La revolución de la glucosa

La revolución de la glucosa


Notas

Página 34 de 35

Notas

[1] Ron Sender et al., «Revised estimates for the number of human and bacteria cells in the body», PLoS Biology, 14, n.º 8, 2016, e1002533. <<

[2] Rudd Center for Food Policy and Obesity, «Increasing disparities in unhealthy food advertising targeted to Hispanic and Black youth», enero de 2019, recuperado el 30 de agosto de 2021, disponible en <https://media.ruddcenter.uconn.edu/PDFs/TargetedMarketingReport2019.pdf>. <<

[3] Robert Lustig, Metabolical: The Lure and the Lies of Processed Food, Nutrition, and Modern Medicine, Nueva York, Harper Wave, 2021. <<

[4] Lustig, Metabolical, op. cit. <<

[5] Joana Araújo et al., «Prevalence of optimal metabolic health in American adults: National Health and Nutrition Examination Survey 2009-2016», Metabolic Syndrome and Related Disorders, 17, n.º 1, 2019, págs. 46-52. <<

[6] Benjamin Bikman, Why We Get Sick: The Hidden Epidemic at the Root of Most Chronic Disease and How to Fight It, Nueva York, BenBella, 2020 (trad. cast.: ¿Por qué enfermamos? Descubre y aprende a combatir la epidemia oculta tras las enfermedades crónicas, Madrid, Edaf, 2021). <<

[7] Lustig, Metabolical, op. cit. <<

[1] Michael Multhaup et al., «The science behind 23andMe’s Type 2 Diabetes report»), 2019, recuperado el 30 de agosto de 2021, disponible en <https://permalinks.23andme.com/pdf/23_19-Type2Diabetes_March2019.pdf>. <<

[2] Mark Hearris et al., «Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations», Nutrients, 10, n.º 3, 2018, pág. 298. <<

[3] Heather Hall et al., «Glucotypes reveal new patterns of glucose dysregulation», PLoS Biology, 16, n.º 7, 2018, e2005143, disponible en <https://pubmed.ncbi.nlm.nih.gov/30040822/>. <<

[4] Técnicamente no en la sangre, sino en el fluido entre células. Están estrechamente relacionados. <<

[1] Araújo et al., «Prevalence of optimal metabolic health», art. cit. <<

[2] Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, «Assessing your Weight», CDC, 17 de septiembre de 2020, recuperado el 30 de agosto de 2021, <https://www.cdc.gov/healthyweight/assessing/index.html>. <<

[1] Gregory MacNeill et al., «Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation», Journal of Experimental Botany, 68, n.º 16, 2017, págs. 4433-4453, disponible en <https://pubmed.ncbi.nlm.nih.gov/28981786/>. <<

[2] También se llaman enlaces beta-1,4-glicosídicos. <<

[3] M. D. Oesten et al., Castellion, «Sweetness relative to sucrose (table)», en The World of Chemistry: Essentials (4.ª ed.), Belmont, Thomson Brooks/Cole, 2007. <<

[1] «El cuerpo utiliza doscientos gramos de glucosa a diario. La glucosa tiene una masa molar de ciento ochenta gramos por mol. Cada día, el cuerpo utiliza 0,1111 moles de glucosa. Un mol tiene 6,02214076 × 1023 moléculas en su interior. Así que el cuerpo utiliza 6.6912675e + 23 moléculas de glucosa cada día. Un día tiene 86.400 segundos; 7,7445226e + 18 moléculas por segundo», Jeremy M. Berg, Biochemistry (5.ª ed.), Nueva York, W. H. Freeman, 2002, sección 30.2. <<

[2] Unos 5.000 trillones (5 × 1021 granitos de arena en el mundo. Jason Marshall, «How many grains of sand are on earth’s beaches?», Quick and Dirty Tips, 2016, recuperado el 30 de agosto de 2021, <https://www.quickanddirtytips.com/education/math/how-many-grains-of-sand-are-on-earth-s-beaches?page=all>. <<

[3] Liangliang Ju et al., «New insights into the origin and evolution of α-amylase genes in green plants», Scientific Reports, 9, n.º 1, 2019, págs. 1-12, disponible en <https://pubmed.ncbi.nlm.nih.gov/30894656/>. <<

[4] Cholsoon Jang et al., «The small intestine converts dietary fructose into glucose and organic acids», Cell Metabolism, 27, n.º 2, 2018, págs. 351-361, <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032988/#SD1>. <<

[5] IUPAC, Comm, y IUPAC-IUB Comm, «Tentative rules for carbohydrate nomenclature, part 1, 1969», Biochemistry, 10, n.º 21, 1971, págs. 3983-4004, disponible en <https://pubs.acs.org/doi/abs/10.1021/bi00797a028>. <<

[6] Mindy Weisberger, «Unknown Group of Ancient Humans Once Lived in Siberia, New Evidence Reveals», Live Science, 2019, recuperado el 30 de agosto de 2021, <https://www.livescience.com/65654-dna-ice-age-teeth-siberia.html>. <<

[7] Marion Nestle, «Paleolithic diets: a sceptical view», Nutrition Bulletin, 25, n.º 1, 2000, págs. 43-47, disponible en <https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1467-3010.2000.00019.x>. <<

[8] Peter Ungar, Evolution’s Bite: A Story of Teeth, Diet, and Human Origins, Princeton, Princeton University Press, 2017. <<

[1] Nora Volkow et al., «The brain on drugs: from reward to addiction», Cell, 162, n.º 4, 2015, págs. 712-725, disponible en <https://pubmed.ncbi.nlm.nih.gov/26276628/>. <<

[2] Vincent Pascoli et al., «Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction», Neuron, 88, n.º 5, 2015, págs. 1054-1066, disponible en <http://www.addictionscience.unige.ch/files/8214/6037/1136/NeuronVP2015.pdf>. <<

[3] Lustig, Metabolical, op. cit. <<

[4] Kevin Hall et al., «Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake», Cell Metabolism, 30, n.º 1, 2019, págs. 67-77, <https://www.cell.com/action/showPdf?pii=S1550-4131(19)30248-7>. <<

[5] Robert Lustig, The Hacking of the American Mind: The Science behind the Corporate Takeover of our Bodies and Brains, Nueva York, Penguin, 2017. <<

[1] ADA, «Understanding A1C: Diagnosis», Diabetes, recuperado el 30 de agosto de 2019, <https://www.diabetes.org/a1c/diagnosis>. <<

[2] Jørgen Bjørnholt et al., «Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men», Diabetes Care, 22, n.º 1, 1999, págs. 45-49, disponible en <https://care.diabetesjournals.org/content/22/1/45>; Chanshin Park et al., «Fasting glucose level and the risk of incident atherosclerotic cardiovascular diseases», Diabetes Care, 36, n.º 7, 2013, págs. 1988-1993, disponible en <https://care.diabetesjournals.org/content/36/7/1988>; Quoc Manh Nguyen et al., «Fasting plasma glucose levels within the normoglycemic range in childhood as a predictor of prediabetes and type 2 diabetes in adulthood: the Bogalusa Heart Study», Archives of Pediatrics & Adolescent Medicine, 164, n.º 2, 2010, págs. 124-128, disponible en <https://jamanetwork.com/journals/jamapediatrics/fullarticle/382778>. <<

[3] Guido Freckmann et al., «Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals», Journal of Diabetes Science and Technology, 1, n.º 5, 2007, págs. 695-703, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769652/>. <<

[4] Antonio Ceriello et al., «Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients», Diabetes, 57, n.º 5, 2008, págs. 1349-1354, disponible en <https://diabetes.diabetesjournals.org/content/57/5/1349.short>; Louis Monnier et al., «Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes», Jama, 295, n.º 14, 2006, págs. 1681-1687, disponible en <https://jamanetwork.com/journals/jama/article-abstract/202670>; Giada Acciaroli et al., «Diabetes and prediabetes classification using glycemic variability indices from continuous glucose monitoring data», Journal of Diabetes Science and Technology, 12, n.º 1, 2018, págs. 105-113, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761967/>. <<

[5] Zheng Zhou et al., «Glycemic variability: adverse clinical outcomes and how to improve it?», Cardiovascular Diabetology, 19, n.º 1, 2020, págs. 1-14, disponible en <https://link.springer.com/article/10.1186/s12933-020-01085-6>. <<

[1] Sender et al., «Revised estimates for the number», art. cit. <<

[2] Martin Picard et al., «Mitochondrial allostatic load puts the “gluc” back in glucocorticoids», Nature Reviews Endocrinology, 10, n.º 5, 2014, págs. 303-310, disponible en <https://www.uclahealth.org/reversibility-network/workfiles/resources/publications/picard-endocrinol.pdf>. <<

[3] Biplab Giri et al., «Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity», Biomedicine & Pharmacotherapy, n.º 107, 2018, págs. 306-328, disponible en <https://www.sciencedirect.com/science/article/pii/S0753332218322406#fig0005>. <<

[4] Picard et al., «Mitochondrial allostatic», art. cit. <<

[5] Robert H. Lustig, «Fructose: it’s “alcohol without the buzz”», Advances in Nutrition, 4, n.º 2, 2013, págs. 226-235, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649103/>. <<

[6] Joseph Evans et al., «Are oxidative stress activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?», Diabetes, 52, n.º 1, 2003, págs. 1-8, disponible en <https://diabetes.diabetesjournals.org/content/52/1/1.short>. <<

[7] Jaime Uribarri et al., «Advanced glycation end products in foods and a practical guide to their reduction in the diet», Journal of the American Dietetic Association, 100, n.º 6, 2010, págs. 911-916, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704564/>. <<

[8] D. G. Dyer et al., «The Maillard reaction in vivo», Zeitschrift für Ernährungswissenschaft, 30, n.º 1, 1991, págs. 29-45, disponible en <https://www.researchgate.net/publication/21298410_The_Maillard_reaction_in_vivo>. <<

[9] Chan-Sik Kim et al., «The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise», Journal of Exercise Nutrition & Biochemistry, 21, n.º 3, 2017, pág. 55, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643203>. <<

[10] Masamitsu Ichihashi et al., «Glycation stress and photo-aging in skin», Anti-Aging Medicine, 8, n.º 3, 2011, págs. 23-29, disponible en <https://www.jstage.jst.go.jp/article/jaam/8/3/8_3_23/_article/-char/ja/>; Ashok Katta et al., «Glycation of lens crystalline protein in the pathogenesis of various forms of cataract», Biomedical Research, 20, n.º 2, 2009, págs. 119-121, disponible en <https://www.researchgate.net/profile/Ashok-Katta-3/publication/233419577_Glycation_of_lens_crystalline_protein_​in_the_pathogenesis_of_various_forms_of_cataract/links/02e7e531342066c955000000/​Glycation-of-lens-crystalline-protein-​in-the-pathogenesis-of-various-forms-of-cataract.pdf>. <<

[11] Georgia Soldatos et al., «Advanced glycation end products and vascular structure and function», Current Hypertension Reports, 8, n.º 6, 2006, págs. 472-478, disponible en <https://pubmed.ncbi.nlm.nih.gov/17087858/>; Masayoshi Takeuchi et al., «Involvement of advanced glycation end-products (AGEs) in Alzheimer’s disease», Current Alzheimer Research, 1, n.º 1, 2004, págs. 39-46, disponible en <https://www.ingentaconnect.com/content/ben/car/2004/00000001/00000001/art00006>. <<

[12] Chan-Sik Kim et al., «The role of glycation», art. cit. <<

[13] Alejandro Gugliucci, «Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases», Advances in Nutrition, 8, n.º 1, 2017, págs. 54-62, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227984/>. <<

[14] Roma Pahwa et al., «Chronic inflammation», StatPearls, 2018, disponible en <https://www.ncbi.nlm.nih.gov/books/NBK493173/>. <<

[15] Ibidem. <<

[16] Berg, Jeremy M., «The bonds are also alpha-1,4-glycosidic bond», en Biochemistry (5.ª ed.), Nueva York, W. H. Freeman and Co., 1995. <<

[17] David H Wasserman, «Four grams of glucose», American Journal of Physiology-Endocrinology and Metabolism, 296, n.º 1, 2009, E11-E21, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636990/>. <<

[18] Biochemistry, op. cit., sección 30.2, disponible en <https://www.ncbi.nlm.nih.gov/books/NBK22436/#:~:text=The​%20brain%20lacks%20fuel%20stores,body%20in%20the%20resting%20state>. <<

[19] Wasserman, «Four grams of glucose», art. cit. <<

[20] Stryer, «Fatty acid metabolism», en Biochemistry, op. cit., págs. 603-628. <<

[21] Samir Softic et al., «Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease», Digestive Diseases and Sciences, 61, n.º 5, 2016, págs. 1282-1293, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838515/>. <<

[22] Bettina Geidl-Flueck et al., «Fructose-and sucrose-but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial», Journal of Hepatology, 75, n.º 1, 2021, págs. 46-54, disponible en <https://www.journal-of-hepatology.eu/article/S0168-8278(21)00161-6/fulltext#%20>. <<

[23] João Silva et al., «Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue», Metabolic Engineering, n.º 56, 2019, págs. 69-76, disponible en <https://www.sciencedirect.com/science/article/pii/S109671761930196X#fig5>. <<

[24] Bikman, Why We Get Sick, op. cit. <<

[25] Stryer, en Biochemistry, op. cit., págs. 773-774. <<

[26] Natasha Wiebe et al., «Temporal associations among body mass index, fasting insulin, and systemic inflammation: a systematic review and meta-analysis», JAMA Network Open, 4, n.º 3, 2021, págs. e211263-e211263, disponible en <https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2777423>. <<

[1] Picard et al., «Mitochondrial allostatic», art. cit. <<

[2] Paula Chandler-Laney et al., «Return of hunger following a relatively high carbohydrate breakfast is associated with earlier recorded glucose peak and nadir», Appetite, n.º 80, 2014, págs. 236-241, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S0195666314002049>. <<

[3] Bikman, Why We Get Sick, op. cit. <<

[4] Kathleen Page et al., «Circulating glucose levels modulate neural control of desire for high-calorie foods in humans», Journal of Clinical Investigation, 121, n.º 10, 2011, págs. 4161-4169, disponible en <https://www.jci.org/articles/view/57873>. <<

[5] Tanja Taivassalo et al., «The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients», Brain, 126, n.º 2, 2003, págs. 413-423, disponible en <https://pubmed.ncbi.nlm.nih.gov/12538407/>. <<

[6] Picard et al., «Mitochondrial allostatic», art. cit. <<

[7] Ibidem. <<

[8] Kara L. Breymeyer et al., «Subjective mood and energy levels of healthy weight and overweight/obese healthy adults on high-and low-glycemic load experimental diets», Appetite, n.º 107, 2016, págs. 253-259, disponible en <https://pubmed.ncbi.nlm.nih.gov/27507131/>. <<

[9] James Gangwisch et al., «High glycemic index and glycemic load diets as risk factors for insomnia: analyses from the Women’s Health Initiative», American Journal of Clinical Nutrition, 111, n.º 2, 2020, págs. 429-439, disponible en <https://pubmed.ncbi.nlm.nih.gov/31828298/>; R. N. Aurora et al., «Obstructive sleep apnea and postprandial glucose differences in type 2 diabetes mellitus», A97. SRN: New Insights into the Cardiometabolic Consequences of Insufficient Sleep, American Thoracic Society, 2020, págs.A2525-A2525, disponible en <https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A2525>. <<

[10] Nagham Jafar et al., «The effect of short-term hyperglycemia on the innate immune system», American Journal of the Medical Sciences, 351, n.º 2, 2016, págs. 201-211, disponible en <https://www.amjmedsci.org/article/S0002-9629(15)00027-0/fulltext> <<

[11] Janan Kiselar et al., «Modification of β-Defensin-2 by dicarbonyls methylglyoxal and glyoxal inhibits antibacterial and chemotactic function in vitro», PLoS One, 10, n.º 8, 2015, e0130533, disponible en <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130533>. <<

[12] Jiaoyue Zhang et al., «Impaired fasting glucose and diabetes are related to higher risks of complications and mortality among patients with coronavirus disease 2019», Frontiers in Endocrinology, 11, 2020, pág. 525, disponible en <https://www.frontiersin.org/articles/10.3389/fendo.2020.00525/full?report=reader>. <<

[13] Emmanuelle Logette et al., «A Machine-generated view of the role of blood glucose levels in the severity of COVID-19», Frontiers in Public Health, 28 de julio de 2021, pág. 1068, disponible en <https://www.frontiersin.org/articles/10.3389/fpubh.2021.695139/full?fbclid=IwAR0RS9OVCuL9q-fbW4gF7McCYfgRgNDQIVI4JjZE-59Sm1E7l1MFZ0ZGyoI>. <<

[14] Francisco Carrasco-Sánchez et al., «Admission hyperglycaemia as a predictor of mortality in patients hospitalized with COVID-19 regardless of diabetes status: data from the Spanish SEMI-COVID-19 Registry», Annals of Medicine, 53, n.º 1, 2021, págs. 103-116, disponible en <https://www.tandfonline.com/doi/full/10.1080/07853890.2020.1836566>. <<

[15] Ursula Hiden et al., «Insulin and the IGF system in the human placenta of normal and diabetic pregnancies», Journal of Anatomy, 215, n.º 1, 2009, págs. 60-68, disponible en <https://onlinelibrary.wiley.com/doi/full/10.1111/j.1469-7580.2008.01035.x>; Chiara Berlato et al., «Selective response to insulin versus insulin-like growth factor-I and-II and up-regulation of insulin receptor splice variant B in the differentiated mouse mammary epithelium», Endocrinology, 150, n.º 6, 2009, págs. 2924-2933, disponible en <https://academic.oup.com/endo/article/150/6/2924/2456369?login=true>. <<

[16] Carol Major et al., «The effects of carbohydrate restriction in patients with diet-controlled gestational diabetes», Obstetrics & Gynecology, 91, n.º 4, 1998, págs. 600-604, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S0029784498000039>; Robert Moses et al., «Effect of a low-glycemic-index diet during pregnancy on obstetric outcomes», American Journal of Clinical Nutrition, 84, n.º 4, 2006, págs. 807-812, disponible en <https://academic.oup.com/ajcn/article/84/4/807/4633214. <<

[17] James F Clapp III et al., «Maternal carbohydrate intake and pregnancy outcome», Proceedings of the Nutrition Society, 61, n.º 1, 2002, págs. 45-50, disponible en <https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/maternal-carbohydrate-intake-and-pregnancy-outcome/28F8E1C5E1460E67F2F1CE0C1D06EE81>. <<

[18] Rebecca Thurston et al., «Vasomotor symptoms and insulin resistance in the study of women’s health across the nation», Journal of Clinical Endocrinology & Metabolism, 97, n.º 10, 2012, págs. 3487-3494, disponible en <https://pubmed.ncbi.nlm.nih.gov/22851488/>. <<

[19] Gangwisch et al., «High glycemic index», art. cit. <<

[20] A. Fava et al., «Chronic migraine in women is associated with insulin resistance: a cross-sectional study», European Journal of Neurology, 21, n.º 2, 2014, págs. 267-272, disponible en <https://onlinelibrary.wiley.com/doi/abs/10.1111/ene.12289>. <<

[21] Ibidem. <<

[22] Rachel Ginieis et al., «The “sweet” effect: comparative assessments of dietary sugars on cognitive performance», Physiology & Behavior, 184, 2018, págs. 242-247, disponible en <https://pubmed.ncbi.nlm.nih.gov/29225094/>. <<

[23] Ibidem. <<

[24] Hyuck Hoon Kwon et al., «Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial», Acta Dermato-Venereologica, 92, n.º 3, 2012, págs. 241-246, disponible en <https://pubmed.ncbi.nlm.nih.gov/22678562/>. <<

[25] Robyn N Smith et al., «A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial», American Journal of Clinical Nutrition, 86, n.º 1, 2007, págs. 107-115, disponible en <https://pubmed.ncbi.nlm.nih.gov/17616769/>. <<

[26] George Suji et al., «Glucose, glycation and aging», Biogerontology, 5, n.º 6, 2004, págs. 365-373, disponible en <https://link.springer.com/article/10.1007/s10522-004-3189-0>. <<

[27] Pahwa et al., «Chronic inflammation», art. cit. <<

[28] Ibidem. <<

[29] RRobert A Greenwald et al., «Inhibition of collagen gelation by action of the superoxide radical», Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 22, n.º 3, 1979, págs. 251-259, disponible en <https://pubmed.ncbi.nlm.nih.gov/217393/>. <<

[30] Giri et al., «Chronic hyperglycemia», art. cit. <<

[31] John Tower, «Programmed cell death in aging», Ageing Research Reviews, 23, 2015, págs. 90-100, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480161/>. <<

[32] Charles Watt et al., «Glycemic variability and CNS inflammation: Reviewing the connection», Nutrients, 12, n.º 12, 2020, pág. 3906, disponible en <https://pubmed.ncbi.nlm.nih.gov/33371247/>. <<

[33] Pahwa et al., «Chronic inflammation», art. cit. <<

[34] Suzanne M. De la Monte et al., «Alzheimer’s disease is type 3 diabetes — Evidence reviewed», Journal of Diabetes Science and Technology, 2, n.º 6, 2008, págs. 1101-1113, disponible en <https://journals.sagepub.com/doi/abs/10.1177/193229680800200619>. <<

[35] Lustig, Metabolical, op. cit. <<

[36] Jiyin Zhou et al., «Diabetic cognitive dysfunction: from bench to clinic», Current Medicinal Chemistry, 27, n.º 19, 2020, págs. 3151-3167, disponible en <https://pubmed.ncbi.nlm.nih.gov/30727866/>; Auriel A. Willette et al., «Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease», JAMA Neurology, 72, n.º 9, 2015, págs. 1013-1020, disponible en <https://pubmed.ncbi.nlm.nih.gov/26214150/>; Christine M. Burns et al., «Higher serum glucose levels are associated with cerebral hypometabolism in Alzheimer regions», Neurology, 80, n.º 17, 2013, págs. 1557-1564, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662330/>. <<

[37] Mark A Reger et al., «Effects of β-hydroxybutyrate on cognition in memory-impaired adults», Neurobiology of Aging, 25, n.º 3, 2004, págs. 311-314, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S0197458003000873>. <<

[38] Dale E. Bredesen, et al., «Reversal of cognitive decline: a novel therapeutic program», Aging (Albany NY), 6, n.º 9, 2014, pág. 707, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221920/>. <<

[39] Ibidem. <<

[40] Amar S. Ahmad et al., «Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960», British Journal of Cancer, 112, n.º 5, 2015, págs. 943-947, disponible en <https://www.nature.com/articles/bjc2014606>. <<

[41] Lustig, Metabolical, op. cit. <<

[42] Florian R. Greten et al., «Inflammation and cancer: triggers, mechanisms, and consequences», Immunity, 51, n.º 1, 2019, págs. 27-41, disponible en <https://www.sciencedirect.com/science/article/pii/S107476131930295X>. <<

[43] Rachel J. Perry et al., «Mechanistic links between obesity, insulin, and cancer», Trends in Cancer, 6, n.º 2, 2020, págs. 75-78, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S2405803319302614>. <<

[44] Tetsuro Tsujimoto et al., «Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: A population-based observational study», International Journal of Cancer, 141, n.º 1, 2017, págs. 102-111, disponible en <https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.30729>. <<

[45] Breymeyer et al., «Subjective mood and energy levels», art. cit.; Rachel A. Cheatham et al., «Long-term effects of provided low and high glycemic load low energy diets on mood and cognition», Physiology & Behavior, 98, n.º 3, 2009, págs. 374-379, disponible en <https://pubmed.ncbi.nlm.nih.gov/19576915/>; Sue Penckofer et al., «Does glycemic variability impact mood and quality of life?», Diabetes Technology & Therapeutics, 14, n.º 4, 2012, págs. 303-310, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317401/>. <<

[46] Gangwisch et al., «High glycemic index», art. cit. <<

[47] Fernando F Anhê et al., «Glucose alters the symbiotic relationships between gut microbiota and host physiology», American Journal of Physiology-Endocrinology and Metabolism, 318, n.º 2, 2020, págs. E111-E116, disponible en <https://pubmed.ncbi.nlm.nih.gov/31794261/>. <<

[48] Lustig, Metabolical, op. cit. <<

[49] William S. Yancy et al., «Improvements of gastroesophageal reflux disease after initiation of a low-carbohydrate diet: Five brief case reports», Alternative Therapies in Health and Medicine, 7, n.º 6, 2001, pág. 120, disponible en <https://search.proquest.com/openview/1c418d7f0548f58a5c647b1204d3f6a7/1?pq-origsite=gscholar&cbl=32528>. <<

[50] Jessica M. Yano et al., «Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis», Cell, 161, n.º 2, 2015, págs. 264-276, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393509/>; Roberto Mazzoli et al., «The neuro-endocrinological role of microbial glutamate and GABA signaling», Frontiers in Microbiology, 7, 2016, pág. 1934, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127831/>. <<

[51] Emeran A. Mayer, «Gut feelings: the emerging biology of gut-brain communication», Nature Reviews Neuroscience, 12, n.º 8, 2011, págs. 453-466, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845678/>. <<

[52] Sigrid Breit et al., «Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders», Frontiers in Psychiatry, n.º 9, 2018, pág. 44, disponible en <https://www.ncbi.nlm.nih.gov/pubmed/29593576>; Bruno Bonaz et al., «The vagus nerve at the interface of the microbiota-gut-brain axis», Frontiers in Neuroscience, n.º 12, 2018, pág. 49, disponible en <https://www.ncbi.nlm.nih.gov/pubmed/29467611>. <<

[53] Michael D. Miedema et al., «Statin eligibility and outpatient care prior to ST-segment elevation myocardial infarction», Journal of the American Heart Association, 6, n.º 4, 2017, e005333, disponible en <https://www.ahajournals.org/doi/10.1161/JAHA.116.005333>. <<

[54] Bikman, Why We Get Sick, op. cit. <<

[55] Ibidem. <<

[56] Koichi Node et al., «Postprandial hyperglycemia as an etiological factor in vascular failure», Cardiovascular Diabetology, 8, n.º 1, 2009, págs. 1-10, disponible en <https://pubmed.ncbi.nlm.nih.gov/19402896/>; Antonio Ceriello et al., «Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients», Diabetes, 57, n.º 5, 2008, págs. 1349-1354, disponible en <https://pubmed.ncbi.nlm.nih.gov/18299315/>; Michelle Flynn et al., «Transient intermittent hyperglycemia accelerates atherosclerosis by promoting myelopoiesis», Circulation Research, 127, n.º 7, 2020, págs. 877-892, disponible en <https://www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.120.316653>; E. Succurro et al., «Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance but early carotid atherosclerosis», Atherosclerosis, 207, n.º 1, 2009, págs. 245-249, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S0021915009002718>. <<

[57] Bikman, Why We Get Sick, op. cit. <<

[58] Lustig, Metabolical, op. cit. <<

[59] Bikman, Why We Get Sick, op. cit. <<

[60] Paul M. Ridker et al., «Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events», New England Journal of Medicine, 347, n.º 20, 2002, págs. 1557-1565, disponible en <https://www.nejm.org/doi/full/10.1056/NEJMoa021993>. <<

[61] Tetsurou Sakumoto et al., «Insulin resistance/hyperinsulinemia and reproductive disorders in infertile women», Reproductive Medicine and Biology, 9, n.º 4, 2010, págs. 185-190, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904600/>; LaTasha B. Craig et al., «Increased prevalence of insulin resistance in women with a history of recurrent pregnancy loss», Fertility and Sterility, 78, n.º 3, 2002, págs. 487-490, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S0015028202032478>; Nelly Pitteloud et al., «Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men», Journal of Clinical Endocrinology & Metabolism, 90, n.º 5, 2005, págs. 2636-2641, disponible en <https://academic.oup.com/jcem/article/90/5/2636/2836773>. <<

[62] Jorge E. Chavarro et al., «A prospective study of dietary carbohydrate quantity and quality in relation to risk of ovulatory infertility», European Journal of Clinical Nutrition, 63, n.º 1, 2009, págs. 78-86, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066074/>. <<

[63] Centers for Disease Control and Prevention, «PCOS (Polycystic Ovary Syndrome) and diabetes», CDC, recuperado el 30 de agosto de 2021, disponible en <https://www.cdc.gov/diabetes/basics/pcos.html>. <<

[64] John E. Nestler et al., «Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system», Journal of Clinical Endocrinology & Metabolism, 83, n.º 6, 1998, págs. 2001-2005, disponible en <https://academic.oup.com/jcem/article/83/6/2001/2865383?login=true>. <<

[65] Bikman, Why We Get Sick, op. cit. <<

[66] Centers for Disease Control and Prevention, «PCOS», art. cit. <<

[67] John C. Mavropoulos et al., «The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study», Nutrition & Metabolism, 2, n.º 1, 2005, págs. 1-5, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334192/>. <<

[68] Zeeeshan Anwar et al., «Erectile dysfunction: An underestimated presentation in patients with diabetes mellitus», Indian Journal of Psychological Medicine, 39, n.º 5, 2017, págs. 600-604, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688886/>. <<

[69] Fengjuan Yao et al., «Erectile dysfunction may be the first clinical sign of insulin resistance and endothelial dysfunction in young men», Clinical Research in Cardiology, 102, n.º 9, 2013, págs. 645-651, disponible en <https://link.springer.com/article/10.1007/s00392-013-0577-y>. <<

[70] Sudesna Chatterjee et al., «Type 2 diabetes», Lancet, 389, n.º 10085, 2017, págs. 2239-2251, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S0140673617300582>. <<

[71] Marc Y. Donath et al., «Type 2 diabetes as an inflammatory disease», Nature Reviews Immunology, 11, n.º 2, 2011, págs. 98-107, disponible en <https://pubmed.ncbi.nlm.nih.gov/21233852/>. <<

[72] Joshua Z. Goldenberg et al., «Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data», BMJ, n.º 372, 2021, disponible en <https://www.bmj.com/content/372/bmj.m4743>. <<

[73] William S. Yancy et al., «A low-carbohydrate, ketogenic diet to treat type 2 diabetes», Nutrition & Metabolism, 2, n.º 1, 2005, págs. 1-7, disponible en <https://link.springer.com/article/10.1186/1743-7075-2-34>. <<

[74] Alison B. Evert et al., «Nutrition therapy for adults with diabetes or prediabetes: a consensus report», Diabetes Care, 42, n.º 5, 2019, págs. 731-754, disponible en <https://care.diabetesjournals.org/content/diacare/early/2019/04/10/dci19-0014.full.pdf>. <<

[75] Lustig, «Fructose: it’s “alcohol without the buzz”», art. cit. <<

[76] Zobair M. Younossi et al., «Global epidemiology of nonalcoholic fatty liver disease — Meta-analytic assessment of prevalence, incidence, and outcomes», Hepatology, 64, n.º 1, 2016, págs. 73-84, disponible en <https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.28431>. <<

[77] Ruth C. R. Meex et al., «Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance», Nature Reviews Endocrinology, 13, n.º 9, 2017, págs. 509-520, disponible en <https://www.nature.com/articles/nrendo.2017.56>. <<

[78] F. William Danby, «Nutrition and aging skin: sugar and glycation», Clinics in Dermatology, 28, n.º 4, 2010, págs. 409-411, disponible en <https://www.sciencedirect.com/science/article/abs/pii/S0738081X10000428>. <<

[79] Paraskevi Gkogkolou et al., «Advanced glycation end products: key players in skin aging?», Dermato-endocrinology, 4, n.º 3, 2012, págs. 259-270, disponible en <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583887/>. <<

[80] Ashok V. Katta et al., «Glycation of lens crystalline protein in the pathogenesis of various forms of cataract», Biomedical Research, 20, n.º 2, 2009, págs. 119-121, disponible en <https://www.researchgate.net/profile/Ashok-Katta-3/publication/233419577_Glycation_of_lens_crystalline_protein_​in_the_pathogenesis_of_various_forms_of_cataract/links/02e7e531342066c955000000/​Glycation-of-lens-crystalline-protein-​in-the-pathogenesis-of-various-forms-of-cataract.pdf>. <<

[81] Araújo et al., «Prevalence of optimal metabolic health», art. cit. <<

[1] Alpana P. Shukla et al., «Food order has a significant impact on postprandial glucose and insulin levels», Diabetes Care, 38, n.º 7, 2015, págs. 98-99, disponible en <https://care.diabetesjournals.org/content/38/7/e98>. <<

[2] Kimiko Nishino et al., «Consuming carbohydrates after meat or vegetables lowers postprandial excursions of glucose and insulin in nondiabetic subjects», Journal of Nutritional Science and Vitaminology, 64, n.º 5, 2018, págs. 316-320, disponible en <https://www.researchgate.net/publication/328640463_Consuming_Carbohydrates_​after_Meat_or_Vegetables_Lowers_Postprandial_Excursions_​of_Glucose_and_Insulin_in_Nondiabetic_Subjects>. <<

[3] Shukla et al., «Food order has a significant impact», art. cit. <<

[4] Domenico Tricò et al., «Manipulating the sequence of food ingestion improves glycemic control in type 2 diabetic patients under free-living conditions», Nutrition & Diabetes, 6, n.º 8, 2016, págs. e226-e226, disponible en <https://www.nature.com/articles/nutd201633/>. <<

[5] Diana Gentilcore et al., «Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes», Journal of Clinical Endocrinology & Metabolism, 91, n.º 6, 2006, págs. 2062-2067, disponible en <https://academic.oup.com/jcem/article/91/6/2062/2843371?login=true>. <<

[6] J. R. Perry et al., «A review of physiological effects of soluble and insoluble dietary fibers», J Nutr Food Sci, 6, n.º 2, 2016, pág. 476, disponible en <https://www.longdom.org/open-access/a-review-of-physiological-effects-of-soluble-and-insoluble-dietary-fibers-2155-9600-1000476.pdf>. <<

[7] Gentilcore et al., «Effects of fat on gastric emptying», art. cit. <<

[8] Shukla et al., «Food order has a significant impact», art. cit.; Nishino et al., «Consuming carbohydrates», art. cit. <<

[9] P. Shukla et al., «Effect of food order on ghrelin suppression», Diabetes Care, 41, n.º 5, 2018, págs. e76-e77, disponible en <https://care.diabetesjournals.org/content/41/5/e76>. <<

Ir a la siguiente página

Report Page