Курсовая работа: Усилитель мощности электрических сигналов

Курсовая работа: Усилитель мощности электрических сигналов




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































2. Разработка и расчет оконечного каскада усилителя мощности
2.1. Выбор первой пары транзисторов
2.1.1. Построение нагрузочной прямой в режиме В
2.1.2. Построение мощностных характеристик
2.1.3. Построение нагрузочной прямой в режиме АВ
2.2. Выбор второй пары транзисторов
2.2.1. Построение нагрузочной прямой в режиме В
2.2.2. Построение нагрузочной прямой в режиме АВ
3. Разработка и расчет предоконечного каскада
4. Разработка и расчет промежуточного каскада
4.2. Расчет масштабирующего усилителя с инвертированием сигнала
5. Разработка и расчет входного каскада
5.2. Расчет масштабирующего усилителя без инвертирования сигнала
6. Разработка и расчет блока питания
7. Разработка и описание печатной платы.
Несмотря на быстрое развитие усилительной техники, бестрансформаторные усилители мощности по-прежнему играют важную роль.
Такие усилители могут быть легко выполнены по интегральной технологии. Именно поэтому современные БМУ представляют собой компактные и экономичные устройства. Кроме того, отсутствие частотно-зависимых элементов в цепях связи позволяет вводить глубокие отрицательные обратные связи не только по переменному, но и по постоянному току, что существенно улучшает характеристики усилителей.
Основной функцией усилителей мощности (УМ) является обеспечение в нагрузке заданного значения мощности; усиление по напряжению является второстепенным фактором, в результате УМ являются основными потребителями энергии источников питания. Для обеспечения высокого КПД мощные выходные каскады работают в режиме класса В или АВ. Схемы строят двухтактными на транзисторах различного типа проводимости (комплементарных), включенных по схеме с ОК или с ОЭ.
- мощность, отдаваемая в нагрузку ;
- внутреннее сопротивление источника сигнала ;
- коэффициент частотных искажений ;
Усиление – это процесс увеличения электрических сигналов колебаний с сохранением их частотного спектра и фазовых соотношений. В настоящее время усилители электрических сигналов применяются практически в любых электронных устройствах, таких как: устройства воспроизведения и записи информации, устройства автоматики, измерительные устройства, вычислительная техника и т.д.
Процесс усиления электрического сигнала происходит за счет мощности, потребляемой от источника питания. Часть мощности Р о
в усилителе преобразуется в мощность Р 2
, т.е. в мощность, выделяемую в нагрузке. Для преобразования мощности Р о
в мощность Р 2
затрачивается мощность Р 1
, т.е. мощность источника сигнала. Таким образом, усиление – процесс увеличения мощности источника сигнала.
В этом данном курсовом проекте проектируется устройство, структурная схема которого изображена на Рисунке 2.
Рисунок 2 - Структурная схема проектируемого усилителя.
2. Разработка и расчет оконечного каскада усилителя мощности

Выберем в качестве оконечного каскада двухтактный, бестрансформаторный, каскад на составных биполярных транзисторах, включенных по схеме с общим коллектором. Это позволит нам осуществить непосредственную связь с нагрузкой, а значит, обойтись без громоздких трансформаторов и разделительных конденсаторов. А т.к. последние являются частотно-зависимыми элементами, то их отсутствие существенно расширит полосу пропускания усилителя. Отсутствие частотно-зависимых элементов позволяет вводить глубокие обратные связи по постоянному току, что улучшает характеристики усилителя.
Выберем схему построения оконечного каскада.
Для повышения КПД транзисторы оконечного каскада используют в режиме класса В. Тогда оконечный каскад будет состоять из двух симметричных плеч, каждое из которых будет работать параллельно и в противофазе друг другу на общую нагрузку (Рисунок 3).
Однако при этом существенно увеличиваются нелинейные искажения. Поэтому выходные каскады обычно используют в режиме АВ (при этом в принципиальную схему добавляется цепь смещения), обеспечивая высокий КПД и малые нелинейные искажения. Такие схемы выполняют на комплиментарных транзисторах.
При значительной мощности выходного сигнала (более 5 Вт) или при слишком большом коэффициенте гармоник может возникнуть ситуация, когда для предоконечного каскада тоже может потребоваться режим АВ. В этом случае оконечный каскад выполняют на составных транзисторах.
Первая пара транзисторов составляет свой каскад. Он состоит из двух комплементарных транзисторов V1 и V2, работающих на общую нагрузку . По своим усилительным свойствам транзисторы V1 и V2 должны быть идентичны. В схеме (Рисунок 4) транзисторы V1 и V2 включены с ОК. Напряжения источников питания равны между собой . При положительных входных сигналах транзистор V1 работает в активном режиме и усиливает входной сигнал, а транзистор V2 заперт. При отрицательных входных напряжениях - наоборот. Таким образом, транзисторы работают в активном режиме попеременно, каждый в течение одного полупериода входного напряжения. При оба транзистора заперты.
а) рассчитаем амплитуду выходного питания:
E п
= U нм
+ U ост
= 15,49 + 6 = 21,49 , следовательно E п
= 21 В
в) рассчитываем мощность, рассеиваемую на одном транзисторе:
д) исходя из рассчитанных данных выбираем пару транзисторов:
КТ-818В - это кремневые мезаэпитаксиально – планарные p-n-p-транзисторы предназначены для применения в ключевых и линейных схемах. Корпус пластмассовый с гибкими выводами или металлический, масса не более 15 г.
КТ-819В - это кремневые мезаэпитаксиально – планарные n-p-n-транзисторы предназначены для применения в ключевых и линейных схемах, узлах, блоках аппаратуры. Корпус пластмассовый с гибкими выводами, масса не более 2,5 г. или металлостеклянный, масса не более 15 г.
2.1.1 Построение нагрузочной прямой в режиме В

Будем рассчитывать транзисторы в режиме класса В. Этот режим соответствует условию, когда начальное смещение между базами и эмиттерами транзисторов отсутствует и при отсутствии входного сигнала ток коллекторов близок к нулю. Анализ энергетических характеристик усилителя проводят для одного плеча, считая, что параметры второго плеча идентичны.
Рисунок 5 - Выходные характеристики транзистора КТ-819В.
Нагрузочная прямая на выходных характеристиках каждого из транзисторов проходит через точку В(1) с координатами
На входной характеристике транзистора положение рабочей точки определяется в соответствии с положением рабочей точки на выходных характеристиках.
Рисунок 6 - Входная характеристика транзистора КТ-819В.
2.1.2 Построение мощностных характеристик

На Рисунке 7 представлены мощностные характеристики усилителя в режиме В. Это зависимости мощностей нагрузки, потребляемой от источника питания и рассеиваемой на коллекторах транзисторов, от амплитуды напряжения на нагрузке.
Рисунок 7 - Мощностные характеристики усилителя.
2.1.3 Построение нагрузочной прямой в режиме АВ

В режиме класса АВ за счет введения небольшого смещения и задания также небольшого тока покоя транзисторов амплитудная характеристика изменяется и становится более линейной, переходные искажения существенно уменьшаются. Если задать ток покоя равным максимальному току в нагрузке, то получим режим класса А. Однако переходные искажения в достаточной степени уменьшаются, даже если ток покоя составляет незначительную часть максимального тока в нагрузке.
Итак, для первой пары транзисторов:
I k
0
= 0,1I н
m
= 0,1*1,94 = 0,194 A
Теперь построим нагрузочную прямую в режиме АВ. Она проходит через точку АВ с координатами , и точку 3 с координатами
Рисунок 8 - Выходные характеристики транзистора КТ-819В.
Теперь переносим точки на входную характеристику:
Для этих токов находим соответствующие напряжения U бэ
:
Рисунок 9 - Входная характеристика транзистора КТ-819В.
Рассчитав максимальные значения входного тока и напряжения , определяют мощность, потребляемую входной цепью усилителя от предыдущего каскада и входное сопротивление:
Для второй пары транзисторов составного каскада входные параметры первого являются выходными, то есть для выбора транзисторов используем следующие данные:
E п
= U нм
+ U ост
= 14,84 + 6 = 20,84 , следовательно E п
= 21 В
Исходя из рассчитанных данных выбираем пару транзисторов:
КТ-629А - это кремниевые эпитаксиально–планарные p-n-p-транзисторы предназначены для использования в быстродействующих импульсных и других неремонтируемых гибридных схемах, микромодулях, узлах и блоках, имеющих герметичную защиту от действия солнечного света, влаги и так далее, для аппаратуры широкого применения. Оформление бес корпусное, на диэлектрической подложке. Масса не более 0,02 г.
КТ-630А - это кремневые планарные n-p-n-транзисторы используются в быстродействующих импульсных и других схемах. Корпус металлический, герметичный, с гибкими выводами, масса не более 2 г.
2.2.1 Построение нагрузочной прямой в режиме В

Нагрузочная прямая на выходных характеристиках каждого из транзисторов проходит через точку В(1) с координатами
Рисунок 10 - Выходные характеристики транзистора КТ-630А.
На входной характеристике транзистора положение рабочей точки определяется в соответствии с положением рабочей точки на выходных характеристиках.
Рисунок 11 - Входная характеристика транзистора КТ-630А.
2.2.2 Построение нагрузочной прямой в режиме АВ

Теперь построим нагрузочную прямую в режиме АВ для второй пары транзисторов. Она проходит через точку с координатами , и точку с координатами
Затем переносим точки на входную характеристику:
Рисунок 12 - Выходные характеристики транзистора КТ-630А.
Для этих токов находим соответствующие напряжения U бэ
:
Рисунок 13 - Входная характеристика транзистора КТ-630А.
Рассчитав максимальные значения входного тока и напряжения , определяют мощность, потребляемую входной цепью усилителя от предыдущего каскада и входное сопротивление:
Для режима АВ посчитаем напряжение смещения:
Исходя из полученного напряжения смещения выбираем диоды, которые компенсируют его. Выберем три универсальных диода КД519А.
Транзисторы в УМ работают при значительных амплитудах сигнала, поэтому усилителям мощности присущи значительные нелинейные искажения. В режиме класса В усилители являются экономичными, но обладают повышенными искажениями, которые определяются, во-первых, существенной нелинейностью входных характеристик транзисторов, во-вторых, неидентичностью как входных, так и выходных характеристик и, в-третьих, нелинейной зависимостью тока коллектора от тока базы.
В схеме с ОК уменьшение нелинейных искажений достигается за счет 100%-ной отрицательной обратной связи по напряжению. Построения амплитудной характеристики каскада ОК, работающего в режиме В соответствует уравнениям:
Для токов базы и соответствующим им найдем Е вх
:
Построение амплитудной характеристики для режима АВ:
Эта характеристика более линейна вблизи начала координат по сравнению с режимом В.
Для токов базы и соответствующим им найдем Е вх
при
Теперь посчитаем коэффициент нелинейных искажений по третьей гармонике в режиме В:
Теперь посчитаем коэффициент нелинейных искажений по третьей гармонике в режиме АВ:
Рисунок 14 - Амплитудная характеристика оконечного каскада.
3. Разработка и расчет предоконечного каскада

При необходимости получения больших выходных токов существенно возрастает ток, потребляемый базовыми цепями транзисторов УМ от предварительного каскада. Предварительные каскады, как правило, являются усилителями напряжения, работающими в режиме класса А.
Предоконечный каскад предназначен для согласования оконечного каскада на составных комплиментарных транзисторах, работающих в режиме класса АВ, с выходом ОУ А2. Предоконечный каскад построен на биполярном транзисторе n-p-n типа, который включен по схеме с ОЭ в цепь смещения оконечного каскада вместо резистора R4 (Рисунок 15).
Рисунок 15 - Принципиальная схема предоконечного и оконечного каскадов.
Для предоконечного каскада входные параметры второй пары составного каскада являются выходными, то есть для выбора транзисторов используем следующие данные:
E к
=2Е п
,следовательно E к
= 42 В
Исходя из рассчитанных данных выбираем транзистор: это КТ-601А - кремневые планарные n-p-n-транзисторы предназначенные для работы в радиовещательных и телевизионных приемниках, в усилительной аппаратуре и других устройствах. Корпус герметичный, металлический, с гибкими выводами, пластмассовый. Масса транзистора не более 2 г.
3.2.1 Построение нагрузочных прямых

1) Строим нагрузочную прямую по постоянному току:
2) Строим нагрузочную прямую по переменному току:
Рисунок 16 - Выходные характеристики транзистора КТ-601А.
Затем переносим точки на входную характеристику:
Рисунок 17 - Входная характеристика транзистора КТ-601А.
Для этих токов находим соответствующие напряжения U бэ
:
Выбрав необходимый режим работы транзистора, то есть исходное положение рабочей точки на нагрузочной прямой и определив по характеристикам ток и напряжение смещения базы, необходимо обеспечить во входной цепи транзистора это напряжение смещения. Простейший способ обеспечить это смещение - включить в цепь базы транзистора источник напряжения U бэ
0
.
I д
>>I б
; I д
=(3.. 5)I б
= 4I б
0
= 4*118 = 472 мкА;
4. Разработка и расчет промежуточного каскада

Данный каскад будет построен на операционном усилителе. Операционный усилитель – это усилитель постоянного тока, имеющий высокий коэффициент усиления порядка несколько сотен единиц.
В данном каскаде применяем масштабирующий операционный усилитель с инвертируемым сигналом.
Рисунок 18 - Принципиальная схема промежуточного каскада.
Основной функцией этого усилителя умножение входного сигнала на постоянный коэффициент. В данной схеме операционный усилитель охвачен отрицательной параллельной обратной связью по напряжению.
Основные параметры операционного усилителя:
1) К U
- коэффициент усиления по постоянному току, чем больше коэффициент, тем ближе операционный усилитель к идеальному.
4) - напряжение питания, - около 5%;
5) U вых
m
– максимальная амплитуда выходного сигнала 80 %Е п

8) f в
– верхняя граничная частота;
10) е см
– напряжение смещения нуля;
Выберем операционный усилитель К140УД6, у которого
U см
= 10 мВ, I вх
= 30 нА, ΔI вх
= 10 нА, U п
= (5-17)В, I пот
= 4 мА, R вх
=1МОм, к ос.сф.
=70 Дб, R н,
min
=1кОм.
4.2 Расчет масштабирующего усилителя с инвертированием сигнала

При анализе усилительных свойств схемы на операционном усилителе будем считать, что
из предыдущего каскада имеем U вых
= 0,04 В, а U вх
= 5 мВ, откуда
Зададимся произвольным значением R 2
при условии R 2
>>R н
min
,
Пусть I 0
= 0,001 мкА, тогда >> 1 мкА, следовательно =10 мкА
5. Разработка и расчет входного каскада

Данный каскад также будет построен на операционном усилителе. Только в отличие от предыдущего каскада мы выбираем масштабирующий усилитель без инвертирующего сигнала. Это каскад согласовывает высокое входное сопротивление сигнала с каскадом, обладающим более меньшим входным сопротивлением.
Операционный усилитель охвачен отрицательной последовательной обратной связью по напряжению.
Рисунок 19 - Принципиальная схема входного каскада.
Выберем операционный усилитель К140УД6, у которого
U см
= 10 мВ, I вх
= 30 нА, ΔI вх
= 10 нА, U п
= (5-17)В, I пот
= 4 мА, R вх
=1МОм, к ос.сф.
=70 Дб, R н,
min
=1кОм.
5.2 Расчет масштабирующего усилителя без инвертирования сигнала

При анализе усилительных свойств схемы на операционном усилителе будем считать, что
из предыдущего каскада имеем U вых
= 5 мВ, а U вх
= 5 мВ, откуда
Зададимся произвольным значением R 2
при условии R 2
>>R н
min
,
Пусть I 0
= 0,001 мкА, тогда >> 1 мкА, следовательно, =10 мкА
6. Разработка и расчет блока питания

Блок источника питания необходим для преобразования переменного напряжения сети (~220 В, 50 Гц) в постоянное напряжение, необходимое для питания всех узлов проектируемого устройства. Схема выпрямителя напряжения представлена на Рисунке 20.
Рисунок 20 - Схема выпрямителя напряжения
Рисунок 21 - Структура трансформатора ТПП267-127/220-50.
Таблица 1. Основные параметры трансформатора ТПП267-127/220-50
Для подключения трансформатора к сети ~220В необходимо соединить выводы первичной обмотки 3 и 7, 1 и 6, а напряжение подавать на выводы 2 и 9. На выходе трансформатора должно быть напряжение, действующее значение которого 1.11U ср
=1.11*40=44.4В, т.к. диодный мост будет выделять постоянную составляющую напряжения, т.е. U ср
. Для получения постоянного напряжения на выходе трансформатора соединим последовательно все вторичные обмотки. Соединим выводы 12 и 15, 16 и 19, 20 и 13, 14 и 17, 18 и 21. Обмотки коммутируются подобным образом для того, чтобы можно было вывести среднюю точку (выводы 13 и 20). Выходное напряжение снимается с выводов 11 и 22. После трансформатора ставится диодный мост. В качестве диодов VD1-VD4 выбираем диоды 2Д220А, параметры которых I пр
max
=6А, U обр
max
=400 В, U пр
=1 В. на выходе диодного моста для сглаживания пульсаций поставим емкость. Для обеспечения коэффициента пульсаций К п
=0.05 необходима емкость С»600 мкФ. В качестве этой емкости выберем 3 параллельно соединенных алюминиевых оксидно-электрических конденсатора К50-20-100В-220мкФ.
На выходе получаем постоянное напряжение U п1
=±21±1В. от этого напряжения будет питаться усилительный каскад. Для питания остальных узлов устройства необходимы напряжения U п2
=±10 В и U п3
=±5 В. Для этого подключим к U п1
=±21В каскад, изображенный на Рисунке 22.
Рисунок 22 - Цепь питания маломощных устройств.
Рассчитаем цепь питания, изображенную на Рисунке 22. Выберем стабилитроны VC1 и VC2 – 2С215Ж с напряжением стабилизации 15 В и током стабилизации 4.7мА, VC3 и VC4 – 2С147Г с напряжением стабилизации 5 мА.
Сопротивления R3 и R4 выбираем из условия
Выбираем конденсатор К50-6-16В-50 мкФ±5%.
Сопротивления R1 и R2 выбираем из условия:
Выбираем конденсатор К50-6-16В-50 мкФ±5%.
7. Разработка и описание печатной платы

Основная цель конструирования – создание коммутационного устройства для объединения всех элементов в функциональную схему с обеспечением требуемых технических и электрических параметров в заданном диапазоне характеристик при минимальных затратах.
Для этого необходимо выбрать тип печатной платы, определить класс точности, установить конфигурацию и габаритные размеры.
При конструировании печатных плат необходимо особое внимание обращать на выбор материала платы. Для печатных плат, эксплуатируемых при малых механических нагрузках, рекомендуется использовать гетинакс, при больших – стеклотексолит.
Габаритные размеры, конфигурацию и место крепления печатной платы выбирают в зависимости от того, где эти платы будут использоваться. В нашем случае будем разрабатывать печатные платы простой прямоугольной формы.
Размещение элементов конструкции печатных плат рекомендуется условной координатной сеткой.
Для удобства расположим каждый отдельный узел на отдельной печатной плате: УМ на одной плате, источник питания на другой.
В данной работе спроектирован бестрансформаторный низкочастотный усилитель мощности, соответствующий заданным параметрам.
В ходе работы разработана принципиальная электрическая схема этого усилителя, с указанием причин выбора именно такой конфигурации. По каждому из каскадов отдельно также дается краткое описание.
В данной работе представлен расчет каждого из каскадов усилителя и преведены используемые в процессе расчета характеристики.
Также приведен расчет нелинейных искажений, создаваемых оконечным каскадом, работающим в режиме класса АВ. Нелинейные искажения предварительных каскадов очень малы, поэтому при расчете общего коэффициента нелинейных искажений не учитывается.
К данному курсовому проекту прилагается чертеж, выполненный на бумаге формата А1 и представляет собой принципиальную электрическую схему спроектированного усилителя, вид разработанной печатной платы со стороны проводящего рисунка и крепление элементов на печатной плате.
1. Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы. Справочник. Под общ. ред. Н.Н.Горюнова. – М.: Энергоатомиздат, 1987. – 744с.
2. Интегральные микросхемы. Справочник. Под ред. Б.В. Тарабрина. - М.: Радио и связь, 1983г -528с.
3. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам. Под общ. ред. Н.Н.Горюнова. - М.: Энергия, 1976г -744с.
4. Транзисторы для аппаратуры широкого применения. Справочник. Под ред. Б.Л.Перельмана. - М.: Радио и связь, 1981г -656с.
5. Лукашенков А.В. Электронные устройства автоматики и телемеханики. Лабораторная работа №16. Расчет и исследование бестрансформаторных усилителей мощности. Методические указания. - Тула.: ТулПИ, 1988г -32с.
6. Воробьев Н.И. Проектирование электронных устройств. - М.: Высшая школа, 1989г -223с.
7. Александров К.К, Кузьмина Е.Г. Электротехнические чертежи и схемы. - М.: Энергоатомиздат, 1990г-228с.

Название: Усилитель мощности электрических сигналов
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа
Добавлен 04:29:30 15 октября 2009 Похожие работы
Просмотров: 1126
Комментариев: 15
Оценило: 3 человек
Средний балл: 5
Оценка: неизвестно   Скачать

Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Курсовая работа: Усилитель мощности электрических сигналов
Реферат Про Писец
Реферат по теме Краткая биография Ницше
Курсовая На Тему Железобетонные Конструкции
Доклад по теме Приграничные районы России и Украины
Как Начать Введение В Сочинении
Курсовая работа: Учет затрат на производство и калькулирование себестоимости
Реферат: Система педагогічних наук Зв язок педагогіки з іншими науками Завдання педагогіки Напрямки за
Курсовая Работа На Тему Традиционный Уклад Китайской Семьи В Xvi-Xvii В.
Составить Сочинение На Тему Памятный День
Сочинение На Тему Прощение Огэ
Правовые Аспекты Реферат
Гражданско-правовая ответственность за нарушения земельного законодательства
Реферат: Учет и анализ финансовых результатов 2
Русский Язык 2 Кл Контрольная Работа
Реферат: Хождение по мукам 2
Сочинение На Тему Мой Портфель 2 Класс
Хочешь Мира Блюди Справедливость Эссе
Медицинская Помощь Курсовая
Подобие Массообменных Процессов Реферат
Контрольная работа по теме Модели зародышеобразования
Реферат: Електронна комерція
Реферат: Бюджетный процесс США
Сочинение: Жизнь и смерть в художественной концепции «Рассказа о семи повешенных» Л. Н. Андреева

Report Page