Контрольная Работа Соотношение В Прямоугольном Треугольнике

Контрольная Работа Соотношение В Прямоугольном Треугольнике



➡➡➡ ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ!






























Контрольная Работа Соотношение В Прямоугольном Треугольнике


Контр. 8. Соотношение между сторонами и углами прямоугольного треугольника



1. Треугольник $ABC$ [2 в.: $MNK$] — прямоугольный. Укажите верное равенство:



2. Пользуясь данными рисунка, найдите косинус угла FPK [2 в.: $PFK$].



4. Пользуясь данными рисунка, найдите синус [2 в.: косинус] угла PEM [2 в.: $CAB$].



5. В прямоугольном треугольнике один из катетов равен $4$ см, а синус противолежащего ему угла равен $0.8.$ Найдите второй катет и гипотенузу этого треугольника.



7. Из вершины прямоугольника на диагональ опущен перпендикуляр, который делит её на отрезки длиной $9$ см и $16$ см. Найдите котангенс угла, образованного меньшей стороной и диагональю.



8. В прямоугольном треугольнике $MNK$ $∠M = 90°,$ $NK = 10,$ $\text{tg}∠K = 0.5.$ Найдите $MN$ и $MK.$



9. В параллелограмме $ABCD$ известно, что $AB = 17\, см$ и $BC = 10\, см,$ а $\text{tg}∠A = \frac{15}{8}.$ Найдите площадь параллелограмма.



10. Биссектриса $EP$ прямоугольного треугольника $MEH$ $(∠M = 90°)$ делит катет $MH$ в отношении $3 : 5.$ Найдите косинус угла $EHM.$


Разделы

Решебники
Шпаргалки
Выпускные ленты



Категории

Лабораторные и практические
Контурные карты




© «superresheba.by», 2014 - 2020. Использование материалов, авторские права на которые принадлежат superresheba.by, возможно только с прямой активной ссылкой на первоисточник. Категория интернет-ресурса 0+


а) $\text{tg}∠A=\frac{CB}{AB};$ б) $\cos ∠B=\frac{CB}{AC};$ в) $\sin ∠A=\frac{CB}{AB}.$
Ответ: а) $\text{tg}∠A=\frac{CB}{AB}.$
а) $\text{ctg}∠K=\frac{KN}{MK};$ б) $\cos ∠M=\frac{MN}{MK};$ в) $\sin ∠K=\frac{MN}{KN}.$
$\sin 30° - \text{ctg} 45° = \dfrac{1}{2} - 1 = -\dfrac{1}{2}.$
$\text{tg} 45° - \cos 60° = 1 - \dfrac{1}{2} = \dfrac{1}{2}.$
В прямоугольном треугольнике один из катетов равен $3$ см, а косинус прилежащего ему угла равен $0.6.$ Найдите второй катет и гипотенузу этого треугольника.
$\text{tg}\alpha · \cos^2 \alpha + \cos^2(180°-\alpha)$ $=\dfrac{\sin^2\alpha · \cos^2\alpha}{\cos^2\alpha} + \cos^2(180°-\alpha)$ $=\sin^2(180°-\alpha)+\cos^2(180°-\alpha)=1.$
$\text{ctg}\beta ·\sin^2\beta + \sin^2(180°-\beta)$ $=\dfrac{\cos^2\beta · \sin^2\beta}{\sin^2\beta} + \sin^2(180°-\beta)$ $=\cos^2\beta + \cos^2\beta = 1.$
$ΔАОВ$ и $ΔАВС$ — подобны; $\dfrac{9}{АВ} = \dfrac{АВ}{25};$ $АВ=15;$ $ВС=20;$ $\text{tg}=\dfrac{20}{15} = \dfrac{4}{3}.$
Из точки пересечения диагоналей ромба проведён перпендикуляр, который делит сторону ромба на отрезки длиной $16$ см и $25$ см. Найдите котангенс угла, образованного стороной ромба и меньшей диагональю.
$ΔАОВ$ и $ΔАВС$ — подобны; $\dfrac{16}{OC} = \dfrac{OC}{41};$ $АВ=15;$ $ВС=20;$ $\text{tg}=\dfrac{20}{15} = \dfrac{4}{3}.$
$\text{tg}∠K = 0.5 = \dfrac{1}{2},$ значит $MN:MK = 1:2,$ $MK = 2·MN.$
$(2x)^2 + x^2 = 10^2;$ $5x^2 = 100;$ $x^2 = 20;$ $x = 2\sqrt{5}.$
Ответ: $NM = 2\sqrt{5}, MK = 4\sqrt{5}.$
В прямоугольном треугольнике $PST$ $∠S = 90°,$ $PT = 17,$ $\text{tg}∠P = 0.25.$ Найдите $PS$ и $ST.$
$\text{tg}∠P = 0.25 = \dfrac{1}{4},$ значит $TS:SP = 1:4,$ $SP = 4·TS.$
$(4x)^2 + x^2 = 17^2;$ $17x^2 = 289;$ $x^2 = 17;$ $x = \sqrt{17}.$
Ответ: $TS = \sqrt{17}, SP = 4\sqrt{17}.$
Так как $\text{tg}∠A = \dfrac{15}{8},$ то $BH = 15x;$ $AH = 8x.$
В треугольнике $ABH$ по теореме Пифагора получим $17^2= (8x)^2 + (15x)^2;$ $x = 1\, см.$
Тогда $BH = 15\, см$ и $S_{ABCD}$ $= AD · BH = 150\, см^2.$
В параллелограмме $MNPK$ известно, что $MN = 13\, см$ и $MK = 10\, см,$ а $\text{tg}∠M = \frac{15}{8}.$ Найдите площадь параллелограмма.
Так как $\text{tg}∠M = \dfrac{12}{5},$ то $MH = 12x;$ $MH = 5x.$
В треугольнике $MNH$ по теореме Пифагора получим $13^2= (12x)^2 + (5x)^2;$ $x = 1\, см.$
Тогда $NH = 12\, см$ и $S_{ABCD} = MK · NH = 120\, см^2.$
По теореме о биссектрисе треугольника $\dfrac{EM}{EH} = \dfrac{3}{5},$ тогда $EM = 3x;$ $EH = 5x.$ По теореме Пифагора $MH = 4x,$ тогда $\cos ∠EHM = \dfrac{MH}{EH} = \dfrac{4}{5}.$
Биссектриса $KE$ прямоугольного треугольника $KPT$ $(∠P = 90°)$ делит катет $PT$ в отношении $5 : 13.$ Найдите косинус угла $KTP.$
По теореме о биссектрисе треугольника $\dfrac{KP}{KT} = \dfrac{5}{13},$ тогда $KP = 5x;$ $KT = 13x.$ По теореме Пифагора $PT = 12x,$ тогда $\cos ∠KTP = \dfrac{PT}{KT} = \dfrac{12}{13}.$

Решения | Контр. 8. Соотношение между... | Супер Решеба
Контрольная работа по геометрии по теме: " Соотношения между...
Контрольная работа по теме " Соотношения между сторонами..."
Контрольная работа по теме: Соотношения между сторонами...
Контрольная работа № 3 « Соотношения между сторонами...»
Сочинение По Рассказу Щенок Бондарева
Угнту Оформление Реферата
Сочинение Рассуждение На Тему Мастерство
Алматы Туралы Эссе
Законность В Государственном Управлении Курсовая

Report Page