк закладки Кокс

Липецк закладки Кокс

• • • • • • • • • • • • • • • •

Гарантии! Качество! Отзывы!

Липецк закладки Кокс

▼▼ ▼▼ ▼▼ ▼▼ ▼▼ ▼▼ ▼▼ ▼▼ ▼▼

Наши контакты (Telegram):☎✍


>>>✅(НАПИСАТЬ ОПЕРАТОРУ В ТЕЛЕГРАМ)✅<<<


▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲

ВНИМАНИЕ!

⛔ В телеграм переходить по ссылке что выше! В поиске фейки!

• • • • • • • • • • • • • • • •

Липецк закладки Кокс

• • • • • • • • • • • • • • • •

ВАЖНО!

⛔ Используйте ВПН, если ссылка не открывается или получите сообщение от оператора о блокировке страницы, то это лечится просто - используйте VPN.

• • • • • • • • • • • • • • • •











Помните задачу о рюкзаке , в который нужно сложить предметы разного размера и ценности так, чтобы стоимость содержимого рюкзака была максимальной? Подобные головоломки каждый день решают сотрудники «Алтай-Кокса» при загрузке вагонов, только факторов нужно учесть несравнимо больше: грузоподъёмность, фракцию груза, тарифные планы, тип маршрута и много чего ещё. Последний год в этом помогает математическая модель, завернутая в цифровой сервис - об этом а еще о металлургическом коксе речь под катом. Кокс в доменных печах выполняет 3 важных функции:. Функцию газопроницаемости за счёт того, что куски кокса долгое время сохраняют форму при высокой температуре. Оно поставляет доменный кокс, литейный кокс, коксовую мелочь, коксовый орешек и коксовую пыль. Уголь привозят составами, а вагоны, которые его привезли, используются для отправки кокса потребителям. При таких объемах даже «ничтожная» оптимизация стоимости дает реальную экономию в несколько десятков миллионов рублей в год. Казалось бы, предприятие получило вагон. Его нужно загрузить продукцией и отправить получателю. Выглядит не так уж сложно, и с этим справится бригада диспетчеров. На деле ситуация гораздо интереснее. По сути для нас это означает, что если отправлять вагоны с большей грузоподъёмностью на более дальние дистанции, а с меньшей на ближние, то мы можем экономить на транспортировке. Соответственно, предприятию выгодно отправлять большие вагоны на дальние расстояния, а вагоны поменьше — на ближние. Но это еще не всё. На стоимость перевозок влияет плата за использование подвижного состава и такие нюансы, как скидки за составы, которые включают 71 вагон и отправляются одному получателю — так называемые прямые отправительские маршруты, которым не требуется сортировка в пути следования. А еще, чтобы не получить штраф за простой вагонов, важно учитывать дату и время их прибытия на станцию и обеспечивать процесс FIFO, то есть первоочередную отправку вагонов, которые первыми прибыли на разгрузку. Мы задумались о том, как можно этот процесс автоматизировать. Кстати, ей уже около 20 лет — она настоящий ветеран, но несмотря на возраст ИС «Транспорт» до сих пор помогает нам в цифровой трансформации. Проанализировали исторические данные: структуру отгрузок по фракциям кокса и направлениям, статистику грузоподъемности вагонов, которые были у нас в наличии. Ну и, собственно, реализовали «жадный алгоритм» решения задачи о рюкзаке. Если читателю статьи известны особенности логистики, то они безусловно знают о том, что в распоряжении клиентов РЖД есть несколько типов вагонов. Условно их можно разделить на «старые» — грузоподъемностью 65, 69, 70 тонн и «новые» — тонн. Поэтому загружать 4 «новых» вагона значительно выгоднее, чем 5 старых. Наша модель учитывает этот принцип и позволяет добиться дополнительной эффективности за счет его применения. Все наши продукты мы создаем по принятой у нас методологии с использованием практик Agile из которых мы, впрочем, карго-культа не делаем. На всех этапах бьём работы на двухнедельные спринты. В качестве трекера задач используем Jira. Продуктовая команда каждое утро собирается на Daily чтобы обсудить текущие вопросы — проводим его по Zoom — это помогает команде синхронизироваться и держать ритм. Встречи смешанной команды включая представителей производства, логистики и ИТ проводим раз в неделю — также через Zoom. Мы стали это практиковать ещё до того, как в пандемию это стало мейнстримом. Команда у нас географически распределённая — Заринск, Липецк, Москва — а в последнее время у меня в команде появились люди, работающие удаленно из Питера, Самары и даже Приэльбрусья. На этом этапе мы формулируем идею, оцениваем принципиальную возможность ее реализации и грубо оцениваем ожидаемые эффекты. Также формируем внутреннюю команду — понимаем какие подразделения будут затронуты, кого нужно привлечь. В случае с этим продуктом мы привлекли производственный отдел, железнодорожный цех, транспортный отдел, участок подготовки вагонов. Важно, что идея рождается на производстве, а не в цифре и не в ИТ. Как я всегда говорю своим коллегам с производственных площадок: «Цифровая трансформация, это не когда к вам прилетели инопланетяне и сделали вам хорошо. Цифровая трансформация — это когда вы решили: «А почему бы и нет — меняемся прямо сейчас». Главное — чтобы были люди, готовые меняться сами и менять мир вокруг себя. Еще один немаловажный момент: у нас в компании не принято делать «цифру ради цифры». Если мы в какой-то момент понимаем, что идея не принесет экономической выгоды, то останавливаем дальнейшую проработку, чтобы не тратить ресурсы. В результате завершения данного этапа у нас появляется так называемая карточка продукта: страничка в Confluence с описанием проблематики, целей и минимальным ТЗ. На этом этапе мы привлекли подрядчика — компанию Алгомост — и сформировали смешанную команду. Собрали необходимые исторические данные и построили на их основе модель. На основе модельных данных наши экономисты помогли нам посчитать потенциальный экономический эффект. Так мы поняли, что значимый с точки зрения денег эффект есть и начали разрабатывать собственно продукт. Обернули нашу модель в сервис: изначально Data Scientist DS , как правило, работает в Jupyter Notebook, а данные поднимает из csv-файлов. После завершения разработки модели DS передает ноутбук разработчику, который переводит его в формат модуля python и снабжает всеми необходимыми интеграциями, в результате чего модель «оживает». Они помогли нам с интеграционными таблицами и научили свою систему обращаться к нашему сервису через Web API и получать от него рекомендации. И сразу же начали использовать сервис. Мы встроились в уже существующий процесс формирования сортировочных листов таким образом, что обойти процесс выдачи рекомендаций невозможно — они автоматически будут рассчитаны при печати сортировочного листа. Начали набивать шишки и исправлять что и где не так. Выяснили много нюансов, которые на старте были никому неизвестны. Например, как выяснилось, люки у некоторых полувагонов заварены по причине износа конструкции — такие вагоны называют безлюковыми или глуходонными. И отправлять их можно только тем потребителям, которые имеют вагоноопрокидыватели — специальные устройства, которые переворачивают вагон чтобы высыпать из него груз вот он: видео из открытых источников. Продукт в отличие от проекта не заканчивается никогда. Если мы видим, что что-то можно улучшить, делаем это. Ну и обязательно минимально документируем продукт, чтобы его можно было поддерживать, в том числе и без нас. В качестве входных данных для построения базовой версии алгоритма использовались исторические данные продолжительностью 1,5 года. При этом масса вагона рассчитывается, как произведение объема кузова вагона на насыпную плотность фракции она известна для каждой фракции. В наличии есть вагоны как с большим объемом кузова например, 94 м3 , так и с маленьким например, 74 м3. Это говорит о том, что можно ожидать потенциальный экономический эффект от внедрения алгоритма. В расчете стоимости отправления вагона фигурирует плата за тариф РЖД. В представленных данных по тарифам РЖД цена перевозки для большинства направлений была известна только для 47, 52 и 62 тонн а для некоторых направлений — вообще только для 47 тонн. Для точного расчета стоимости перевозки необходимо рассчитывать цену для любого веса груза, так как объем кузова вагона может быть разный, как и вес груза. Было выявлено, что цена груза за 47, 52 и 62 тонны хорошо ложится на прямую, то есть зависимость цены от веса груза очень приближена к линейной. Также встречались направления, по которым была известна только стоимость за 47 тонн. В данном случае необходимо было найти стоимость за 52 тонны, а потом проделать шаги по линейной аппроксимации. Задача по предсказанию стоимости за 52 тонны решалась с помощью линейной регрессии. В качестве признаков использовались стоимость за 47 тонн и дистанция до станции назначения. План отгрузки сортируется от более далеких грузополучателей к менее далеким, а вагоны от большего объема к меньшему. Проходя по плану, подбираем подходящие по дополнительным ограничениям вагоны из списка сверху вниз. Однако, несмотря на простоту исходного алгоритма, мы добавили некоторые улучшения, повышающие его полезность. Вагоны уходят по плану отгрузки, известному на сегодня. Однако, если отправлять на самые близкие расстояния самые маленькие вагоны, а не лучшие из тех, что остались после отправки на дальние дистанции, то на следующий день нам точно не придется отправлять их на дальние дистанции. Это вынуждает менять большие вагоны на меньшие, когда это экономически обосновано. Учет всевозможных ограничений: Признак безлюкового, признак возможности отправки за пределы РФ, техническая годность для подготовки под мелкие фракции, etc. Это необходимо для сокращения затрат на маневровые работы. Дисбаланс массы мог происходить по причине того, что алгоритм, например, всегда рекомендовал отправлять только маленькие вагоны какому-то близкому грузополучателю, а по факту отправлялись, как большие, так и маленькие вагоны. Этот процесс пока проходит с использованием Excel. Планы регулярно актуализируются. Согласованный план отгрузки передается транспортному отделу. Транспортный отдел заносит его в нашу информационную систему Транспорт — для этого в ней предусмотрена соответствующая форма. Бригадир участка подготовки вагонов УПВ — куда вагоны попадают после разгрузки сырья - открывает в ИС «Транспорт» форму сортировочного листа СЛ , указывает номер пути, вагоны, стоящие на котором нужно обработать, нажимает кнопку «Печать» и вот тут возникает немного магии:. ИС «Транспорт» складывает в интеграционные таблицы набор вагонов, доступных для загрузки, актуальный план отгрузки с указанием того, какая часть плана уже охвачена вагонами и сколько ещё осталось, а также актуальные тарифы, и вызывает через Web API наш интеллектуальный сервис. Сервис забирает данные из интеграционных таблиц и рассчитывает рекомендации работает собственно модель. Рекомендации сервис кладёт также в интеграционную таблицу и отдаёт ИС «Транспорт» response c ID расчёта. ИС «Транспорт» смотрит в рекомендации отображает их на форме сортировочного листа и сохраняет у себя в сущности, которая очевидно и называется «Сортировочный лист». Бригадир передаёт распечатанный сортировочный лист осмотрщику вагонов. Осмотрщик осматривает вагоны на степень изношенности и решает, могут ли вагоны быть подготовлены под те фракции, которые рекомендованы сервисом в сильно изношенных вагонов щели больше, поэтому их весьма затруднительно использовать для перевозки мелких фракций. Если этого сделать нельзя а некоторые вагоны вообще могут быть в неисправном состоянии и предназначены к ремонту , он отмечает это в сортировочном листе и возвращает его с пометками бригадиру. Вагоны начинают готовить под погрузку. Информацию по вагонам какие под какие фракции готовят, какие в ремонт и заново запрашивает рекомендации сервиса. В тех случаях, когда ранее выданная рекомендация не может быть выполнена по состоянию вагона, она сбрасывается, сервис выдает новый набор рекомендаций. Новый сортировочный лист с новыми рекомендации становится информацией о том, какие вагоны с какой фракцией и по каким направлениям пойдут, соответственно железнодорожный цех понимает на какую коксосортировку какой вагон подавать. Вагоны подаются на требуемые коксосортировки фронты погрузки , где кокс рассеивается на фракции , грузятся необходимыми фракциями, провешиваются. Факт погрузки и провески фиксируется в ИС Axapta. Ну вот, вагоны готовы к отправке потребителям! И тут внезапно опять возникает немного магии. ИС «Транспорт» успела передать в ИС Axapta рекомендации нашего сервиса, поэтому диспетчеру уже точно известно, на какую станцию должен идти каждый вагон. Конечно, не всегда всё идёт гладко. С момента выдачи рекомендации ситуация могла поменяться отказ клиента, etc. ИС «Транспорт» на основании расхождений корректирует доступный план отгрузки для корректной выдачи дальнейших рекомендаций. При запуске продуктов по «быстрой» методологии неизбежно возникновение проблем: неисполнение процесса со стороны конечных пользователей; проблемы в алгоритме самого сервиса, проблемы, связанные со сбоями в работе сети и т. Поэтому на старте разработки мы сразу задумались о мониторинге работы сервиса. Он нам помогал выявлять проблемы и детально в них разбираться. Затраты на разработку сервиса окупились примерно за 1,5 месяца, а это, я считаю весьма неплохой показатель, так что продукт можно считать вполне успешным. За счёт чего так получилось? Раньше, когда вагоны подбирались «вручную», их подбирали по сути осмотрщики-ремонтники вагонов. Они исходили прежде всего из технической годности вагонов — какие вагоны под какие фракции им комфортно готовить — и не смотрели на экономику перевозки да и не могли смотреть — нет у них такой информации. А если бы и попробовали, то без применения математики учесть множество факторов невозможно. Собственно, Алтай-Кокс несколько лет пытался развить эту тему, но получилось только тогда, когда в группе компаний появились соответствующие компетенции. Я в группе НЛМК лидирую разработку цифровых продуктов для коксохимического производства. В основном мы решаем задачи, направленные на снижение стоимости сырья и стабилизацию качества продукции, но сегодня написали и про оптимизацию логистического процесса. Получилось объемно, но, надеюсь, интересно! Если у вас возникли вопросы — задавайте их в комментариях, постараюсь ответить на все. Поиск Профиль. Все, что вы хотели знать о коксе Кокс в доменных печах выполняет 3 важных функции: Энергетическую работает как топливо — обеспечивает расплавление железорудного сырья. Восстановительную отбирает кислород у оксидов железа из которых преимущественно состоит руда. В чем заключается «проблема вагонов» Казалось бы, предприятие получило вагон. Итак, что мы сделали: Проанализировали исторические данные: структуру отгрузок по фракциям кокса и направлениям, статистику грузоподъемности вагонов, которые были у нас в наличии. Экстраполировали простейшим способом тарифы, чтобы закрыть «дырки» в статистике. Расскажу обо всем подробнее. Новенький, так называемый, инновационный вагон РЖД Все начинается с гипотезы Все наши продукты мы создаем по принятой у нас методологии с использованием практик Agile из которых мы, впрочем, карго-культа не делаем. В случае с новым цифровым сервисом для «Алтай-Кокса» мы не отступили от привычной методики. Гипотеза На этом этапе мы формулируем идею, оцениваем принципиальную возможность ее реализации и грубо оцениваем ожидаемые эффекты. Главное — чтобы были люди, готовые меняться сами и менять мир вокруг себя Еще один немаловажный момент: у нас в компании не принято делать «цифру ради цифры». Если мы в какой-то момент понимаем, что идея не принесет экономической выгоды, то останавливаем дальнейшую проработку, чтобы не тратить ресурсы В результате завершения данного этапа у нас появляется так называемая карточка продукта: страничка в Confluence с описанием проблематики, целей и минимальным ТЗ. Proof of Concept На этом этапе мы привлекли подрядчика — компанию Алгомост — и сформировали смешанную команду. Развернули сервис на нашем кластере OpenShift. Развитие Продукт в отличие от проекта не заканчивается никогда. Основная метрика Метрикой оценки качества работы алгоритма была задана удельная цена отправки вагона: где n — все вагоны, p — стоимость отправления вагона, m — масса вагона, S — расстояние до станции назначения. Стоимость отправления вагона p включает: основную плату за тариф РЖД; cтавку предоставления за вагон; штраф за простой вагона на станции отправления; экспедиторское вознаграждение процент от тарифа РЖД. Анализ и обработка входных данных В первую очередь был проведен анализ исторических данных, в ходе которого было выяснено: Готовая продукция, разделяется на различные фракции, где основной является фракция 25мм и более. Разработка алгоритма Базовая реализация алгоритма достаточно проста. Выдача рекомендаций Бригадир участка подготовки вагонов УПВ — куда вагоны попадают после разгрузки сырья - открывает в ИС «Транспорт» форму сортировочного листа СЛ , указывает номер пути, вагоны, стоящие на котором нужно обработать, нажимает кнопку «Печать» и вот тут возникает немного магии: ИС «Транспорт» складывает в интеграционные таблицы набор вагонов, доступных для загрузки, актуальный план отгрузки с указанием того, какая часть плана уже охвачена вагонами и сколько ещё осталось, а также актуальные тарифы, и вызывает через Web API наш интеллектуальный сервис. Вот в таком интерфейсе работает пользователь: Осмотр вагонов и оценка рекомендаций Бригадир передаёт распечатанный сортировочный лист осмотрщику вагонов. Новый сортировочный лист с новыми рекомендации становится информацией о том, какие вагоны с какой фракцией и по каким направлениям пойдут, соответственно железнодорожный цех понимает на какую коксосортировку какой вагон подавать Загрузка вагонов Вагоны подаются на требуемые коксосортировки фронты погрузки , где кокс рассеивается на фракции , грузятся необходимыми фракциями, провешиваются. Мониторинг — чрезвычайно важная вещь При запуске продуктов по «быстрой» методологии неизбежно возникновение проблем: неисполнение процесса со стороны конечных пользователей; проблемы в алгоритме самого сервиса, проблемы, связанные со сбоями в работе сети и т. Затраты на разработку сервиса окупились примерно за 1,5 месяца, а это, я считаю весьма неплохой показатель, так что продукт можно считать вполне успешным За счёт чего так получилось? Комментарии Комментарии Местоположение Россия Сайт nlmk. Ваш аккаунт Войти Регистрация.

Купить закладку | Купить | закладки | телеграм | скорость | соль | кристаллы | a29 | a-pvp | MDPV| 3md | мука мефедрон | миф | мяу-мяу | 4mmc | амфетамин | фен | экстази | XTC | MDMA | pills | героин | хмурый | метадон | мёд | гашиш | шишки | бошки | гидропоника | опий | ханка | спайс | микс | россыпь | бошки, haze, гарик, гаш | реагент | MDA | лирика | кокаин (VHQ, HQ, MQ, первый, орех), | марки | легал | героин и метадон (хмурый, гера, гречка, мёд, мясо) | амфетамин (фен, амф, порох, кеды) | 24/7 | автопродажи | бот | сайт | форум | онлайн | проверенные | наркотики | грибы | план | КОКАИН | HQ | MQ |купить | мефедрон (меф, мяу-мяу) | фен, амфетамин | ск, скорость кристаллы | гашиш, шишки, бошки | лсд | мдма, экстази | vhq, mq | москва кокаин | героин | метадон | alpha-pvp | рибы (психоделики), экстази (MDMA, ext, круглые, диски, таблы) | хмурый | мёд | эйфория

Липецк закладки Кокс

МДМА купить Таллин Эстония

Липецк закладки Кокс

MDMA таблетки стоимость в Арзамасе

Липецк закладки Кокс

Гидра купить закладку Туркестан

Купить пеллеты, дрова топливные брикеты евродрова уголь от различных производителей, оптом и в розницу - объявления о продаже, цены.

Дешево купить Каннабис Гродно

Наркотик Соль, кристаллы цена в Майкопе

Липецк закладки Кокс

Новоли́пецкий металлурги́ческий комбина́т — советский и российский металлургический комбинат, расположенный в Левобережном районе Липецка.

Москва Люблино купить Кокаин HQ

Липецк закладки Кокс

Закладки. Рассылки.  «Алтай-кокс» — расположенный в городе Заринске Алтайского края производитель кокса и химической продукции.

Отзывы про Скорость (Ск Альфа-ПВП) Ангарск

Липецк закладки Кокс

Бесплатные пробники Соли, кристаллы Старый Оскол

Липецк закладки Кокс

Купить закладку Экстази Таблы Diamond c MDMA Москва Котловка

Кристал купить закладку гашиш

Липецк закладки Кокс

Обмен киви на сбербанк онлайн

Каждую седьмую тонну российского кокса производят в Заринске.  Кокс незаменим в металлургическом производстве. С его помощью, например, плавят чугун в доменных печах. Также кокс используют как топливо в литейном и.

Палермо Италия купить Метамфетамин

Липецк закладки Кокс

Лирика закладкой купить Коста-Дель-Соль

Report Page