Ключевые особенности опухолевого метаболизма

Ключевые особенности опухолевого метаболизма

Ключевые особенности опухолевого метаболизма

Ключевые особенности опухолевого метаболизма

__________________________

Проверенный магазин!

Гарантии и Отзывы!

Ключевые особенности опухолевого метаболизма

__________________________

Наши контакты (Telegram):

НАПИСАТЬ НАШЕМУ ОПЕРАТОРУ ▼


>>>🔥✅(ЖМИ СЮДА)✅🔥<<<


__________________________

ВНИМАНИЕ!

⛔ В телеграм переходить по ссылке что выше! В поиске фейки!

__________________________

ВАЖНО!

⛔ Используйте ВПН, если ссылка не открывается или получите сообщение от оператора о блокировке страницы, то это лечится просто - используйте VPN.

__________________________











Злокачественная опухоль — Википедия

Эффект Варбурга — склонность большинства раковых клеток производить энергию преимущественно с помощью очень активного гликолиза с последующим образованием молочной кислоты \\\\\\\\\\\\\\\[1\\\\\\\\\\\\\\\] , а не посредством медленного гликолиза и окисления пирувата в митохондриях с использованием кислорода как в большинстве нормальных клеток \\\\\\\\\\\\\\\[2\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[3\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[4\\\\\\\\\\\\\\\]. В клетках быстро растущей злокачественной опухоли уровень гликолиза почти в раз выше, чем в нормальных тканях. При этом гликолиз остаётся предпочтительным даже в условиях, когда кислород в избытке. Эффект открыт Отто Генрихом Варбургом в х годах. Назван в его честь Эфраимом Рэкером в году \\\\\\\\\\\\\\\[1\\\\\\\\\\\\\\\]. Отто Варбург полагал, что эти изменения в обмене веществ являются фундаментальной причиной рака гипотеза Варбурга \\\\\\\\\\\\\\\[5\\\\\\\\\\\\\\\]. Сегодня известно, что главные причины злокачественной трансформации клеток — это мутации в онкогенах и генах-супрессорах опухолей , а эффект Варбурга считается лишь следствием этих мутаций \\\\\\\\\\\\\\\[6\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[7\\\\\\\\\\\\\\\]. В х годах Отто Варбург и его коллеги обнаружили раковые клетки, которые поглощали большое количество глюкозы по сравнению с окружающими клетками. Также глюкоза была ферментирована в лактат , при том что кислорода было достаточно ан аэробный гликолиз. Было также указано, что клеточное дыхание могло поддерживать клетку. Выводом из этого стало то, что для убийства клетки путём лишения её энергии нужно забрать у неё и глюкозу , и кислород. Позже, в году, английский биохимик Герберт Крэбтри продолжил работу Варбурга и изучил гетерогенность гликолиза в раковых клетках. Он подтвердил то, что обнаружил Варбург, но также увидел, что доля клеточного дыхания варьирует и что многие опухоли демонстрируют значительное его количество. Из этого Крэбтри заключил не только то, что раковые опухоли используют анаэробный гликолиз, но и что у них также есть некоторая вариативность в ферментации, предположительно из-за экологического или генетического влияния. Вопреки выводам предыдущих работ и по причинам, неясным для этих авторов, Варбург позже предположил, что дисфункциональные митохондрии являются корнем анаэробного гликолиза. Варбург также предположил, что это событие является основной причиной рака. Это явление было названо эффектом Варбурга в начале х годов Эфраимом Рэкером , который также указал, что предыдущие данные показывают способность опухолей к клеточному дыханию. Рэкер разработал свои собственные теории о происхождении эффекта Варбурга, начиная от дисбаланса внутриклеточного рН до дефектов в АТФ-азной активности. Позже Рэкер, Джеффри Флиер и Моррис Бирнбаум заметили, что анаэробный гликолиз является контролируемым процессом, который может напрямую регулироваться передачей сигналов фактора роста. К тому времени открытие онкогенов привело к выводу, что аберрантная регуляция передачи сигналов фактора роста является инициирующим событием в онкогенезе. Таким образом, их наблюдения принесли новое значение гипотезе Варбурга в биологии раковых опухолей. Тем не менее, до недавнего времени оставалось неясным, был ли эффект Варбурга побочным эффектом в патогенезе рака. Недавние генетические и фармакологические исследования убедительно показали, что эффект Варбурга необходим для роста опухоли. Возвращаясь к первичным исследованиям метаболизма опухолей, теперь очевидно, что может потребоваться как анаэробный гликолиз, так и митохондриальный метаболизм. На протяжении всей этой истории функции Эффекта Варбурга были противоречивыми. Эффект Варбурга может быть просто следствием повреждения митохондрий во время малигнизации, адаптацией к низкому содержанию кислорода или же результатом выключения митохондриальных генов, так как многие из них участвуют в запуске апоптоза , который в противном случае привёл бы к гибели раковых клеток. Возможно, эффект — просто следствие быстрого клеточного деления. Поскольку гликолиз обеспечивает большую часть строительных блоков, необходимых для деления и роста клеток, было предположено, что раковые клетки и нормальные пролиферирующие клетки активируют гликолиз, несмотря на наличие кислорода, чтобы успешно размножаться \\\\\\\\\\\\\\\[9\\\\\\\\\\\\\\\]. Доказательством служит обнаружение активного анаэробного гликолиза в клетках с повышенной экспрессией митохондриально-связанной гексокиназы \\\\\\\\\\\\\\\[10\\\\\\\\\\\\\\\] , ответственной за стимуляцию гликолиза. При раке почки такой же эффект может появляться из-за наличия мутаций опухолевого супрессора Гиппеля — Линдау , который активирует гены гликолитических ферментов, включая М2-сплайс-изоформу пируваткиназы \\\\\\\\\\\\\\\[11\\\\\\\\\\\\\\\]. В марте года Льюис К. Кэнтли и коллеги объявили, что пируваткиназа М2-РК, изоформа пируваткиназы — это фермент , который является причиной эффекта Варбурга. М2-РК есть во всех быстро делящихся клетках, и даёт возможность раковым клеткам потреблять глюкозу в ускоренном темпе; если заставить клетки переключиться на нормальную форму пируваткиназы, ингибируя синтез опухолевой М2-РК, то скорость их роста существенно падает. Учёные признали тот факт, что точная химия метаболизма глюкозы скорее всего будет отличаться в различных формах рака, но PKM2 присутствовал во всех протестированных раковых клетках. Эта форма фермента, обычно не встречающаяся в здоровых тканях, хотя она очевидно необходима для быстрого размножения клеток, например, при заживлении ран или кроветворении \\\\\\\\\\\\\\\[12\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[13\\\\\\\\\\\\\\\]. Многие вещества, ингибирующие гликолиз, являются в настоящее время \\\\\\\\\\\\\\\[ когда? Продолжаются клинические испытания для 2-дезокси-D-глюкозы и дихлоруксусной кислоты \\\\\\\\\\\\\\\[15\\\\\\\\\\\\\\\]. Альфа-цианогидроксикоричная кислота — маленькая молекула-ингибитор транспортёров монокарбоксилатов препятствуют накоплению молочной кислоты в опухолях успешно применяется для лечения опухоли головного мозга в доклинических исследований \\\\\\\\\\\\\\\[16\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[17\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[18\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[19\\\\\\\\\\\\\\\]. Были разработаны ингибиторы с большим сродством к монокарбоксилатным транспортёрам. В настоящее время \\\\\\\\\\\\\\\[ когда? Дихлоруксуснаяя кислота, маленькая молекула-ингибитор митохондриальной пируватдегидрогеназыкиназы, «подавляет» гликолиз in vitro и in vivo. Исследователи из Университета Альберты в году предположили, что дихлоруксусная кислота может обладать терапевтическим эффектом против многих видов рака \\\\\\\\\\\\\\\[21\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[22\\\\\\\\\\\\\\\]. Было показано in vitro , что высокий уровень глюкозы ускоряет распространение раковых клеток, в то время как её нехватка приводит к апоптозу. Эти результаты инициировали дальнейшее изучение влияния содержания глюкозы на рост опухоли. Клинические данные показывают, что снижение уровня глюкозы в крови на поздней стадии рака коррелирует с лучшей выживаемостью пациентов \\\\\\\\\\\\\\\[23\\\\\\\\\\\\\\\]. На молекулу глюкозы анаэробный гликолиз является неэффективным методом синтеза АТФ по сравнению с количеством, полученным при митохондриальном дыхании. Однако скорость метаболизма глюкозы посредством анаэробного гликолиза выше, так что выработка лактата из глюкозы происходит в раз быстрее, чем полное окисление глюкозы в митохондриях. Фактически, количество АТФ, синтезируемого за любой данный период времени, сравнимо с любым из форм метаболизма глюкозы. Таким образом, разумная гипотеза, что рак использует анаэробный гликолиз, должна объясняться разницей в кинетике. Теоретические расчёты с использованием эволюционной теории игр подтверждают, что клетки с более высокой скоростью, но с более низким выходом продукции АТФ могут получить избирательное преимущество при конкуренции за общие и ограниченные энергоресурсы. На самом деле, микроокружение опухоли имеет ограниченную доступность глюкозы и подвергается конкуренции за питательные вещества со стромальными и иммунным клетками. Также исследование показало, что когда изменения в клеточной среде вызывали значительное увеличение потребности в АТФ путём изменения потребности в АТФ-зависимых мембранных насосах, анаэробный гликолиз быстро увеличивался, а окислительное фосфорилирование оставалось постоянным. Этот даёт дополнительное обоснование, что функция эффекта Варбурга — это поддерживать быструю выработку АТФ, которая может быть быстро настроена для поддержки требуемого уровня АТФ. Несмотря на привлекательность этого предложения, есть трудности. Простые эмпирические расчёты показывают, что количество АТФ, необходимое для роста и деления клеток, может быть намного меньше, чем необходимое для нормального поддержания клеток. Таким образом, потребность в АТФ может никогда не достичь предельных значений во время роста опухолевых клеток. Кроме того, механизмы, которые доступны для других типов клеток в случаях быстрого спроса на АТФ, также присутствуют в опухолевых клетках. Например, быстрый синтез АТФ из креатинкиназ в тренированной мышечной или аденилаткиназе при гормональных изменениях присутствует в большинстве опухолевых клеток и должен быть в состоянии удовлетворить потребность в АТФ. Таким образом, необходимы дальнейшие исследования, чтобы показать, может ли этот механизм объяснить роль анаэробного гликолиза. Предполагается, что эффект Варбурга является механизмом адаптации для поддержки биосинтетических требований неконтролируемого роста. В этом сценарии повышенное потребление глюкозы используется в качестве источника углерода для анаболических процессов, необходимых для поддержки деления клеток. Этот избыток углерода используется для генерации нуклеотидов, липидов и белков и может быть направлен по нескольким путям разветвления, которые происходят от гликолиза. Одним из примеров является утечка гликолитического потока в биосинтез серина с помощью фермента фосфоглицератдегидрогеназы PHGDH. В дополнение к использованию дополнительного углерода из метаболизма глюкозы для клеточных строительных блоков, теперь также есть аргумент, что вместо того, чтобы ограничивать скорость синтеза АТФ, пролиферирующие клетки больше нуждаются в восстановлении эквивалентов в форме NADPH. Эта высокая скорость гликолиза позволяет обеспечивать такие процессы, которые могут, например, перекачивать 3-фосфоглицерат 3PG к серину для производства NADPH и нуклеотидов за счёт одноуглеродного метаболизма. Эти предположения заключают, что эффект Варбурга поддерживает метаболическую среду, которая обеспечивает быстрый биосинтез для поддержки роста и распространения. Кроме того, другие предположили, что анаэробный гликолиз является компромиссом для поддержки биосинтеза. В этих сценариях неэффективный способ создания АТФ возникает из-за того что необходимо обеспечивать анаболические пути необходимыми материалами. Эти пути требуют повышенной экспрессии генов биосинтеза, например те которые участвуют в синтезе нуклеотидов и липидов, и в результате это происходит путём ограничения использования митохондрий с целью сохранения высокой экспрессии ферментов биосинтеза из-за ограниченного количества доступного белка. Возможен и другой сценарий который состоит в том что физический объем, доступный на клетку, может ограничивать количество митохондрий, и, следовательно, любая энергия и биомасса, которые превышают ограниченную ёмкость митохондрий, должны быть получены из анаэробного гликолиза. Эта концепция была названа ограничением ёмкости растворителя. В обоих этих случаях эффект Варбурга является адаптацией для поддержки производства биомассы в условиях ограниченных возможностей для образования АТФ. Привлекательность этого предположения частично объясняется его способностью дать простое объяснение очевидной корреляции между анаэробным гликолизом и ростом раковых клеток. Однако существуют серьёзные ограничения для этой предлагаемой функции эффекта Варбурга. Во-первых, во время анаэробного гликолиза большая часть углерода не удерживается и вместо этого выделяется в виде лактата. Таким образом, пути, которые приводят к биосинтезу глюкозы, возникают при полном отсутствии выработки лактата, что является отличительной чертой эффекта Варбурга. Также в настоящее время \\\\\\\\\\\\\\\[ когда? В свете этого доказательства остаётся трудно понять, как эффект Варбурга может непосредственно способствовать биосинтезу. Последние оценки количественной протеомики показывают, что стоимость производства белка для проведения анаэробного гликолиза огромна. Напротив, программы биосинтеза в клетках требуют гораздо меньших количеств белка. Таким образом, стоимость производства белков для анаэробного гликолиза столь же велика, если не больше, чем стоимость производства белков для биосинтеза. Так же предположение того что функция эффекта Варбурга заключается в биосинтезе оспаривается тем что митохондриальные функции возникают одновременно с эффектом Варбурга, и, таким образом, ограничение митохондриальной активности, по-видимому, не происходит во время эффекта Варбурга. В конечном счёте, необходимы дальнейшие исследования, чтобы выяснить, функционирует ли эффект Варбурга для поддержки программ биосинтеза. В отличие от клеточных функций, описанных выше, эффект Варбурга может представлять преимущество для роста клеток в многоклеточной среде. Подкисление микроокружения и другие метаболические помехи являются интригующими возможностями. Повышенный метаболизм глюкозы снижает рН в микроокружении из-за секреции лактата. Потенциальная польза повышения кислотности для раковых клеток огромна. Недавнее исследование показало, что лактат, полученный из опухолей, вносит вклад в поляризацию макрофагов, ассоциированных с тканями M2. Также, доступность глюкозы, по-видимому, является результатом прямой конкуренции между опухолью и инфильтрирующими опухоль лимфоцитами. Высокие показатели гликолиза ограничивают доступность глюкозы для лимфоцитов, которым требуется достаточное количество глюкозы для их функций. Поддержка этого предложения является прямым доказательством того, что нацеливание на анаэробный гликолиз в опухоли имеет дополнительное преимущество, заключающееся в уменьшения поступления глюкозы в лимфоциты и, следовательно, в подавлении их основной функции — уничтожения опухолевых клеток. В совокупности этот факт свидетельствует о том, что опухолевые клетки могут связываться с клетками иммунной системы для поддержки противоопухолевого иммунитета. Вполне вероятно, что эффект Варбурга обеспечивает общее преимущество, которое поддерживает микроокружение опухоли, способствующее росту раковых клеток. Тем не менее, считается, что эффект Варбурга является ранним событием в онкогенезе, которое является непосредственным следствием первоначальной онкогенной мутации, такой как KRAS при раке поджелудочной железы или BRAF при меланоме, происходящих, таким образом, до инвазии клеток и при доброкачественных и ранних стадиях рака. Другая проблема заключается в том, что в условиях, полностью изолированных от окружающей среды, таких как в фазе роста одноклеточных дрожжей, эффект Варбурга остаётся выбором энергетического обмена из глюкозы. В целом, эти данные предполагают, что не-клеточные функции эффекта Варбурга недостаточны для полного объяснения его функций. Предполагается что эффект Варбурга придаёт функции прямой передачи сигналов опухолевым клеткам. Это предположение особенно привлекательно, поскольку оно определяет прямую причинно-следственную роль изменённого метаболизма глюкозы в содействии онкогенезу посредством этой трансдукции сигнала, влияющей на другие клеточные процессы. Двумя областями сигнальной функции являются генерация и модуляция активных форм кислорода АФК и модуляция состояния хроматина. Другие исследования выявили дополнительные возможные сигнальные механизмы. Поддержание надлежащего баланса АФК имеет важное значение. Чрезмерное количество АФК повреждает клеточные мембраны, нуклеиновые кислоты и оказывает другие вредные эффекты. Недостаточный уровень АФК нарушает процессы передачи сигналов, которые полезны для пролиферации клеток, такие как инактивация фосфатазы и гомолога тензина PTEN и тирозинфосфатаз. Эффект Варбурга вызывает изменения окислительно-восстановительного потенциала митохондрий, в конечном итоге изменяя генерацию АФК. Важным фактором, определяющим окислительно-восстановительный потенциал в клетках, является NADH, который доступен в митохондриях для транспорта электронов. Клеточные механизмы для поддержания окислительно-восстановительного гомеостаза имеют место, когда скорость гликолиза колеблется. До определённой степени гликолиза малат-аспартатный челнок через митохондрии способен восстанавливать дисбаланс NADH. Этот процесс также может влиять на гомеостаз генерации АФК, влияя на концентрацию восстанавливающих эквивалентов в митохондриях Это последствие эффекта Варбурга может быть непосредственно вовлечено в старение вызванное онкогенами СВО. СВО имеет опухолево-супрессивную клеточную функцию, и недавнее исследование показало, что повышенное окисление глюкозы через пируватдегидрогеназу PDH может регулировать СВО. Это открытие показывает, что окислительно-восстановительный баланс NADH может способствовать прямым сигнальным ролям в эффекте Варбурга. Кроме того, метаболические пути, которые стимулируют окислительно-восстановительный гомеостаз, усиливаются наряду с эффектом Варбурга. Вместе эти результаты обеспечивают прямые биохимические связи между анаэробным гликолизом и доступностью АФК, что, в свою очередь, может повлиять на множество сигнальных процессов. В дополнение к передаче сигналов через АФК, сигнальная связь между метаболизмом глюкозы и ацетилированием гистонов была хорошо документирована. Статус структуры хроматина отвечает за регулирование различных клеточных функций, включая репарацию ДНК и транскрипцию генов. Установлено, что ацетил-КоА, субстрат для ацетилирования гистонов, может регулироваться потоком глюкозы. Исследования показали, что существует прямая связь между клеточным метаболизмом и регуляцией генов роста и что внутриклеточные уровни ацетил-КоА могут представлять собой широко консервативный механизм, способствующий этой важной связи. Активность АТФ-цитратлиазы, фермента, ответственного за превращение цитрата в ацетил-КоА, может влиять на уровни ацетилирования гистона. Повышенных уровней ацетил-КоА может быть достаточно, чтобы привести клетки в фазу роста посредством ацетилирования гистонов. Удаление глюкозы или уменьшение АТФ-цитратлиазы приводит к потере ацетилирования на нескольких гистонах и вызывает снижение транскрипции генов, участвующих в метаболизме глюкозы. Это указывает на то, что существует некоторая взаимосвязь между метаболизмом глюкозы и ацетилированием гистонов. В поддержку этой идеи было обнаружено, что гликолитический метаболизм влияет на структуру хроматина. В дополнение к ацетилированию гистонов, отвечающему на доступность глюкозы в клетках, на деацетилирование также может влиять наличие питательных веществ. Поэтому на ацетилирование и деацетилирование может влиять наличие питательных веществ, что указывает на то, что их статусы могут быть последствиями эффекта Варбурга. Эти многочисленные свидетельства указывают на гликолиз, имеющий клеточные сигнальные функции. Однако трудности также ограничивают это предположение тем, что он является общим механизмом, который приносит пользу раковым клеткам, подвергаясь анаэробному гликолизу. Одним из таких ограничений является то, что трудно представить, как молекулярная специфичность возникает через такой грубый глобальный сигнальный механизм. В отличие, например, от передачи сигналов фактора роста, при которых связывание лиганда с субстратом вызывает изменения конформационной и ферментативной активности, которые влияют на специфические клеточные процессы, механизм, при котором состояние сигналов гликолиза для других клеточных процессов не имеет очевидных источников специфичности. Другое ограничение заключается в том, что такие предложения обычно не поддаются фальсификации. Это означает, что крайне трудно спроектировать эксперименты, чтобы окончательно показать, что специфический механизм передачи сигналов, такой как модуляция структуры хроматина, напрямую зависит от статуса метаболизма глюкозы как ключевого преимущества анаэробного гликолиза. Одна из причин этого заключается в том, что биохимическое взаимодействие происходит быстро, но фенотипические изменения в клетках развиваются в течение гораздо более длительного времени, что приводит к появлению многих смешанных факторов, которые встречаются на этом пути. Генетические модели, которые могли бы проверить эти гипотезы, трудно представить, и в других экспериментах не хватает возможности проверить, происходят ли конкретные клеточные результаты с помощью таких механизмов передачи сигналов, а не косвенными способами. Степень, в которой эти общие черты, такие как гомеостаз передачи сигналов АФК и организация структуры хроматина, являются ключевыми событиями в онкогенезе, также остаётся неясной. В будущем такая специфичность и способность экспериментально проверить эти гипотезы могут появиться из наблюдения количественных аспектов механизма, как было показано в других исследованиях трансдукции сигнала. Эксперименты, которые могут точно контролировать уровни ацетил-КоА и АФК, могут позволить отделить многие последующие эффекты эффекта Варбурга. Существует и так называемый реверсивный эффект Варбурга. В этом случае клетки опухоли не получают энергию путём гликолиза, но вместо этого стимулируют гликолиз в прилежащих стромальных фибробластах , а сами клетки опухоли получают энергию за счёт окислительного фосфорилирования и импорта метаболитов из фибробластов. Хотя это открытие и не отменяет возможности того, что эффект Варбурга может иметь место в некоторых типах опухолей, оно ещё раз заставило задуматься о необходимости более внимательно присмотреться к опухолевому метаболизму \\\\\\\\\\\\\\\[24\\\\\\\\\\\\\\\] \\\\\\\\\\\\\\\[25\\\\\\\\\\\\\\\]. Метаболическое перепрограммирование наблюдается и при нейродегенеративных заболеваниях, болезни Альцгеймера и Паркинсона. Оно заключается в усилении окислительного фосфорилирования — так называемый инверсивный эффект Варбурга. Использование питательных веществ существенно меняется когда клетки получают сигнал к пролиферации. Изменения метаболизма позволяют удовлетворять большие биосинтетические требования, связанные с обеспечением роста и деления клеток. Изменение лимитирующих скорость роста ферментов гликолиза перенаправляет метаболизм на поддержание роста и пролиферации. Метаболическое перепрограммирование в раковых клетках происходит во многом благодаря онкогенной активации путей передачи сигнала и факторов транскрипции. Эпигенетические механизмы также способствуют регуляции метаболической экспрессии генов при раке. Верно и обратное, накопленные данные позволяют предположить, что метаболические изменения могут повлиять на эпигенетику. Понимание взаимосвязи между метаболизмом и эпигенетикой раковых клеток может открыть новые пути для развития противораковых стратегий \\\\\\\\\\\\\\\[26\\\\\\\\\\\\\\\]. Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 25 января ; проверки требуют 3 правки. Эта статья — об эффекте в онкологии. Об одноимённом эффекте в физиологии растений см. Эффект Варбурга физиология растений. Необходимо проверить качество перевода и исправить содержательные и стилистические ошибки. Вы можете помочь улучшить эту статью. Оригинал на английском языке — Warburg effect oncology. Glycolysis, tumor metabolism, cancer growth and dissemination. Tumor Acidity as Evolutionary Spite неопр. Why do cancers have high aerobic glycolysis? On the origin of cancer cells англ. The molecular biology of cancer англ. Aspects Med. How do mutated oncogenes and tumor suppressor genes cause cancer? Liberti, Jason W. The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase англ. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect англ. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth англ. Glycolysis inhibition for anticancer treatment англ. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study англ. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study англ. Lactate and malignant tumors: a therapeutic target at the end stage of glycolysis Review англ. Metabolic targeting as an anticancer strategy: dawn of a new era? STKE англ. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma англ. Категории : Онкология Варбурги. Пространства имён Статья Обсуждение.

Ключевые особенности опухолевого метаболизма

Недорого купить Скорость (Ск Альфа-ПВП) Нур-Султан

Купить закладки шишки ак47 в Нижневартовске

Ключевые особенности опухолевого метаболизма

Амфетамин купить через закладки Серпухов

Скорость a-PVP в Скопине

Радионуклидная диагностика в онкологии

Москва Дегунино Западное купить Скорость a-pvp

Юрьев-Польский купить DMT

Ключевые особенности опухолевого метаболизма

Опиум (Opium) Петропавловск-Камчатский

Амфетамин faq

Эффект Варбурга (онкология) — Википедия

Рязанская область купить закладку Мефедрон [Cristalius 2.0]

Сорск купить закладку LSD-25 в марках 250мк

Ключевые особенности опухолевого метаболизма

Купить Герман Мглин

Купить через гидру АМФ Шахты

Ключевые особенности опухолевого метаболизма – Telegraph

Купить BARCELONA Самара

Зея купить LSD-25 (HQ) 250мкг

Ключевые особенности опухолевого метаболизма

Купить Кокаин Без кидалова Новочеркасск

Бузулук купить Марки LSD 170мкг

Report Page