Компьютерные сети

Компьютерные сети

Н. Олифер

Если вернуться к нашему примеру (см. рис. 14.2), то при создании двух покрывающих деревьев можно сконфигурировать приоритеты коммутаторов так, чтобы для одного дерева корневым коммутатором стал коммутатор 111, а для второго — коммутатор 222 (рис. 14.16).

В этом варианте мы подразумеваем, что порты 4 коммутаторов с 555 по 888 сконфигурированы как порты доступа одной виртуальной локальной сети, например VLAN100, а порты 3 тех же коммутаторов — как порты доступ» другой виртуальной локальной сети, например VLAN200. Сеть VLAN 100 приписана к покрывающему дереву с корневым коммутатором 111, a VLAN200 — к покрывающему дереву с корневым коммутатором 222. В этом варианте все коммутаторы сети используются для передачи трафика, что повышает производительность сети.

Протокол MSTP основан на протоколе RSTP, поэтому обеспечивает быструю реакцию сети на отказы.
Качество обслуживания в виртуальных сетях

Коммутаторы локальных сетей поддерживают практически все механизмы QoS, которые мы обсуждали в главе 7. Это утверждение относится к коммутаторам локальных сетей как к классу коммуникационных устройств, каждая же конкретная модель коммутатора может быть наделена только определенным набором механизмов поддержания параметров QoS или же не иметь их вовсе. Как правило, коммутаторы рабочих групп средств QoS не поддерживают, в то время как дл^ магистральных коммутаторов эта поддержка является обязательной.

Классификация трафика

Коммутаторы локальных сетей являются устройствами второго уровня, которые анализируют заголовки только протоколов канального уровня. Поэтому коммутаторы обычно используют для классификации трафика только МAC-адреса источника и приемника, а также номер порта, через который поступил кадр. Возможен также учет при классификации значения произвольного подполя внутри поля данных, заданного путем указания смещения в байтах. Эти способы не очень удобны для администратора, которому необходимо, например, отделить голосовой трафик от трафика передачи файлов. Поэтому некоторые коммутаторы, не поддерживая протоколы верхних уровней в полном объеме (например, не применяя протокол IP для продвижения пакетов), выполняют классификацию на основе признаков, содержащихся в заголовках пакетов этих протоколов — IP-адресах и портах TCP/UDP.

Маркирование трафика
Маркирование трафика обычно выполняется на границе сети, а затем его результаты используются во всех промежуточных устройствах сети. В кадре Ethernet 802.3 отсутствует поле, в которое можно было бы поместить результат маркировки трафика. Однако этот недостаток исправляет спецификация 802.1р, в которой имеются три бита дополнительного заголовка 802.1Q/p для хранения приоритета кадра.

Фактически, эти три бита служат для хранения признака одного из восьми классов трафика. Именно так трактует это поле стандарт 802.1 D-2004, куда вошла спецификация 802.1р. В приложении G стандарта 802.1D-2004 даются рекомендации по разделению всего трафика локальных сетей на семь классов:

□ NC (управление сетью). Управлению сетью дается высший приоритет при обслуживании, так как от своевременного принятия решения и доставки управляющей информации сетевым устройствам зависят любые характеристики сети.
□ VO (голос). Голосовому трафику требуется обеспечить задержу менее 10 мс.
□ VI (видео). Видеотрафику требуется обеспечить задержу менее 100 мс.

□ CL (контролируемая нагрузка). При применении важных бизнес-приложений требуется некоторая форма контроля допуска (admission control) и резервирование пропускной способности для потока.
□ ЕЕ (улучшенное обслуживание). Это улучшенный вариант обслуживания по возможности, не дающий никаких гарантий пропускной способности.
□ BE (обслуживание по возможности, или с максимальными усилиями). Стандартное обслуживание в локальных сетях.

□ ВК (фоновый трафик). Наименее чувствительный к задержкам трафик, например трафик резервного копирования, источник которого может передавать большие объемы данных, поэтому его целесообразно выделить в особый класс, чтобы он не замедлял обработку других типов трафика.
Управление очередями

Коммутатор, поддерживающий параметры QoS, позволяет использовать несколько очередей для дифференцированной обработки классов трафика. Очереди могут обслуживаться в соответствии с алгоритмом приоритетной обработки, алгоритмом взвешенного обслуживания или на основе комбинации этих алгоритмов.

Коммутатор обычно поддерживает некоторое максимальное количество очередей, которое может оказаться меньше, чем требуемое число классов трафика. В этой ситуации несколько классов будут обслуживаться одной очередью, то есть фактически сольются в один класс. Стандарт 802.1D-2004 дает рекомендации в отношении того, какие классы трафика нужно реализовывать в сети в условиях ограниченного количества очередей в коммутаторах (табл. 16.1).

При существовании только одной очереди в сети все классы трафика обслуживаются этой очередью. На самом деле все классы обслуживаются с обычным качеством (по возможности), так как за счет управления очередями улучшить качество невозможно, хотя такие возможности, как обратная связь и резервирование полосы пропускания, для общего трафика остаются.

Две очереди дают возможность дифференцированно обслуживать группы классов трафика — менее требовательные классы ВК, BE и ЕЕ в одной очереди, а более требовательные классы VO, CL, VI, NC — в другой.
Дальнейшее увеличение количества очередей позволяет более дифференцированно обслуживать трафик, вплоть до рекомендуемых семи классов. Предложенная схема является только рекомендацией, администратор сети может делить трафик на классы по своему усмотрению.

Таблица 16.1. Классы трафика и количество очередей
Количество очередей
Классы трафика
1
{BE, ЕЕ, ВК, VO, CL, VI, NC}
2
{BE, ЕЕ, ВК} {VO, CL, VI, NC}
3
{BE, ЕЕ, ВК} {CL, VI}{VO, NC}
4
{ВК}{BE, ЕЕ} {CL, VI} {VO, NC}
5
{ВК}{BE, ЕЕ} {CL}{VI}{VO.NC}
6
{ВК}{BE}{ЕЕ}{CL}{VI}{VO.NC}
7
{ВК}
{BE}
{ЕЕ}
{CL}
{VI}
{VO}
{NC}

Кроме того, допускается обслуживание индивидуальных потоков трафика, но при этом каждый коммутатор должен самостоятельно выделять поток из общего трафика, так как в кадре Ethernet нет поля для переноса через сеть метки потока. В качестве признака класса трафика можно использовать номер виртуальной сети. Этот признак можно также комбинировать со значениями поля приоритета кадра, получая большое число различных классов.
Резервирование и профилирование

Коммутаторы локальных сетей поддерживают методы резервирования пропускной способности интерфейсов для классов трафика или индивидуальных потоков. Обычно коммутатор разрешает назначить классу или потоку минимальную скорость передачи данных, которая гарантируется в периоды перегрузок, а также максимальную скорость передачи данных, которая контролируется механизмом профилирования.

Для коммутаторов локальных сетей не существует стандартного протокола резервирования ресурсов. Поэтому для выполнения резервирования администратор сети должен сконфигурировать каждый коммутатор сети отдельно.
Ограничения коммутаторов

Применение коммутаторов позволяет преодолеть ограничения, свойственные сетям с рг деляемой средой. Коммутируемые локальные сети могут покрывать значительные терр тории, плавно переходя в сети мегаполисов; они могут состоять из сегментов различи! пропускной способности, образуя сети с очень высокой производительностью; они мог использовать альтернативные маршруты для повышения надежности и производите;] ности. Однако построение сложных сетей без маршрутизаторов, а только на основе ко мутаторов имеет существенные ограничения.

□ Серьезные ограничения по-прежнему накладываются на топологию коммутируем! локальной сети. Требование отсутствия петель преодолевается с помощью техни] STP/RSTP/MSTP и агрегирования каналов лишь частично. Действительно, STP не п зволяет задействовать все альтернативные маршруты для передачи пользовательско трафика, а агрегирование каналов разрешает так делать только на участке сети меж, двумя соседними коммутаторами. Подобные ограничения не позволяют примени многие эффективные топологии, пригодные для передачи трафика.

□ Логические сегменты сети, расположенные между коммутаторами, слабо изолиров ны друг от друга, а именно — не защищены от так называемых широковещательш штормов. Использование же механизма виртуальных сетей, реализованного во мноп коммутаторах, хотя и позволяет достаточно гибко создавать изолированные по трафи группы станций, при этом изолирует их полностью, то есть так, что узлы одной вирт альной сети не могут взаимодействовать с узлами другой виртуальной сети.

□ В сетях, построенных на основе мостов и коммутаторов, достаточно сложно решает задача фильтрации трафика на основе данных, содержащихся в пакете. В таких сет. фильтрация выполняется только с помощью пользовательских фильтров, для создан) которых администратору приходится иметь дело с двоичным представлением соде жимого пакетов.

□ Реализация транспортной подсистемы только средствами физического и канально уровней приводит к недостаточно гибкой одноуровневой системе адресации: в качест адреса назначения используется МАС-адрес, жестко связанный с сетевым адаптеро
□ У коммутаторов ограничены возможности по трансляции протоколов при создании г терогенной сети. Они не могут транслировать протоколы WAN в протоколы LAN из-различий в системе адресации этих сетей, а также различных значений максимально размера поля данных.

Наличие серьезных ограничений у протоколов канального уровня показывает, что п строение на основе средств этого уровня больших неоднородных сетей является весы проблематичным. Естественное решение в этих случаях — привлечение средств бол высокого сетевого уровня.
Пример коммутируемой сети завода можно найти на сайте
www.olifer.co.uk
в разделе «Коммутируемые сети».
Выводы

Для автоматического поддержания в сложных сетях резервных связей в коммутаторах реализуется алгоритм покрывающего дерева. Этот алгоритм описан в документе IEEE 802.1D и основан на периодической обмене коммутаторов специальными кадрами, с помощью которых выявляются и блокируются петлевидные связи в сети.
Протокол STA находит конфигурацию покрывающего дерева за три этапа. На первом этапе определяется корневой коммутатор, на втором — корневые порты, на третьем — назначенные порты сегментов.

Недостатком протокола STA 802.1D является сравнительно большое время установления новой активной конфигурации — около 50 с. Новый стандарт RSTP устраняет этот недостаток за счет предварительного выбора портов-дублеров для корневых и назначенных портов, а также введения некоторых других новых механизмов.

Агрегирование нескольких физических каналов в один логический является одной из форм использования нескольких активных альтернативных маршрутов в локальных сетях на коммутаторах. Агрегирование каналов повышает как производительность, так и надежность сети.

Агрегированный канал может быть образован не только между двумя соседними коммутаторами, но и распределяться между портами нескольких коммутаторов. Для автоматического уведомления о принадлежности физического порта определенному агрегированному порту разработан протокол LCAP.

Технология виртуальных локальных сетей (VLAN) позволяет в сети, построенной на коммутаторах, программным путем создать изолированные группы конечных узлов, между которыми отсутствует любой трафик, в том числе широковещательный.
Конфигурирование VLAN обычно ведется путем группирования портов или МАС-адресов.

Для построение виртуальной локальной сети на основе нескольких коммутаторов желательно помечать передаваемые кадры специальной меткой — тегом, идентифицирующем номер сети, которой принадлежит отправитель кадра. Стандартный формат тега VLAN определен в спецификации 802.1Q.
Протокол MSTP позволяет организовать в сети отдельные покрывающие деревья для виртуальных локальных сетей.

Коммутаторы LAN поддерживают многие механизмы QoS: классификацию и профилирование трафика, приоритетные и взвешенные очереди, резервирование пропускной способности.
Вопросы и задания
1. Для какой цели используется алгоритм покрывающего дерева? Варианты ответов:
а) для автоматического построения связной топологии без петель;
б) для защиты мостов от широковещательного шторма;
в) для автоматического перехода на резервные связи при отказе узлов или основных линий связи сети.

2. Каждый ли коммутатор, участвующий в построении покрывающего дерева, имеет корневой порт?
3. Какой порт называется назначенным?
а) имеющий минимальное расстояние до корневого коммутатора среди всех портов, которые подключены к данному сегменту;
б) имеющий минимальное расстояние до корневого коммутатора среди всех портов данного коммутатора.
4. Может ли администратор влиять на выбор корневого коммутатора?

5. Каким образом коммутаторы решают, что выбор активной топологии завершен?
6. За счет каких усовершенствований протокол RSTP работает быстрее протокола STP? Варианты ответов:
а) применение более быстрых процессоров коммутаторов;
б) исключение тупиковых портов из процесса выбора корневых и назначенных портов;
в) выбор портов-дублеров для корневых и назначенных портов;
г) введение процедуры подтверждения новой роли назначенного порта.

7. Как взаимодействуют алгоритмы покрывающего дерева и агрегирования каналов?
8. В чем заключаются недостатки динамического способа выбора порта транка? Варианты ответов:
а) неравномерная загрузка портов транка;
б) нарушение порядка следования кадров, принадлежащих одному потоку;
в) возможность потери кадров.
9. Преимуществами разбиения локальной сети на VLAN являются:
а) локализация широковещательного трафика;
б) повышение безопасности сети;

в) улучшение управляемости сети;
г) уменьшение объема ручного конфигурирования коммутаторов.
10. Каким образом можно объединить несколько виртуальных локальных сетей? Варианты ответов:
а) приписать их к одному и тому же транку;
б) сделать какой-либо конечный узел членом объединяемых сетей VLAN;
в) объединить VLAN с помощью маршрутизатора.
11. Укажите способы образования VLAN:
а) блокировка портов;
б) группирование портов;
в) группирование МАС-адресов;

г) использование тегов стандарта IEEE 802.1Q.
12. Почему группирование портов плохо работает в сети, построенной на нескольки коммутаторах?
13. Можно ли одновременно использовать группирование портов и стандарт IEE 802.1Q?
14. Должен ли алгоритм покрывающего дерева учитывать наличие в сети VLAN?


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page