Курсовая работа: Микропроцессорная системы отображения информации

Курсовая работа: Микропроцессорная системы отображения информации




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
"Комсомольский-на-Амуре государственный технический университет"
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ
по курсу "Системы отображения информации"
Микропроцессорная системы отображения информации
Выполнил студент группы 4ПЭа-1 Д.В. Евпаков Руководитель проекта Н.Н. Любушкина
Отображение информации - это свойство технической системы воспроизводить требуемую информацию в форме, удобной для непосредственного восприятия человеком.
Технические средства, используемые для формирования информационных моделей, называются средствами отображения информации (СОИ). С помощью СОИ полученная от одного или нескольких источников информация преобразуется в информационную модель, удобную для непосредственного восприятия.
Существует три способа отображения информации:
индикация - представление информации в форме изображения (информационной модели), параметры которого обеспечивают требуемую быстроту и точность восприятия, информационную емкость и удовлетворяют требованиям инженерной психологии (эргономики);
сигнализация - это отображение информации для привлечения внимания к изменению состояния системы, характеризуемое четко различными изменениями параметров информационной модели;
регистрация - это представление информации на материальном носителе с возможностью хранения без затрат энергии.
Большую часть информации (около 80%) человек получает по зрительному каналу. Если информация создается или передается электронными средствами, она воспроизводится с помощью средств отображения информации, которые являются электронным переводчиком, позволяющим воспринять закодированную электрическими сигналами информацию.
К средствам отображения информации относятся устройства коллективного пользования (стадионные, вокзальные и другие информационные табло), персональный компьютер, индикаторы, встроенные в различные измерительные или бытовые электронные приборы. Соответственно различаются и предъявляемые к этим средствам психофизиологические, энергетические, стоимостные, габаритные и другие требования, которые должен учитывать разработчик.
Основным узлом СОИ является индикатор, преобразующий электрические сигналы в видимое изображение. До сих пор основным типом индикатора, используемым в СОИ, остается электронно-лучевая трубка (ЭЛТ), которой присущи все типичные недостатки электровакуумных приборов: большое потребление мощности, высокие питающие напряжения, большие масса и габаритные размеры. На смену ЭЛТ, особенно в применениях, связанных с ЭВМ, пришли матричные индикаторные панели самых различных типов - газоразрядные, электролюминесцентные, жидкокристаллические. В отличие от ЭЛТ управление ими построено на цифровых принципах, что соответствует современным тенденциям развития электроники.
Другим важным компонентом СОИ являются интегральные микросхемы (ИМС). Современные СОИ почти целиком строятся на базе ИМС со средней и высокой степенью интеграции, все шире в них используются микропроцессорные средства и микро-ЭВМ.
Развитие средств отображения информации происходит в направлении использования в них как усовершенствованных типов электроннолучевых индикаторов, так и плоских матричных индикаторов, которые перспективны для высококачественного отображения информации.
Проектирование средств отображения информации включает в себя создание информационной модели с учетом представляемой информации и свойств человека-оператора, выбор типа индикатора, разработку на этой основе структурной схемы СОИ, разработку модулей системы и т. д.
Для правильного проектирования средств отображения информации необходимо учитывать структуру и технические характеристики индикаторов, особенности построения модулей системы на основе современных интегральных микросхем, т. е. проектирование средств отображения информации требует комплексного подхода со стороны специалистов.
Задачей курса "Средства отображения информации" является ознакомление студентов с принципами построения аппаратуры, физическими особенностями различных типов электронных индикаторов и т. д.
Рассмотрение этих вопросов позволит показать взаимодействие средств промышленной электроники в едином комплексе аппаратных и программных средств. Приобретенные таким образом навыки могут быть использованы при проектировании электронных устройств самого различного назначения с широким применением интегральных схем.
Работа любого устройства начинается с его включения.
После включения индикаторы должны быть погашены, кроме левого знакоместа, где должен располагаться курсор. В качестве типа курсора будем использовать негативный блок.
При вводе информации с клавиатуры курсор смещается вправо, оставляя на своём месте введённый символ. По достижении курсором конца строки, то есть крайней правой позиции, введенная на индикатор информация остаётся в ОЗУ, а сам индикатор очищается, и курсор перемещается в начало строки. Таким образом, система готова принимать информацию в следующую строку.
Когда курсор достигает последней позиции последней строки, ввод информации заканчивается. Дальнейшее перемещение курсора по введенному тексту осуществляется клавишами управления курсора (вверх, вниз, вправо, влево).
Клавиша "Insert" включает и выключает режим вставки. При включенном режиме вставки, в процессе ввода информации, все символы справа от курсора будут сдвигаться вместе с курсором и выходя за пределы последней строки теряются. При выключенном режиме вставки, ввод информации производиться поверх старой, стирая предыдущий символ.
Клавиша "Delete" удаляет символ слева от курсора (заменяет на пробел) и перемещает курсор на одну позицию влево. Если при этом включен режим вставки, то вслед за курсором перемещаются все символы расположенные правее.
Всего в данной системе используется 49 клавиш, из них 42 информационных, 7 функциональных, а также имеются две клавиши (Shift и Reset), которые не входят в основную матрицу клавиатуры и предназначены для изменения режима работы клавиатуры
Структурная схема будет базироваться на магистрально-модульном принципе организации МП - системы. В такой системе связь всех устройств (модулей) осуществляется с помощью общих шин. Передача информации может осуществляться одновременно только между двумя модулями.
Структурная схема микропроцессорного устройства представлена на рисунке 1.
ЦП – центральный процессор; ТГ – тактовый генератор; У В/В – устройство ввода/ вывода; ПЗУ – постоянное запоминающее устройство; ОЗУ – оперативное запоминающее устройство; СА – селектор адреса; ШУ – шина управления; ША – шина адреса; ШД – шина данных
Рисунок 1 – Структурная схема микропроцессорного устройства
Основным узлом разрабатываемого устройства отображения информации является ЦП. В его функции входит управление всеми остальными узлами устройства. Отдельные блоки соединяются между собой линиями, объединяемыми по сходству назначения в шины. Число линий в шине обычно соответствует разрядности передаваемого слова. С помощью 16-разрядной шины адреса обеспечивается выбор одной из 65536 ячеек памяти. По 8-разрядной шине данных передаются команды и данные. Ограниченное число внешних выводов микропроцессора (МП) приводит к необходимости использования для передачи информации двунаправленной шины данных. Синхронизация работы МП, ПЗУ, ОЗУ памяти или внешнего устройства при обмене информацией производится с помощью сигналов сопровождения информации, передаваемых по шине управления.
Все действия ЦП заранее запрограммированы и подчинены последовательности команд, хранимой в ПЗУ. Кроме того, в ПЗУ записаны необходимые для работы константы, например, формы знаков. Для хранения вводимой информации и программ необходима оперативная память (ОЗУ).
Устройство ввода/вывода предназначено для ввода информации в систему и вывода обработанной информации на индикацию.
Селектор адреса предназначен для выбора одного из внешних устройств.
МП синхронизируется тактовыми импульсами, формируемыми ТГ. Для тактирования используется двухфазная система импульсов C1 и C2, а максимальная тактовая частота МП составляет 2МГц.
Разработаем функциональная схема центрального процессора.
Функциональная схема центрального процессора представлена на рисунке 2.
Рисунок 2 – Функциональная схема центрального процессора
При включении питания или при нажатии клавиши "Reset", система начального сброса (СНС) формирует сигнал "Установка нуля", который поступает на вход генератора тактовых импульсов (ГТИ) "RESIN". ГТИ формирует сигнал "SR", поступающий на одноименный вход ЦП, что обеспечивает автоматическую установку микропроцессора в исходное состояние.
ГТИ, формирует сигналы C1 и C2 – тактовые сигналы с различными фазами; RDY – сигнал "Готовность"; STB – стробирующий сигнал состояния, формируемый при наличии на входе "SYN" напряжения высокого уровня, поступающего с выхода микропроцессора в начале каждого машинного цикла. Сигнал "STB" используется для занесения информации состояния МП в системный контроллер для формирования управляющих сигналов.
Так как к шине адреса может быть подключено большое число внешних устройств, а выходные линии канала адреса не обладают достаточной нагрузочной способностью, то в схему необходимо ввести буферные устройства шины адреса (БА). Для увеличения нагрузочной способности шины данных используется буфер данных (БД).
Для формирования управляющих сигналов используется системный контроллер (СК). От МП в СК подаются сигналы: TR– выдача информации; RC – прием информации.
СК формирует следующие управляющие сигналы: RD – чтение памяти; WR – запись в память; RDIO – чтение из устройства ввода/вывода; WRIO – запись в устройство ввода/ вывода.
Так как МП работает по опросу, то выводы МП "INT" и "HLD" заземляются. В случае, если МП СОИ работает по прерываниям, то подается уровень логической единице.
Разработаем функциональная схему блока запоминающих устройств
Функциональная схема блока запоминающих устройств представлена на рисунке 3.
Рисунок 3 – Функциональная схема блока запоминающих устройств
Входы ПЗУ и ОЗУ A0 – А10 подключены к младшим адресам шины адреса. На входы выборка кристалла (CS) подаются сигналы с СА. На вход RD ПЗУ подается сигнал RD с системного контроллера и по низкому уровню этого сигнала данные по указанному адресу передаются на ШД. На вход WR/RD ОЗУ подается сигнал WR с СК и по низкому уровню этого сигнала данные передаются на ШД.
Разработаем функциональную схема селектора адреса.
Функциональная схема селектора адреса представлена на рисунке 4.
Рисунок 4 – Функциональная схема блока селектора адреса
Селектор адреса представляет собой устройство управления другими устройствами системы. С ША адрес поступает на вход СА, а на выходе получаем сигнал выборки устройства из числа, входящих в систему.
МП КР580ВМ80А может адресовать до 256 устройств ввода-вывода и обеспечить адресацию внешней памяти объемом 65536 байт.
Распределение адресного пространства представлено в таблице 1.
Таблица 1 – Распределение адресного пространства системы
Селектор адреса спроектируем с помощью логических элементов на основе распределенного адресного пространства.
Для блока запоминающих устройств на линиях A12-A15 находятся логические нули, а линия A11 управляет выборкой ПЗУ (A11=0) или ОЗУ (A11=1). Такое включение позволяет объединить оба запоминающих устройства в едином адресном пространстве объемом 4Кбайта, причем ПЗУ располагается в области 0000H – 07FFH, а ОЗУ в области 0800H – 0FFFH. Такое расположение удобно тем, что после установки в исходное состояние, процессор начинает выборку команд с адреса 0000H, где и располагается ПЗУ, содержащее основную программу.
Для ПККИ на линиях A13-A15 находятся логические нули, а линия A12 управляет выборкой ПККИ (A12=1).
Разработаем функциональную схема блока ввода.
Программируемый контроллер клавиатуры и индикации (ПККИ) обеспечивает сканирование клавиатуры и вывод информации на дисплей.
Функциональная схема приведена на рисунке 5.
Рисунок 5 - Функциональная схема блока
Значение внутреннего счетчика ПККИ с линий сканирования поступает на дешифратор, преобразующий четырехразрядный в восьмиразрядный код. При нажатии клавиши сигнал проходит на линии возврата RET0-RET7, где в зависимости от того, какая клавиша была нажата, во внутреннее ОЗУ записываются "координаты клавиши", которые выдаются на шину данных. ЦП в ходе сканирования устройств считывает слово состояния ПККИ, затем ЦП читает код нажатой клавиши, обрабатывает его и выставляет эквивалент клавиши в коде КОИ -7 на шину данных (таблица КОИ - 7 записана в центральном ПЗУ).
Код символа в КОИ - 7 с ШД поступает в знакогенератор, где по адресу кода записан позиционный код символа, то есть код, который будет непосредственно выводиться на индикаторы. Далее код поступает в ПККИ, где записывается в ОЗУ отображения, и поступает на выходы DSPA0 - DSPA3, DSPB0 - DSPB3. Далее код поступает на блок согласования БС1, где усиливается до уровня, необходимого для активизации свечения индикатора. Индикаторы циклически перебираются дешифратором ДШ2. В зависимости от текущего значения счетчика подается сигнал на тот или иной индикатор с помощью блока согласования БС2, и, соответственно, на индикаторе зажигается определенный символ.
Высвечивание информации происходит динамически, т.е. в любой момент времени горит только один из индикаторов дисплея, гашение индикаторов осуществляется сигналом BD, который поступает с ПККИ на запрещающий вход дешифратора в момент переключения с одного индикатора на другой. Разрешающая способность или острота зрения характеризуется минимальным углом, при котором возможно отдельное различение двух соседних точек. Этот угол называется порогом остроты зрения ао. Для нормального зрения порог остроты равен 1. Рекомендуемое значение ао в расчетах берут равным 2– 3.
Рассчитаем высоту индикатора по формуле:
где h – высота индикатора; L – расстояние до наблюдателя; а – угловой размер индикатора. Вычислим высоту индикатора при расстоянии до наблюдателя 0,5 м с учетом остроты зрения равным десяти:
Выбираем газоразрядный индикатор ИН-23.
Внешний вид, цоколевка и условно- графическое обозначение индикатора ИН-23 - показаны на рисунке 6.
Рисунок 6 - Газоразрядный индикатор ИН-23
ИН-23 – индикатор буквенно-цифровой одноразрядный газоразрядный предназначен для отображения информации в виде букв русского, латинского, греческого алфавитов, цифр, символов и других специальных знаков в средствах отображения информации индивидуального пользования. Индикация – боковая.
Корпус стеклянный миниатюрный. Масса не более 30 г.
Цвет свечения…………………………………..оранжево-красный
Яркость свечения, кд/м …………………….................. 200
Угол обзора, град……………………………………….. 100
источника питания…………………………………….. 200
возникновения и поддержания разряда………………. 170
Ток, мА………………………………………………….0,3 – 3,0
Для образования цифр или букв рекомендуется соединять выводы индикатора согласно таблице 2.
Рассчитаем параметры схемы блока генератора тактовых импульсов.
Рисунок 7 – Принципиальная схема блока ГТИ.
В качестве генератора тактовых импульсов (ГТИ) используем микросхему КР580ГФ24.
- две фазы С1, С2 с положительными импульсами, сдвинутыми во времени, амплитудой 12 В и частотой 2 МГц;
- стробирующий сигнал состояния STB;
- тактовые сигналы С, синхронные с фазой С2, амплитудой напряжения уровня ТТЛ (0,4 В – 2,4 В).
- сигнал "Установка в исходное состояние" SR;
Для стабилизации тактовых сигналов опорной частоты ко входам XTAL1, XTAL2 генератора подключают кварцевый резонатор BP1, частота которого должна быть в 9 раз выше частоты выходных сигналов С1, С2.
Выберем кварцевый резонатор РВ-11 на 18 МГц, который имеет следующие параметры:
- емкостное отношение, 10 -3
5 – 0,15
- динамическое сопротивление, Ом 5 – 75
- статическая емкость C 0
, пФ 3 – 6
- допустимое относительное отклонение частоты, 10 -6
±10
При частоте резонатора более 10 МГц необходимо последовательно в цепи резонатора включить конденсатор С1.
где f э
– эквивалентная частота последовательно соединенного конденсатора и резонатора, Гц;
f – собственная частота кварцевого резонатора;
C к
– динамическая емкость резонатора, Ф;
C 0
= 3,3 пФ – статическая емкость резонатора;
где f c
= 2 МГц – частота тактовых импульсов.
Динамическую емкость резонатора можно определить как
где m = 5 ∙ 10 -3
– емкостное отношение.
За собственную частоту резонатора примем частоту отклонения от номинальной с учетом допустимого относительного отклонения частоты:
Выберем конденсатор С1: КМ-4 820 пФ.
Вход TANK предназначен для подключения колебательного контура, работающего на высших гармониках резонатора, для стабилизации тактовых сигналов опорной частоты. В нашей системе этот вход не используется, поэтому мы его заземляем.
Тактовые сигналы с выхода OSC, синхронные с сигналами опорной частоты, используются для одновременной синхронизации нескольких генераторов. В нашей системе эти сигналы не используются.
Стробирующий сигнал состояния STB формируется при наличии на входе SYN напряжения высокого уровня, поступающего с выхода микропроцессора в начале каждого машинного цикла. Сигнал STB используется для занесения информации состояния микропроцессора в системный контроллер для формирования сигналов управления.
Вход RDYIN предназначен для работы либо с медленнодействующими устройствами, либо для организации покомандного выполнения программы микропроцессором с частотой тактовых импульсов. Поэтому на этот вход подадим напряжение уровня логической единицы, подключив его к шине питания U пит
= +5 В через резистор R1.
Сопротивление R1 найдем из следующих соображений: верхним пределом сопротивления является значение, которое обеспечивает на входе микросхемы минимальное напряжение высокого уровня при максимальном входном токе.
где U пит
= 5 В – напряжение питания микросхемы;
U 1
вх
= 2,6 В – минимальное входное напряжение высокого уровня для входа RDYIN;
I 1
вх
= 0,1 мА – максимальный входной ток высокого уровня;
Минимальное значение R1 определяется ограничением значения входного тока. Примем, что на этом сопротивлении падает напряжение, равное 0,5% от напряжения питания, тогда:
Значение сопротивления R1 лежит в пределах от 250 Ом до 24 кОм. Примем R1 = 1 кОм.
Выберем резистор R1: МЛТ-0,125 1кОм ± 5%.
Для осуществления системного сброса необходимо на вход RESIN подать сигнал низкого уровня, который появляется на выходе SR в виде сигнала высокого уровня. Длительность сигнала RESIN определяется наибольшим временем сброса микросхем, участвующих в работе системы. В нашей системе это ПККИ КР580ВВ79, сброс которого осуществляется не менее, чем за 6 тактов. Период одного такта микропроцессора:
Для надежности число тактов сброса возьмем 10.
Система начального сброса (СНС) состоит из RC-цепочки (R2-C2), обеспечивающей заданную длительность сигнала RESIN, диода VD1, предназначенного для разряда конденсатора, и кнопочного выключателя SA1.
Допустимое обратное напряжение, прикладываемое к диоду должно быть больше напряжения питания +5 В. Необходимо также учесть, что время восстановления запирающих свойств диода t восст
должно быть меньше периода одного такта микропроцессора, т.е. t восст
Курсовая работа: Микропроцессорная системы отображения информации
Реферат: Media And Eating Disorders Essay Research Paper
Лабораторная работа: Расчет макроэкономических показателей
Курсовая работа: Экономическая оценка эффективности инвестиций в объект жилищного строительства
Правотворчество Органов Исполнительной И Судебной Власти Диссертация
Показательные неравенства
Реферат: Павличко Дмитро Васильович
Лабораторная Работа На Тему Соціологічне Дослідження На Визначення Ролі Молоді У Вирішенні Екологічної Проблеми Країни
Задачи Кчс Объекта Реферат
Сочинение На Тему Бесприданница Островский С Планом
Реферат: Доклад по волоконной оптике
Получение Аммиака Химия Практическая Работа
Курсовая работа по теме Тренинговые техники в подготовке персонала
Курсовая работа: Организация производства предприятия общественного питания
Автореферат На Тему Розробка Живої Культуральної Вакцини Проти Вірусної Діареї Великої Рогатої Худоби
Реферат: Роль алхимии в становлении химии
Контрольная работа по теме Отечественная история
В Чем Заключается Хороший Отдых Сочинение Рассуждение
Статья: О проблемах социальной поддержки семьи
Профилактика И Лечение Гипертонической Болезни Реферат
Сочинение Про Лучший День Лета
Реферат: Бюджет государства
Дипломная работа: Когнитивная абилитация в системе психосоциальной практики
Реферат: Dplm

Report Page