Курсовая работа: Двухванные печи

Курсовая работа: Двухванные печи




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































Задание ……………………………………………………………………………2
Содержание………………………………………………………………………..3
Введение………………………………………………………………………......4
1 Конструкция двухванной сталеплавильной печи……………………….......5
1.1 Устройство работы двухванной печи……………………………………….5
1.2 Недостатки двухванных печей……………………………………………..6
2. Примерный расчет двухванной сталеплавильной печи …………………...9
2.1 Топливный расчет…………………………………………………………..9
2.2 Материальный баланс……………………………………………………..10
2.3 Тепловой баланс……………………………………………………………16
3. Расход тепла…………………………………………………………………18
3.1 Физическое тепло стали…………………………………………………….18
Заключение……………………………………………………………………...23
Список использованных источников……………………………………….…24
В двухванных печах выплавляют, стали широкого сорта­мента, в том числе низколегированные, не уступающие по качеству сталям, выплавляемым в мартеновских печах
Распространение двухванных печей определилось их преимуществами в сравнении с мартеновскими печами: малым удельным расходом огнеупоров (4–5 кг в сравне­нии с 12–15кг на мартеновских печах), меньшим объемом ремонтов, значительным облегчением условий труда ремонтных рабочих, в 3–5 раз меньшим расходом топлива, более высокой стойкостью, достигающей 800–1000 плавок.
Производительность двухванных печей в 3–4 раза вы­ше, чем мартеновских; их устанавливают на месте сущест­вующих мартеновских печей без реконструкции здания и изменения грузопотоков в цехе.
1. Конструкция двухванной сталеплавильной печи

При интенсивной продувке мартеновской ванны выде­ляется значительное количество СО, которую трудно пол­ностью дожечь в самом рабочем пространстве. Часть несгоревшего СО и большое количество пыли выносятся дымо­выми газами из рабочего пространства печи. Для лучшего
Рис. 121. Двух ванная печь 2x300 т:
1 –
ванны печи; 2
– фурмы; 3
– шлаковики; 4 –
водоохлаждаемая заслонка; 5 – амбразура для отбора воздуха из вертикального канала; 6
– футерован­ный воздухопровод; 7 –
амбразура в своде печи; 8
– эжектор использования СО и частичного улавливания пыли в самом рабочем пространстве создана двух ванная сталеплавиль­ная печь (рис. 123).
Рабочее пространство такой печи разделено переводом на две ванны. Обе ванны имеют общий .свод, так что про­дукты сгорания, образующиеся в одной ванне, проходят вторую часть рабочего пространства.
1.1 Устройство работы двухванной печи

Печь работает следующим образом: в одной ванне (го­рячей) происходит плавление и доводка с интенсивной про­дувкой металла кислородом, а во второй ванне (холодной) в то же время идет завалка и прогрев твердой шихты. Га­зы из горячей части печи направляются в холодную и со­стоят до 35% из оксида углерода. В холодной части печи СО догорает до СО 2
и за счет выделяющегося тепла проис­ходит нагрев твердой шихты. Недостающее для процесса нагрева тепло восполняется подачей природного газа через горелки, установленные в своде печи. Сгорание природного газа и догорание СО совершаются за счет дополнительного кислорода.
Когда готовую сталь из первой ванны выпускают, во вторую ванну заливают жидкий чугун. После заливки чугуна тут же начинают продувку ванны кислородом. Закан­чивается продувка за 5–7 мин до выпуска. С выпуском металла из первой ванны цикл плавки заканчивается и на­чинается новый. В то же время с помощью перекидных шиберов изменяется направление движения газов. Теперь бывшая холодная ванна становится горячей. Первую ван­ну заправляют и производят завалку шихты, и цикл повто­ряется.
Двух ванная печь должна работать таким образом, что­бы было равенство холодного и горячего периодов, проте­кающих одновременно в разных ваннах. В холодный пери­од входит выпуск, заправка, завалка, прогрев, заливка чугуна; в горячий период – плавление и доводка. Например, для печи с садкой каждой ванны 250 т общая продол­жительность плавки составляет 4 ч, каждый период длится по 2 ч. Металл выпускается также через каждые 2 ч. Рас­кисление стали, производят в ковше.
Металл продувают кислородом в каждой ванне через две–три кислородные фурмы с интенсивностью 20–25м 3
/ч" на 1 т металла. Каждая часть печи оборудована сводовыми кислородными фурмами и газокислородными горелками. Горелки необходимы для сушки и разогрева печи после ремонтов, а также для подачи дополнительного топлива.
Современные двухванные печи работают на техничес­ком кислороде без вентиляторного воздуха, поэтому реге­нераторы отсутствуют. Холодная ванна печи частично вы­полняет роль регенераторов, аккумулируя тепло газов, по­кидающих горячую часть печи с температурой ~1700°С, и частично улавливает плавильную пыль, тем самым выпол­няет роль шлаковиков. Тем не менее количество пыли в продуктах сгорания, покидающих печь, составляет большую величину (20–40 т/м ).
Пыль состоит на 85–90 % из окис­лов железа.
Дымовые газы, покидающие рабочее пространство печи с температурой около 1500 °С, поступают по вертикальному каналу в шлаковик, в котором охлаждаются водой до тем­пературы 900–1000 °С, а затем направляются в боров. В борове за счет подсоса холодного воздуха происходит дальнейшее понижение их температуры до 700 °С.
К недостаткам существующих конструкций двухванных печей следует, отнести меньший выход годной стали, повы­шенный расход жидкого чугуна и выбивание большого ко­личества технологических газов через завалочные окна в цех.
Выбивание газов из рабочего пространства происходит через завалочные окна при поднятых заслонках и по пе­риметру закрытых заслонок, а также через стационарные желоба для заливки чугуна. Как показала практика, опти­мальное с точки зрения тепловой работы существующих двухванных печей давление под сводом печи составляет 3– 4 Па. При этом нулевая линия давления располагается на уровне порога печи или несколько выше его. При этих ус­ловиях, как показывают расчеты, через одно открытое окно выбивается 6–8 тыс. м 3
газа в час (запыленность 20– 40 г/м 3
). В отдельные периоды плавки расчетное количе­ство выбивающихся газов превышает 20 % всего количест­ва газов, поступающих в дымоотводящий тракт.
На некоторых печах вследствие недостаточной пропуск­ной способности дымоотводящего тракта давление под сво­дом при интенсивной продувке повышается до 5–6 Па, что приводит к еще большему увеличению количества газов, поступающих в цех.
Выбивание газов ухудшает условия труда, затрудняет обслуживание печи, загрязняет воздушный бассейн. Часть пыли не удаляется через фонарь здания, а циркулирует над рабочей площадкой печного пролета и попадает в разли­вочный пролет. Выбивание приводит также к ухудшению тепловой работы печи, так как часть оксида углерода и фи­зического тепла дыма не используется для нагрева лома.
Радикальный способ устранении выбивания из печи - снижение давления под сводом с 30-40 до 20 Па. В этом случае нулевая линия давлении располагается пыша проема завалочного окна, и оно будет находиться в зоне разрежения. Выбивание дыма при этом полностью исключается. Вместе с тем, в печь подсасывается большое количество холодного воздуха. Источниками этого воз­духа являются подсосы через вертикальный канал, через который не удаляются дымовые газы и на который действует тяга, соз­даваемая дымовой трубой. Кроме того, отрицательно сказывается эжектирующее действие, воздушных завес, установленных на ам­бразурах для продувочных фурм и в задней стенке для термопары, а также подсосы через завалочные окна печи. Вследствие боль­шого количества подсасываемого воздуха в продувочной камере дожигается с. большим избытком воздуха практически весь выделяющийся из ванны оксид углерода.
Расчеты показывают, что подсос воздуха создает такую ситуацию, когда тепла сжигания оксида углерода недостаточно даже для нагрева дымовых газов до температуры, при которой они удаляются из продувочной камеры. Следовательно, возникает дефицит тепла на компенсацию потерь через кладку и охлажда­емые элементы печи, а также на догрев дымовых газов, который покрывается за счет тепла, выделяющегося внутри жидкого металла.
Для 280-т двухванной печи, начиная с расхода подсосанного воздуха в количестве 20 000 , потребность для компенсации дефицита количества тепла возрастает с увеличением количества подсасываемого воздуха. При этом все меньшая часть тепла дожигания оксида углерода используется полезно для нагрева ванны и все большее количество тепла, выделяющегося внутри жидкой ванны, затрачивается на покрытие потерь тепла. Для решения вопроса о необходимом степени дожигания окиси угле­рода и продуваемой камере и оптимальном распределении тепла
оксида углерода между двумя камерами были выполнены совме­стные расчеты уравнений газового, материального и теплового балансов продувочной камеры и камеры нагрева, которые пока­зали, что:
1)На двухванных сталеплавильных печах при существующих суммарных тепловых потерях на обе ванны и наличии более 28 % лома в шихте в продувочной камере существует дефицит тепла, эквивалентный 20–-100 %
теплового эффекта сжигания оксида углерода;
2)количество воздуха, фактически поступающее в про­дувочные камеры существующих печей, существенно превышает необходимое для сжигания расчетной доли оксида углерода, что еще больше усугубляет дефицит тепла;
3) при ограничении подсоса и рациональном нагреве скрапа в двухванной печи удельный расход чугуна может быть уменьшен, с 780-750
до 680-700 кг/т годной стали (содержание лома в шихте 38–40 %).

Как уже указывалось, большим недостатком двухванных печей является выбивание газов через окна печи. Для устранения этого недостатки необходимо выполнение ряда мероприятий, из которых наиболее важны следующие: обеспечение на печи резерва по тяге и работа через газоочистку в течение всей кампа­нии печи; создание конструкции дымоотводящего тракта обеспечивающего неорганизованные минимальные подсосы; выполне­ние вертикальных каналов печи с охлаждаемыми поверхностями.
Для ограничения подсоса воздуха через вертикальный канал может быть предусмотрена установка водоохлаждаемых заслонок (см. рис. 38-5, 4), перекрывающих в закрытом положении более 90 % площади сечения вертикального канала. Гидравлические расчеты дымового тракта показали, что установка заслонок поз­воляет сократить количество воздуха, поступающего через вер­тикальный канал в продувочную камеру, примерно вдвое.
Подсос воздуха в продувочную камеру уменьшаемся также благодаря эжекции части воздуха (~ 10 000 м 3
/ч) из вертикального канала с подачей его в камеру нагрева шихты мимо продувочной камеры. Воздух, имеющий температуру 700-500С, отсасывают через охлаждаемую амбразуру 5 в стенки вертикального канала, соединенную с амбразурой 7 в своде печи между камерами футе­рованным воздухопроводом. Эжектируемый воздух подлетел в ка­меру нагрева шихты со скоростью 100 м/с и используется для сжи­гания топлива или дожигания оксида углерода, поступающего из камеры продувки.
Для уменьшения эжектирующего действия струй воздуха в
конструкции отдува предусмотрены сопла, подающие воздух, направленный против движения потока подсасываемого воздуха. Струи из этих отверстий создают завесу на входе в амбразуру, тем самым сокращая присос воздуха уменьшения эффектив­ности отдува.
При уменьшении количества подсасываемого в продувочную камеру воздуха уменьшается общее количество дыма, поступа­ющего dкамеру нагрева. Это позволяет оборудовать печь пере­жимом между ваннами с установкой с каждой стороны эжекторов. При этом возможно обеспечение независимого регулирования давления под сводом печи в каждой камере, что имеет большое значение для улучшения тепловой работы печи и обеспечивает хорошие условии для полного дожигания горючих составляющих дыма, поступающих в камеру нагрева.
Рис. 38-6. Устройство для отсоса дымовых газов, выбивающихся из рабочего пространства печи: 1-коллектор; 2-зонт; 3-коллектор сжатого воздуха; 4-воздушная струя.
Большие трудности вызывает уплотнение проема завалочных окон при открытой; заслонке. Если окно находится под разряжением, то через него засасывается 30000-40000 воздуха вчас. Для обеспечения возможности работы печи при повышенном давлении под сводом предусмотрены устройства, отсасывающие выбивающийся дым (рис. З8-6) со сбросом eго в борова или в ре­зервную газоочистку. Наличие резервной газоочистки приводит к удорожанию строительства печи.
2. Примерный расчет двухванной сталеплавильной печи

Рассчитать двухванную печь, емкостью ванн по G= 250т каждая, принимая общую продолжительность плавки рав­ной -1440 с (0,4 ч), из которых: выпуск и заправка–1440с (0,4 ч); завалка и прогрев –4680 с (1,3 ч); заливка чугуна и плавление –4680 (1,3 ч); доводка – 3600 с (1,0 ч).
Продувка ванн проводится техническим кислородом. Недостаток тепла от дожигания СО в «холодной» ванне компенсируется подачей природного газа. Расчет сталеплавильной печи включает: 1) расчет ма­териального баланса; 2) расчет теплового баланса; 3) рас­чет расхода топлива (природного газа) по периодам плавки.
Расчет шихты проводят на 100 кг металлической садки, причем плавку условно делят на два периода: Iпериод от завалки до полного расплавления, IIпериод- от рас­плавления до раскисления стали.
Найдем средний состав шихты, учитывая, что в 100 кг металлической шихты содержится .65 кг чугуна и 35 кг скрапа (см, выше).
Угар примесей определим как разность между содер­жанием примеси в шихте, и стали после расплавления. Примем, что при продувке ванны техническим кислородом 10% S окисляется до SO 2
, а угар железа в дым принят равным 1 % (по 0,5 % в каждом периоде).
S 0, 0465 – 0, 03 – 0, 00465=0,012 кг
Теперь можно определить расход кислорода и количе­ство образовавшихся оксидов (вторая колонка цифр молекулярная масса кислорода в продукте; третья – мо­лекулярная масса примеси):
S-SO 2
0, 0465-32:32-0, 0465 3,0175
Для расчета состава и количества шлака следует сде­лать следующие допущения.
При завалке со скрапом вносится 2 % загрязнений типа глины, имеющей состав: 52 %
SiO 2
; 25 % А1 г
О 3
; 23 % Н 2
О. Таким образом, загрязнениями вносится, кг:
Обычно скрап окислен {~1 %), т. е. со скрапом попа­дает 0,35 кг окалины в виде Fe Оз. Вместе с чугуном из миксера попадает некоторое количество шлака, которое для данного расчета примем равным 0,5 кг следующего со­става: 46 % СаО; 8 % А1 2
О 3
; 6 % MgO; 2 % S.
В шлак поступает некоторое количество материала фу­теровки, износ которой принимаем равным, кг:
Доломит обожженный Мэгнезитохромит .
Согласно технологии производства стали, после заливки чугуна скачивают 5–6 % шлака. Принимаем, что в рас­сматриваемом случае скачивают 6 % шлака (6 кг) соста­ва, %: 21 SiO 2
; 3,5 А1 2
О 3
; 4 MnO; SMgO; 25 СаО; 4 P 2
O- 3
; 0,3 S; 0,1 Cr 2
O 3
; 27,6 FeO; 6,5 Fe 2
O 3
.
Co скачиваемым шлаком теряется 1,5:0,53=2, 83 кг известняка (0,53 содержание СаО в1 кг известняка).
Обозначая расход известняка за х.,
будем считать об­щий расход известняка равным (2,83+ х
) кг с учетом по­терь со скачиваемым шлаком. Теперь находим:
известняка 2,83+ х
)0,02=0,0566+0,02 х

известняка (2,83+ х
)0,003=0,0085+0,003 х

---------------------------------------------------
известняка (2,83+ х
)0,53= 1,5+0,53 х

известняка........ (2,83+ х
)0,007=0,002+0,0007 х

Принимая по практическим данным, что в шлаке содер­жится 16 %FeOи 6 % Fe 2
O3, составим с учетом скачива­ния шлака, формулу количества его в конце 1 периода, кг: SiO 2
... 2,036+ 0,02 х
-1,260 = 0,776+ 0,02 х

А1 2
О 3
... 0,236 + 0,003 – 0,210 = 0,026 + 0,003 х

MgO... 0,6206 + 0,02 х
– 0,48 =0,1406 + 0,02 х

СаО ... 2,447 + 0,53 х
– 1,50 = 0,947 + 0,53 х

Р 2
О 6
... 0,332 + 0,0007 х
–0,24 = 0,092 + 0,0007 х

S... 0,111+0,001 х
–0,018 = 0,093 + 0,001 х

Lшл = 0,22Lшл + 2,8216 + 0,5747 х
или
Полагая, что основность шлака в конце I периода дол­жна быть равна 2,6, получим уравнение для определения расхода известняка
0,947 + 0,53 х
= 2,0176 + 0,052 х
или х
= 2,24 кг.
Теперь можно найти количество шлака L ШЛ
- 3,617 + 0,737-2,24 = 5,987 кг. Окончательный состав и количество шлака:
Суммарный расход известняка равен 2,83+2,24 = 5,07 кг. Общее количество шлака 6+5,987 = 11,987 кг.
Составим баланс железа на 1 период плавки (табл, 42).
Количество окислившегося железа равно 0,232+1,949 = = 2,181 кг.
Расход кислорода на окисление железа до Fe 2
O 3
0,232X Х48: 112 = 0,099 кг; до FeO 1,949-16:56 = 0,557 кг.
Принимая, что из атмосферы печи в ванну поступает 30% от общего количества кислорода, найдем величину последнего 3,0175+0,099+0,557+0,1 (3,0175+0,099+ +0,557) =4,04 кг.
Учитывая, что в первом периоде ванна недостаточно и
неравномерно прогрета и процессы массобмена замедле­ны, принимаем коэффициент усвоения подаваемого в ванну кислорода, равным 0,9. Тогда расход технического кислоро­да составит
Расход чистого кислорода 4,04-22,4/32 – 2,828 м 3
.
Расход чистого кислорода с учетом коэффициента ус­воения 2,828/0,9 = 3,142 м 3
.
Количество неусвоенного кислорода 3,142–-2,828 = = 0,314 м 3
или 0,486 кг.
Количество азота, подаваемого с техническим кислоро­дом 3,3–3,142 = 0,158 м 3
или 0,197 кг.
Количество технического кислорода, поступающего в ванну 4,04+0,486+0,197 = 4,723 кг.
Выход годного с учетом металла, уносимого скачива­емым шлаком (10 % от количества шлака)
100–3,216–2,181–0,6825–0,35–0,5–0,6=92,47 кг, где 3,216 – угар примесей; 2,181–количество окисливше­гося железа; 0,6825 – загрязнения скрапа; 0,35 – окалина скрапа; 0,5–миксерный шлак; 0,6 – потери металла со скачиваемым шлаком.
Расчет материального баланса для второго периода плавки от расплавления до раскисления стали, проводится аналогично расчету для I периода.
Целью расчета теплового баланса, рабочего простран­ства камеры печи, является определение средней тепловой нагрузки и тепловой нагрузки холостого хода. Расчет про­изводим для одной камеры печи.
Здесь с ск
=0,469 кДж/(кг-К) – удельная теплоемкость скрапа при £ CK
=20°C; D CK
=0,35 – доля скрапа в шихте; G–250 т емкость одной ванны печи.
Q
4

= GD
4

[с?
; пл
. ч
+ К
+ с* ft ~ ^J ] == 250- 10 s
-0,65 [0,745 ■ 1200 + 217,72 + + 0,837 (1300 – 1200)3 = 194255,75 ■ 10^ кДж -= 194,26 ГДж, где Л, –0,65 – доля чугуна в шихте; с™ =0,745 кДж/
/(кг-К) –средняя удельная теплоемкость твердого чугуна в интервале температур 0–1200°С:'
c
f =0,837 кДж/(кг-К) –тоже жидкого чугуна в интерва­ле температур 1200–1300 °С;
1-4 = 217,72 кДж/кг – скрытая теплота плавления чугуна; £ ч
=1300°С – температура заливаемого чугуна; ^ш.ч –1200°С – температура плавления чугуна. • .
С-СО 2
... 0,02405 250 10 3
34,09 = 204966,1
Si-SiO 2
... 0,00650 250 10 3
31,10 = 50537,5
Мn-МnО ... 0,00680 250 10 3
7,37= 12529,0
Fe-Fе 2
О 3
(в дым) ... 0,010000-250.10 3
-7,37 = 18425,0
Р-Р 2
О 5
... 0,00129 250 10 3
25,00 = 8062,5
S-SO 2
... 0,00012 250 10 9,28 = 278,4
Fe-FeO ... (0,01940 + 0,00053)250-10 3
4,82 = 24015,6
Fe^Fe 2
O 3
... (0,00232 –0,00018) 250-10 3
7,37 = 3943,0
здесь первый столбик чисел–доля выгоревшей примеси;
третий – тепловые эффекты реакций, отнесенные к 1 кг элемента, МДж/кг (см. приложение XII).
SiO 2
-(CaO) 2
SiO 2
... 0,01393-250-10 3
;28.60-2,32 =8075,75
Р 2
0 6
-(Са0) 8
РАСа0 ... 0,033 250 10 3
62 142 4,71 =738,63
здесь первая колонка – доля оксида;
третья и четвертая колонки – молекулярные массы
элемента и соединения, соответственно;
пятая колонка – тепловые эффекты реакции шлакооб­разования, МДж/кг (приложение XII).
Q Н
р.г = 35069,6 В
кДж - 0,035 В
ГДж,
где Q =35069,6 кДж/м 3
– низшая теплота сгорания при­родного газа (см. пример 35); В
– расход природного газа на плавку, м 3
..
6.Тепло, вносимое подсасываемым в рабочее простран­ство воздухом, идущим на сжигание природного газа и СО

= (9,28В
+ 0,06279-250-10 3
:28-22 (
4-2,38) 1,3226-20 =
= 245,47 В
+ 790598,34ТкДж = 0,000245 В
4- 0,79 ГДж.
Здесь и теоретические расходы воздуха длясжигания 1 м 3
природного газа и 1 м 3
СО, соответственно
равные 9,28 и 2,38 м 3
/м 3
; D
со–
доля образующегося СО (см. материальный балансплавки);
C в
= 1,3226 кДж/м 3
К) –теплоемкость воздуха при
0,91119-250.10 3
[0,7-1500+ 272,16+ 0,837(1600 –1500)1 - 320251,39-10 3
кДж - 320,25 ГДж.
Здесь Dст–0,91119 выход стали (cm. материальный баланс);
с =0,7 кДж/(кг К)–удельная теплоемкость твер­дой стали, средняя в интервале температур 0–1500 °С;
=0,837 кДж/(кг-К) –то же, жидкой стали средняя в интервале температур 1500–1600 °С; -

= 1500 C– температура плавления стали;
= 272,16 кДж/кг – скрытая теплота плавления стали.
2. Физическое тепло стали, теряемой со шлаком
= 0,00734-250- 10 0.7-1500 + 272,16 + 0,837(1600 –1500)] = 2579,753-10 3
кДж = 2,58 ГДж.
Q шл
= (1,25-1550+ 209,5) 0,06 250 10 3
+(1,25 1600+209,35) 0,0628 250 10 3
=
66889,545 10 3
кДж=66,89 ГДж.
Здесь 1,25 кДж/(кг-К) –теплоемкость шлака, средняя в интервале температур 0–1600°С;
209,35 кДж/кг – скрытая теплота плавления шлака;
0,06 и 0,0628 – доля шлака скаченного и конечного со­ответственно (см. материальный балане).
4. Тепло, уносимое продуктами сгорания при средней температуре 1
yx

=
1600 °С
= Bi yx
V yx

В 2592,64 10,34=26807,9 В
кДж =0,0268 В
ГДж. Здесь:
Доли СО 2
, Н 2
О, N 2
и V yx

заимствованы из табл. 17, их энтальпии – из приложения II при t ух
== 1600 °С.
5. Тепло, расходуемое на разложение известняка
1779,5 0,0507 250 10 3
=22555 10 3
кДж=22,56 ГДж.
Здесь 1775,5 кДж/кг – теплота разложения 1 кг извест­няка; .
0,0507 –доля известняка (см. материальный баланс).
6. Тепло, затрачиваемое на испарение влаги и нагрев паров воды до t yx
=1600°C.
= 0,000786 250 10 4,187 100+ 2256,8+1,88(1600– 100)]22,4 18 = 1297594,2 кДж - 1,3 ГДж.
Здесь 4,187 кДж/(кг-К) –теплоемкость воды, средняя в интервале температур 0–100 °С;
1,88 кДж/(кг-1<) –то же, пара в интервале температур 100–1600°С;
2256,8 кДж/кг – скрытая теплота испарения 1 кг воды;
0,000786 –доля Н 2
О в продуктах плавки (см. матери­альный баланс).
7. Тепло, затраченное на нагрев выделяющихся из ван­ны газов до t =1600°C.
СО 2
...3815,86-0,02146-250.10 3
-22,4:44 = 10422,15-Ю 3

СО,..2526,85-0,0б279.250.10 8
.22,4:28 = 31732Д8-1б 3

SO 2
,..3815,86-0,00101.250-10 3
-22,4;64-337,23.10 3

N 2
...2328,65-0,00320.250-10 3
-22,4;28 1490,33-10 3

О 2
…24б3,97-О,006 64-250-Ю 3
-22
,4: 32 = 2863,13-10 3


Здесь первый столбик чисел – энтальпия газов при t ух
=1600°С (приложение 2); второй столбик чисел –доля газа от массы садки (см. материальный баланс).
8. Тепло, теряемое с уносимыми частицами Fe 2
O 3

= 0,01571 250 10 3
(1,23 1600 +209,35)= 16773,76 10 3
кДж =16,78 ГДж.
9. Потери тепла с охлаждающей водой.
В рабочем пространстве двухванной печи водой охлаж­даются заслонки окон (расход воды по 1,67- 10 м 3
/с)„ змеевики столбиков (по 0,56-10 3
м 3
/с), амбразура шлако­вой летки (1,12-10 3
м 3
/с) и кислородные фурмы (по0,28 10 3
м 3
/с). Принимая, что повышение температуры воды в водоохлаждаемом элементе не должно превышать 20 К, находим потери тепла с охлаждающей водой;
Заслонки 3-1,67-10- 3
-4,187- 10 3
-14400-20=6041,34 10 3

Змеевик 6-0,56- 10 .4,187-10 3
-14400.20=4051,68- 10 3

Амбразура 1-1,12-10 .4,187- 10 3
-14400-20=1350,56- 10 3

Фурмы 3-0,28-10 -4,187-10 3
=6840-20-481,14-10 3

Здесь первый столбец чисел – количество водоохлаждаемых элементов; второй – расход воды, м 3
/с; третий – теп­лоемкость воды, кДж/(м 3
К); четвертый – время теплово­го воздействия на водоохлаждаемый элемент, с; пятый – разность температур выходящей и входящей воды, К.
Рамы завалочных окон и пятовые балки свода имеют испарительное охлаждение. Принимая расход химически очищенной воды на каждый элемент 0,11- 10 м 3
/с найдем общий расход воды:
Рамы завалочных окон 3-0, 11 10 =0,33- 10
Пятовые балки задней стенки 3.0,11-10 =0,33-.10
Считая, что выход пара составляет 90 % (0,89- 10 3
м 3
/с), найдем потери тепла с испарительным охлаждением.
4,187-10 3
0,99.10 (100 – 30) 14400 + [2256,8 +1,88(150 -100) 10 3
-0,89-10 14400 18:22,4 =27952,17-10 3
кДж = 27,95 ГДж.
Суммарные потери тепла с охлаждающей водой равны
10. Потери тепла через футеровку [формула (155)].
Коэффициент теплопроводности магнезитохромита со­гласно приложению XIпри средней температуре свода 0,5 (1580+300)=940°С равен =4,1- 0,0016-940=2,6 Вт/(м К). Коэффициент теплоотдачи конвекцией равен
=10+0,06 300=28 Вт/(м 2
К). Толщина футеровки 0,5(0,46+0,10)=0,28 м взята средней за кампанию печи.
Задняя стенка имеет слой магнезита средней толщи­ной 0,75 м и слой легковесного шамота толщиной =0,065 м. Принимая температуру наружной поверхно­сти футеровки равной 200°С, а на границе раздела слоев 1100°С, согласно приложению XI получим


м

- 6,28 0,0027 0,5 (1580 + 1100) = 2,66 Вт/(м К) и

=
0,314 + 0,00035 0,5(1100 + 200) = 0,54 Вт/(м К) и
Здесь = 6,28–0,0027(1580 + 200)/2 = 3,88 Вт/(м К).
= 5100 102,4 14400 = 6475,78-10 3
кДж = 6,48 ГДж.
Здесь: 5100 Вт/м 2
–удельные потери тепла через под; 102,4 м 2
– площадь пода. Всего теряется через футеровку

=
14,04 + 1,16 + 1,4 + 6,48= 23,08 ГДж.
11. Потери тепла излучением через окна печи [формула (156)]
12. Потери тепла на диссоциацию СО 2
и Н 2
О примем равными 2 % от тепла, получаемого при сжигании природ­ного газа, т. е.
Q дисс
= 0,02 0,035 В = 0,0007 В
ГДж.
13. Потери тепла с выбивающимися газами и примем равными 2,5 % от тепла, получаемого при сжигании при­родного газа
Расход природного газа найдем из уравнения теплово­го баланса
0,82 + 194,26 + 322,76 + 8,81 + 0,035 В
+ 0,000245 В
+ 0,79 = 320,25 + 2,58 + 66,89 + 0,0268 В
22,56 +1,3 + 46,85 + 16,78 + 39,87 + 23,08 + 6,7 + 0,0007 В
+ +0,000885 или
Тепловой баланс рабочего пространства камеры двухванной печи представлен в табл. 43.
Q cp

= 35, 0 2943, 9:14400 = 7,155 МВт. Тепловая нагрузка холостого хода равна (39,87+ 23,08+ 6,7): 14400 =4,84 МВт.
Таблица 2. Тепловой баланс камеры двухванной печи
0,82(0,13) 194,26(30,78) 1,51(0,24)
322,76(51,13) 8,81(1,39) 103,04(16,33)
Физическое тепло: стали .... металла в шлаке шлака .... Разложение изве­стняка .... Испарение влаги Нагрев газов Вынос с частица­ ми Fe2O3 .... Водяное охлажде­ние
Потери тепла: через футеровку излучением . . на диссоциацию с выбивающимися газами . . . с продуктами сго­рания
320,26(50,74) 2,58(0,41) 66,89(10,55)
Период выпуска и заправки
(продолжительность 1440 с). Примем, что тепловая нагрузка в период выпуска и заправки равна 75 % средней тепловой нагрузки. Тогда
= 0,75-7,155=5,366 МВт, а расход природного газа
5,366-1440/35,0 = 220,64 м 3
/период.
Период завалки и прогрева
(продолжительность 4680 с). В этом периоде поддерживают максимальную теп­ловую нагрузку, составляющую 125 % от средней. Тогда
и В 2

- 8,94-4680/35,0 = 1195,69м /период .

Период заливки чугуна и плавления
(продолжитель­ность 4680 с). Обычно период заливки и плавления про­ходит при средней тепловой нагрузке. Тогда
Q
3

=
7,155 МВт и В = 7,155 4680/35,0=956,87 м /период.
Период доводки
(продолжительность 3600 с) Q 4
==(7,155 14400- 5,366 1440- 8,94 4680- 7,155 4680)/3600=5,55 МВт. Тогда В 4
= 5,55 3600/35,0=570,7 м 3
/период.
Правильность расчета проверяем, суммируя расходы при­родного газа по периодам
220,64 + 1195,69 + 956,87 +
570,70- 2943,9 м 3
, что соответствует значению, найденному из теплового ба­ланса.
Таким образом, двухванная печь имеет много эксплуатацион­ных и сантехнических недостатков. В связи с этим и несмотря на то, что двухванные печи имеют значительную производительность, их следует рассматривать как временную, промежуточную конструкцию, соответствующую сложному (в техническом и эко­номическом отношении) периоду полного перехода нашей метал­лургии с мартеновского на конвертерный способ производства стали.
1 Металлургическая теплотехника в 2-х томах 1. Теоретические основы: Учебник для вузов В. А. Кривандин, В. А. Арутюнов, Б. С.Мастрюков и др. М.: Металлургия, 1986. 424. с.
2 Металлургические печи: Атлас учебное пособие для вузов В. И. Миткалинный, В. А. Кривандин, В. А. Морозов и др. М.: Металлургия 1987.

Название: Двухванные печи
Раздел: Промышленность, производство
Тип: курсовая работа
Добавлен 10:59:46 30 октября 2008 Похожие работы
Просмотров: 381
Комментариев: 16
Оценило: 3 человек
Средний балл: 5
Оценка: неизвестно   Скачать

Физическое тепло: скрапа .... чугуна .... воздуха . . . Тепло реакций: экзотермических шлакообразования ..._.. Тепло от горения природного газа
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Курсовая работа: Двухванные печи
Реферат: Формирование благоприятного социально-психологического климата в педагогическом коллективе образ
Практическое задание по теме Задачи по охране труда
Курсовая работа по теме Японский минимализм в дизайне
Курсовая работа по теме Необходимость и роль государственного кредита
Классификация Источников Права Курсовая
Реферат по теме Час і причини появи козацтва. Природно-географічні умови козацького краю
Реферат Уз
Сочинение Описание На Тему Любимый Уголок Природы
Реферат по теме Павел Первый
Реферат На Тему Психиатрия В Эпоху Капитализма
Контрольная работа по теме Психологические нарушения развития у детей
Курсовая работа: Виноградная лоза - декоративный растительный мотив народного орнамента
Реферат: Linux And Windows NT Essay Research Paper
Реферат: Ватикан: государство-музей. Скачать бесплатно и без регистрации
Сервис Курсовых Работ
Реферат: Организация кабельного участка на магистральной первичной сети
Курсовая работа по теме Организация страхования в Российской Федерации
Курсовая работа по теме Государственные пособия гражданам, имеющим детей
Диссертации Финансовый Университет
Контрольная работа: Формирование дизайн-проекта в среде Apartment Environment с помощью Microsoft Robotics Developer Studio
Реферат: Конфессиональный состав населения России
Реферат: Скотт Роберт Фолкон
Курсовая работа: Гендерная проблематика в философии

Report Page