Курсовая работа: Монолитное железобетонное перекрытие

Курсовая работа: Монолитное железобетонное перекрытие




⚡ 👉🏻👉🏻👉🏻 ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































2.1 Монолитное железобетонное перекрытие. 9
2.1.2 Расчет и конструирование плиты. 11
2.1.3 Расчет и конструирование второстепенной балки 13
2.2 Сборные железобетонные конструкции. 19
2.2.3 Расчет и конструирование ригеля 23
2.2.4 Расчет и конструирование колонны 27
2.2.5 Расчет и конструирование фундамента колонны 30
2.3 Расчет простенка первого этажа 32
Целью выполнения курсового проекта является овладение основами расчета и проектирования железобетонных конструкций, изучение метода расчета сечений железобетонных конструкций по предельным состояниям (несущей способности, деформациям, образованию и раскрытию трещин).
Выполнить рабочий проект несущих конструкций многоэтажного гражданского здания с полным каркасом, включающий расчет и конструирование следующих конструкций:
- сборной панели перекрытия с напрягаемой арматурой;
Исходные данные для выполнения проекта:
1 Размер здания в плане L1 x L2 = 16,2 x 76 м.
2 Сетка колонн l1 x l2 = 5,4 x 7,6 м.
4 Временная нагрузка на междуэтажное перекрытие P = 4 кН/м2.
7 Марки материалов для железобетонных элементов с напрягаемой арматурой(плита): бетон класса В30, напрягаемая арматура из стали класса A-VI, ненапрягаемая арматура из стали класса AIII.
8 Марки материалов для железобетонных элементов с ненапрягаемой арматурой (колонна): бетон класса В15, ненапрягаемая арматура из стали класса АIII.
Рисунок 1- Схема расположения конструктивных элементов здания
2 Расчет и конструирование многопустотной предварительно напряженной плиты перекрытия при временной нагрузке 4,2 кН/м2

Таблица 1 - Нагрузки на 1 м2 перекрытия
Цементно-песчаная стяжка d=20 мм, r=1800 кг/м3
Многопустотная плита перекрытия с омоноличиванием швов d=220 мм
Нагрузка на 1 п.м. длины плиты при номинальной её ширине 1.0 м с учетом коэффициента надежности по назначению здания (II класс ответственности) :
- нормативная постоянная и длительная кН/м.
Расчетные характеристики материалов для плиты:
Бетон – тяжелый класса по прочности на сжатие В30. МПа, МПа (таблица А.1); МПа, МПа (таблица А.2); коэффициент условий работы бетона (табл. 15[1]). Плита подвергается тепловой обработке при атмосферном давлении. Начальный модуль упругости Мпа (таблица А.3).
К трещиностойкости плиты предъявляются требования 3-ей категории. Технология изготовления плиты – агрегатно-поточная. Натяжение напрягаемой арматуры осуществляется электротермическим способом.
- продольная напрягаемая класса A-VI. МПа, МПа, МПа (таблица А.4).
- поперечная ненапрягаемая класса А-III, МПа, МПа, МПа (таблица А.4).
1.2 Расчет плиты по предельным состояниям первой группы

где 0,4м - ширина ригеля; 0,2м – площадка опирания плиты; 0,02м – конструктивный зазор между плитой и ригелем.
Поперечное конструктивное сечение плиты заменяется эквивалентным двутавровым сечением. Круглое очертание пустот заменим эквивалентным квадратным со стороной см. Размеры расчетного двутаврового сечения:
мм; мм; мм; мм; мм; b=96 – 0,9Ч15,9Ч5=24,45 см.
Плита рассчитывается как однопролетная шарнирно-опертая балка, загруженная равномерно-распределенной нагрузкой.
Усилия от расчетной полной нагрузки:
- изгибающий момент в середине пролета
Рисунок 4 - Расчетная схема плиты и эпюры усилий
Расчет по прочности сечения, нормального к продольной оси плиты
При расчете по прочности расчетное поперечное сечение плиты принимается тавровым с полкой в сжатой зоне (свесы полок в растянутой зоне не учитываются).
При расчете принимается вся ширина верхней полки мм, так как:
Положение границы сжатой зоны определяется согласно (3.30) [1]:
59,79Ч106 ≤ 0,9Ч17,0Ч960Ч38,45Ч(190-0,5Ч38,45)=96,4Ч106 Н*мм
Следовательно, граница сжатой зоны проходит в полке, и расчет плиты ведется как прямоугольного сечения с размерами и .
По прил. 5 методических указаний при αm=0,112 ξ=0,12 ς=0,94.
Граничная относительная высота сжатой зоны определяется по формуле (25) [1]:
- характеристика сжатой зоны бетона, определяемая по формуле: ;
- коэффициент, принимаемый равным для тяжелого бетона ;
- напряжение в арматуре, МПа, принимаемое для арматуры класса A-IV
- напряжение, принимаемое при коэффициенте ;
- потери напряжения, равные при неавтоматизированном электротермическом способе натяжения нулю;
- предельное напряжение в арматуре сжатой зоны, принимаемое для конструкций из тяжелого бетона с учетом действующих нагрузок МПа.
Величина должна удовлетворять условию (1) [1]: и .
При электротермическом способе натяжения МПа, где - длина натягиваемого стержня (расстояние между наружными гранями упоров), м.
При выполнении условия (1) [1] получим МПа. Значение вводится в расчет с коэффициентом точности натяжения , определяемым по формуле (6) [1]: .
При электротермическом способе натяжения величина вычисляется по формуле (7) [1]:
- число стержней напрягаемой арматуры в сечении элемента.
Число напрягаемых стержней предварительно принимаем равным числу ребер в многопустотной плите, т.е. . Тогда
При благоприятном влиянии предварительного напряжения . Предварительное напряжение с учетом точности натяжения составит: МПа.
При условии, что полные потери составляют примерно 30% начального предварительного напряжения, последнее с учетом полных потерь будет равно: МПа.
принимается при коэффициенте с учетом потерь по поз. 3…5 табл.5 [1]. При электротермическом способе натяжения, как уже отмечено выше, потери равны нулю, поэтому МПа.
Так как , то площадь сечения растянутой арматуры определяется по формуле (3.15) [2]:
- коэффициент условий работы арматуры, учитывающий сопротивление напрягаемой арматуры выше условного предела текучести. По формуле (27) [1]:
Для арматуры класса A-VI . С учетом этого получим:
. Поэтому принимаем . Тогда площадь сечения арматуры будет равна:
Принимаем по сортаменту (таблица А.10) 3Æ12 A-VI с см2, что больше требуемой площади сечения. Вариант удовлетворяет поставленным условиям, и принимаем данную комбинация к дальнейшему расчету.
Расчет по прочности сечения, наклонного к продольной оси плиты
Расчет прочности наклонных сечений выполняется согласно п.3.29…3.31 [1]. Поперечная сила кН.
Предварительно приопорные участки плиты заармируем в соответствии с конструктивными требованиями п.5.27 [1]. Для этого с каждой стороны плиты устанавливаем по четыре каркаса длиной с поперечными стержнями 2Æ8 В500, шаг которых см. (по п.5.27 [1] мм).
По формуле (72) [1] проверяем условие обеспечения прочности по наклонной полосе между наклонными трещинами:
- коэффициент, учитывающий влияние хомутов, нормальных к продольной оси элемента;
- коэффициент, учитывающий класс и вид бетона.
; При см2 (2Æ8 В500) коэффициент поперечного армирования . Отсюда => φw1=1+5·5,85·0,0041=1,12<1,16.
Коэффициент , где для тяжелого бетона.
Q=32,8 кН≤0,3Ч1,12Ч0,9Ч0,9Ч17,0Ч24,45Ч19Ч100=214934 Н = 214,93 кН
Следовательно, размеры поперечного сечения плиты достаточны для восприятия нагрузки.
Проверяем необходимость постановки расчетной поперечной арматуры исходя из условия:
- коэффициент, принимаемый для тяжелого бетона.
Коэффициент, учитывающий влияние сжатых полок в двутавровых элементах, равен:
При этом принимается, что . С учетом этого получаем:
Коэффициент, учитывающий влияние продольной силы обжатия равен:
(значение силы обжатия см. ниже) принимается с учетом коэффициента :
Следовательно, условие удовлетворяется, поперечная арматура ставится по конструктивным требованиям.
2.3 Расчет плиты по предельным состояниям второй группы

Геометрические характеристики приведенного сечения
Размеры расчетного двутаврового сечения определены ранее, см. п. 2.2:
При площадь приведенного сечения составит:
Статический момент приведенного сечения относительно нижней грани равен:
Расстояние от нижней грани до центра тяжести приведенного сечения равно:
Момент инерции приведенного сечения относительно его центра тяжести равен:
Момент сопротивления приведенного сечения по нижней зоне равен:
Расстояние от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от растянутой зоны, согласно формуле (132) [1]:
Максимальное напряжение в сжатом бетоне от внешней нагрузки и усилия предварительного напряжения составит:
- изгибающий момент от полной нормативной нагрузки,
- усилие обжатия с учетом всех потерь (см. расчет потерь),
Эксцентриситет усилия обжатия равен: см.
Расстояние от центра тяжести приведенного сечения до ядровой точки, наименее удаленной от растянутой зоны, составляет:
Упругопластический момент сопротивления по растянутой зоне, определяемый по формуле (7.37) [2]:
Для симметричных двутавровых сечений при .
Потери предварительного натяжения арматуры
При расчете потерь коэффициент точности натяжения арматуры .
Первые потери определяются по п. 1…6 табл.5 [1] с учетом указаний п. 1.25 [1].
Потери от релаксации напряжений в арматуре при электротермическом способе натяжения стержневой арматуры равны:
Потери от температурного перепада между натянутой арматурой и упорами , так как при агрегатно-поточной технологии форма с упорами нагревается вместе с изделием.
Потери от деформации анкеров и формы при электротермическом способе натяжения равны 0.
Потери от трения арматуры об огибающие приспособления , поскольку напрягаемая арматура не отгибается.
Потери от быстронатекающей ползучести определяются в зависимости от соотношения .
По табл. 7 [1] . Из этого условия устанавливается передаточная прочность .
Усилие обжатия с учетом потерь вычисляется по формуле (8)[1]:
Передаточная прочность бетона МПа.
Согласно требованиям п.2.6 [1] МПа; МПа.
Окончательно принимаем МПа, тогда .
Сжимающие напряжения в бетоне на уровне центра тяжести напрягаемой арматуры от усилия обжатия (без учета изгибающего момента от собственной массы плиты):
Так как , то потери от быстро натекающей ползучести равны:
Вторые потери определяются по п. 7…11 табл.5[1]. Потери от усадки бетона МПа.
Потери от ползучести бетона вычисляются в зависимости от соотношения , где находится с учетом первых потерь.
Так как , окончательно принимаем МПа.
Расчет по образованию трещин, нормальных к продольной оси
Для элементов, к трещинностойкости которых предъявляются требования 3-ей категории, коэффициент надежности по нагрузке . Расчет производится из условия (124) [1]:
Нормативный момент от полной нагрузки .
Момент образования трещин по способу ядровых моментов определяется по формуле (125) [1]:
Так как , то в растянутой зоне от эксплуатационных нагрузок образование трещин не происходит.
Предельно допустимый прогиб для рассчитываемой плиты с учетом эстетических требований согласно нормам принимается равным:
Определение прогиба производится только на действие постоянных и длительных нагрузок при коэффициенте надежности по нагрузке по формуле на стр. 142 [3]:
для свободно опертой балки коэффициент равен:
- при равномерно распределенной нагрузке;
- при двух равных моментах по концам балки от силы обжатия.
Полная кривизна плиты на участках без трещин в растянутой зоне определяется по формулам (155 … 159) п.4.24[1].
Кривизна от постоянной и длительной нагрузки:
- момент от соответствующей внешней нагрузки относительно оси, нормальной к плоскости действия изгибающего момента и проходящей через центр тяжести приведенного сечения;
- коэффициент, учитывающий влияние длительной ползучести тяжелого бетона при влажности более 40%;
- коэффициент, учитывающий влияние кратковременной ползучести тяжелого бетона;
Кривизна от кратковременного выгиба при действии усилия предварительного обжатия с учетом :
Поскольку напряжение обжатия бетона верхнего волокна
т.е. верхнее волокно растянуто, то в формуле при вычислении кривизны , обусловленной выгибом плиты вследствие усадки и ползучести бетона от усилия предварительного обжатия, принимаем относительные деформации крайнего сжатого волокна . Тогда согласно формулам (158, 159) [1]:
Прогиб от постоянной и длительной нагрузок составит:
Вывод: Прогиб не превышает предельную величину:
Основной рабочей арматурой плиты является предварительно напрягаемая арматура 3 Æ12 из стали класса А-VI, определяемая расчетом по нормальным сечениям и укладываемая в растянутой от действия эксплуатационных нагрузок зоне плиты.
Верхняя полка плиты армируется сеткой С-1 из проволоки класса B500. Поперечные ребра армируются каркасами Кр-1 в приопорных участках на длине l/4; в состав каркаса Кр-1 входят продольные рабочие стержни ш4 B500 и поперечные стержни
Рисунок 5- К расчету плиты: опалубка и схема армирования
4шBp-I с шагом 100мм(обеспечивающие прочность по наклонному сечению). Для усиления бетона опорной зоны плиты укладывают сетки С-2 из проволоки класса B500.
Для колонн применяют бетон классов по прочности на сжатие не ниже В15, для сильно загруженных не ниже В25. Колонны армируют продольными стержнями диаметром 12-40 мм, преимущественно из горячекатаной стали класса A400 и поперечными стержнями из горячекатаной стали классов A400, A300, A240.
Нагрузки на 1 м2 перекрытия принимается такой же, как и в предыдущих расчетах, нагрузка на 1 м2 покрытия приводится в табл.2.
Место строительства – г. Москва, III снеговой район.
Армированная цементная стяжка d=40 мм, r=22 кН/м3
Керамзит по уклону d=100 мм, r=1200 кг/м3
Многопустотная плита перекрытия с омоноличиванием швов d=220 мм
Бетон – тяжелый класса по прочности на сжатие В15. МПа, МПа (таблица А.2); коэффициент условий работы бетона (табл. 15[1]).
- продольная рабочая класса A400, (диаметр 12-40 мм) Мпа = 36,5 кН/см2, МПа (таблица А.4).
Принимаем размер сечения колонны см.
Грузовая площадь средней колонны м2.
Постоянная нагрузка от перекрытия одного этажа с учетом коэффициента надежности по назначению здания :
где 4,3 кН/м2 – расчетная постоянная нагрузка на перекрытие здания (таблица 1)
3,5 кН/м – погонная нагрузка от собственного веса ригеля;
5,6 м – длина ригеля при расстоянии между осями колонн 5,9 м.
Нагрузка от собственного веса колонны типового этажа:
где b, h – размеры сечения колонны, lэт – высота этажа, gb – объемный вес железобетона, gn - коэффициент надежности по назначению здания, gf – коэффициент надежности по нагрузке.
Нагрузка от собственного веса колонны подвального этажа:
Постоянная нагрузка на колонну типового этажа с одного этажа:
Постоянная нагрузка от покрытия, приходящаяся на колонну:
Общая постоянная нагрузка на колонну от покрытия с учетом веса ригеля:
Временная нагрузка, приходящаяся на колонну с одного этажа:
Временная нагрузка, приходящаяся на колонну с покрытия:
Коэффициент снижения временных нагрузок в многоэтажных зданиях:
- число перекрытий, от которых учитывается нагрузка. Для здания, имеющего 5 этажей и подвал, имеем:
Нормальная сила в средней колонне на уровне подвала составит:
Расчет прочности сжатых элементов из тяжелого бетона классов В15…В40 на действие продольной силы, приложенной со случайным эксцентриситетом, при допускается производить из условия:
- коэффициент, определяемый по формуле: .
- коэффициенты, принимаемые по таблице А.6 и А.7 в зависимости от .
- площадь всей арматуры в сечении элемента;
- для арматуры классов A240, A300, A400.
Свободная длина колонны подвала м, м (размер сечения колонны),
- длительно действующая нагрузка на колонну. Временная длительно действующая нагрузка на перекрытие 1,56 кН/м2, кратковременно действующая 3,9 кН/м2 (см. табл. 1), временная длительно действующая нагрузка на покрытие 0,54 кН/м2, кратковременно действующая 1,26 Н/м2.
Временная кратковременно действующая нагрузка на колонну с одного этажа:
Временная кратковременно действующая нагрузка на колонну с покрытия:
Временная кратковременно действующая нагрузка на колонну:
Остальная нагрузка на колонну – длительно действующая:
По таблицам А.6 и А.7 приложения определяем коэффициенты и : , .
Соответственно площадь арматуры составит:
т.к. Аs= - 2.0, то подбор арматуры по расчету не нужен, принимаю конструктивно, что обеспечивает процент армирования.
Окончательно принимаем 4Æ18 A400 ( см2).
Следовательно, оставляем принятую арматуру с Æ18 мм.
Рисунок 6 – К расчету плиты: опалубка, схема армирования, сечение колонны
Для опирания пустотных панелей задаемся сечением ригеля высотой см. Ригель выполняется без предварительного напряжения арматуры.
Нормативные и расчетные нагрузки на 1 м2 перекрытия принимаются те же, что и при расчете панели перекрытия. Ригель шарнирно оперт на консоли колонн, см. Расчетный пролет:
- пролет ригеля в осях; - размер сечения колонны;
20- зазор между колонной и торцом ригеля;
Расчетная нагрузка на 1 м длины ригеля определяется с грузовой полосы, равной шагу рам, в данном случае шаг рам 5.4 м.
-от перекрытия с учетом коэффициента надежности по назначению здания
где 2500 кг/м3 – плотность железобетона.
С учетом коэффициентов надежности по нагрузке и по назначению здания :
Временная нагрузка с учетом коэффициента надежности по назначению здания и коэффициента снижения временной нагрузки в зависимости от грузовой площади:
Расчетная схема ригеля – однопролетная шарнирно опертая балка пролетом . Вычисляем значения максимального изгибающего момента М и максимальной поперечной силы Q от полной расчетной нагрузки:
Бетон – тяжелый класса по прочности на сжатие В15. МПа, МПа (табл. 13[1]); коэффициент условий работы бетона (табл. 15[1]). Начальный модуль упругости МПа (табл. 18[1]).
- продольная ненапрягаемая класса A-III Æ10-40 мм, МПа, МПа (табл. 19*, 22*, 29* [1]).
- поперечная ненапрягаемая класса А-III Æ6-8 мм, МПа, МПа, МПа (табл. 29* [1]).
Определяем высоту сжатой зоны , где
см – рабочая высота сечения ригеля;
- относительная высота сжатой зоны, определяемая по .
По прил. 10 методических указаний при .
Высота сжатой зоны см. Граница сжатой зоны не проходит в узкой части сечения, и поэтому расчетным будет тавровое сечение.
Принимаем по прил.12 мет. указаний 4Æ20 A-III с см2. Общая площадь арматуры составляет см2, что больше требуемой.
Расчет прочности ригеля по сечению, наклонному к продольной оси, выполняется согласно п.п. 3.29…3.33 [1].
Расчет производится рядом с подрезкой в месте изменения сечения ригеля.
Поперечная сила на грани подрезки на расстоянии 10 см от торца площадки опирания
Проверяем условие обеспечения прочности по наклонной полосе между наклонными трещинами по формуле (72) [1]:
; Ориентировочно принимаем коэффициент поперечного армирования . Отсюда .
Коэффициент , где для тяжелого бетона.
Следовательно, размеры поперечного сечения ригеля достаточны для восприятия нагрузки.
Проверяем необходимость постановки расчетной поперечной арматуры исходя из условия:
- коэффициент, принимаемый для тяжелого бетона.
, т.к. рассматривается ригель прямоугольного сечения без предварительно напряженной арматуры;
Вывод: Условие не удовлетворяется, конструктивного армирования недостаточно. Поперечная арматура необходима по расчету.
Расчет для обеспечения прочности по наклонной трещине производится по наиболее опасному наклонному сечению из условия:
Поперечное усилие, воспринимаемое бетоном, равно ;
Определяем максимальную длину проекции опасного наклонного сечения на продольную ось ригеля :
Поперечное усилие, воспринимаемое хомутами, составляет
Приняв усилия в хомутах на единицу длины ригеля равны:
При этом должно выполняться условие:
Так как , принимаем . Определяем длину проекции опасной наклонной трещины на продольную ось ригеля:
Уточняем величину , исходя из условия, что при
При этом Н/см. Окончательно принимаем и тогда см.
Из условия сварки с продольной арматурой (dmax=20 мм) принимаем поперечную арматуру Æ6 A-III.
При двух каркасах см2. Шаг поперечных стержней на приопорных участках
Из условия обеспечения прочности наклонного сечения в пределах участка между хомутами максимально возможный шаг поперечных стержней:
Кроме того, по конструктивным требованиям согласно п.5.27 [1] поперечная арматура устанавливается:
- на приопорных участках, равных 1/4 пролета, при мм:
- на остальной части пролета при см с шагом:
Окончательно принимаем шаг поперечных стержней:
- на приопорных участках длиной ј пролета 1,5 м s=15 см;
- на приопорных участках в подрезке s=7,5 см;
- на остальной части пролета s= 30 см.
Продольная рабочая арматура в пролете 4Æ20 A-III с см2. Площадь этой арматуры определена из расчета на действие максимального изгибающего момента в середине пролета. В целях экономии арматуры по мере уменьшения изгибающего момента к опорам два стержня обрываются в пролете, а два других доводятся до опор. Если продольная рабочая арматура разного диаметра, то до опор доводят два стержня большего диаметра.
Место теоретического обрыва верхних стержней определяется построением «эпюры материалов», которую можно считать эпюрой несущей способности ригеля при фактически применяемой арматуре.
Площадь рабочей арматуры AS(4Æ20)=12,56 см2.
Определяем изгибающий момент, воспринимаемый ригелем с полной запроектированной арматурой 4Æ20 A-III с см2:
М(4Æ20)=365Î100Î12,56Î0,635Î40=11644376 НÎсм=116,4 кНÎм.
Изгибающий момент, воспринимаемый сечением, больше изгибающего момента, действующего в сечении:
До опоры доводятся 2Æ20 A-III с см2.
Вычисляем изгибающий момент, воспринимаемый сечением ригеля с арматурой 2Æ20 A-III.
М(2Æ20)=365Î6,28Î0,82Î42Î100=7894336 НÎсм=78,9 кНÎм.
Графически по эпюре моментов определяем место теоретического обрыва стержней 2Æ20 A-III . Эпюра моментов для этого должна быть построена точно с определением значений изгибающих моментов в пролета.
Изгибающий момент в пролета равен:
Изгибающий момент в пролета равен:
Изгибающий момент в пролета равен:
Откладываем на этой эпюре М(2Æ20)=78,9 кНÎм в масштабе. Точка пересечения прямой с эпюрой называется местом теоретического обрыва арматуры.
Момент, воспринимаемый сечением ригеля с арматурой 4Æ20 A-III, также откладывается в масштабе на эпюре М.
Длина анкеровки обрываемых стержней определяется по следующей зависимости:
Поперечная сила Q определяется графически в месте теоретического обрыва, в данном случае Q=41,63 кН.
Поперечные стержни Æ6 A-III (из условия свариваемости с продольными стрежнями диаметром 20 мм) с см2 в месте теоретического обрыва имеют шаг 15 см.
Принимаем см. Шаг хомутов в приопорной зоне принимается равным на участке длиной 0,5 м.
Место теоретического обрыва арматуры можно определить аналитически. Для этого общее выражение для изгибающего момента нужно приравнять к моменту, воспринимаемому сечением ригеля с арматурой 2Æ20 A-III М(2Æ20)=78,9 кНÎм.
; - это точки теоретического обрыва арматуры.
Длина обрываемого стержня будет равна м.
Окончательно принимаем длину обрываемых стержней 2Æ20 А-III 3,6 м.
1. СНиП 2.03.01-84*. Бетонные и железобетонные конструкции / Госстрой России, ГУП ЦПП, 1996.
2. СНиП 52-01-2003. Бетонные и ж/бетонные конструкции / Минстрой России. - М.: ГУП НИИЖБ, 2004. – 26 с.
3. СНиП 2.01.07-85**. Нагрузки и воздействия / Минстрой России. - М.: 1996. – 44 с.
4. СП 52-101-03 Бетонные железобетонные конструкции без предварительного напряжения арматуры/ Госстрой России,2003. – 84 с.
[1]
Длительно действующая часть снегового покрова для III района берется 30% от общей снеговой нагрузки, для IV – 50%, для V-VI – 60 %, а для I-II она равна 0.

Название: Монолитное железобетонное перекрытие
Раздел: Рефераты по строительству
Тип: курсовая работа
Добавлен 21:48:13 21 июня 2010 Похожие работы
Просмотров: 1149
Комментариев: 16
Оценило: 2 человек
Средний балл: 5
Оценка: неизвестно   Скачать

Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Курсовая работа: Монолитное железобетонное перекрытие
Сочинение Про Ценности Человека
Дипломная Работа На Тему Хронический Панкреатит
Реферат по теме Эпилепсия
Курсовая работа: Товароведение и оценка качества соленых рыбных товаров
Новые Типы Учебных Заведений Реферат
Реферат: Процессуальное положение обвиняемого и подозреваемого в уголовном процессе
Реферат: Иллюзии восприятия, или всегда ли мы видим то, что видим. Скачать бесплатно и без регистрации
Разработка Базы Данных Железнодорожный Вокзал Курсовая
Бунин Время Перемен Сочинение
Контрольная Работа 3 По Алгебре Макарычев
Дипломная работа по теме Особенности организации и проведения физкультурного досуга учащихся
Скачать Курсовую Расчет Канализации Населенного Пункта
Система Государственного Управления В Великобритании Реферат
Курсовая работа: Выявление мотиваций делового и дружеского общения в коллективе
Доступная Среда Права Инвалидов В России Реферат
Нормативистская Теория Права Реферат
Диссертация Менеджмент
Реферат по теме Административные суды в РФ
Курсовая работа по теме Синтез микропрограммных управляющих автоматов
Реферат Реки России
Реферат: Транспортная задача и задача об использовании сырья
Реферат: Средневековый город Тараз
Сочинение: Осмысление понятия "смысловой матрицы культуры" на материале философии В.С. Стёпина

Report Page