Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп - Математика курсовая работа

Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп - Математика курсовая работа




































Главная

Математика
Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп

Рассмотрение методов экстремальных классов (Картер, Фишер, Хоукс), и критических групп (Семенчук). Классификация наследственных насыщенных формаций F, замкнутых относительно произведения обобщенно субнормальных F-подгрупп с взаимно простыми индексами.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования Республики Беларусь
"Гомельский государственный университет им. Ф. Скорины"
КЛАССЫ КОНЕЧНЫХ ГРУПП , ЗАМКНУТЫЕ О ВЗАИМНО ПРОСТЫХ ИНДЕКСОВ ОТНОСИТЕЛЬНО ПРОИЗВЕДЕНИЯ ОБОБЩЕННО СУБНОРМАЛЬНЫХ -ПОДГРУПП
Студентка группы М-53 МОКЕЕВА О. А.
доктор ф-м наук, профессор Семенчук В.Н.
Рассматриваются только конечные группы. Вся терминология заимствована из [44, 47].
--- множество всех натуральных чисел;
--- некоторое множество простых чисел, т. е. ;
--- дополнение к во множестве всех простых чисел; в частности, ;
примарное число --- любое число вида .
Буквами обозначаются простые числа.
--- множество всех простых делителей порядка группы ;
--- коммутант группы , т. е. подгруппа, порожденная коммутаторами всех элементов группы ;
--- подгруппа Фиттинга группы , т. е. произведение всех нормальных нильпотентных подгрупп группы ;
--- наибольшая нормальная -нильпотентная подгруппа группы ;
--- подгруппа Фраттини группы , т. е. пересечение всех максимальных подгрупп группы ;
--- наибольшая нормальная -подгруппа группы ;
--- дополнение к силовской -подгруппе в группе , т. е. -холлова подгруппа группы ;
--- минимальное число порождающих элементов группы ;
--- цоколь группы , т. е. подгруппа, порожденная всеми минимальными нормальными подгруппами группы ;
--- является собственной подгруппой группы ;
--- является нормальной подгруппой группы ;
--- ядро подгруппы в группе , т. е. пересечение всех подгрупп, сопряженных с в ;
--- нормальное замыкание подгруппы в группе , т. е. подгруппа, порожденная всеми сопряженными с подгруппами группы ;
--- нормализатор подгруппы в группе ;
--- централизатор подгруппы в группе ;
--- взаимный коммутант подгрупп и ;
--- подгруппа, порожденная подгруппами и .
Минимальная нормальная подгруппа группы --- неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы ;
--- является максимальной подгруппой группы .
--- прямое произведение подгрупп и ;
--- полупрямое произведение нормальной подгруппы и подгруппы ;
--- регулярное сплетение подгрупп и .
Подгруппы и группы называются перестановочными, если .
-замкнутой, если силовская -подгруппа группы нормальна в ;
-нильпотентной, если -холлова подгруппа группы нормальна в ;
-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;
-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
разрешимой, если существует номер такой, что ;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Монолитическая группа --- неединичная группа, имеющая единственную минимальную нормальную подгруппу.
-замкнутая группа --- группа, обладающая нормальной холловской -подгруппой.
-специальная группа --- группа, обладающая нильпотентной нормальной холловской -подгруппой.
-разложимая группа --- группа, являющаяся одновременно -специальной и -замкнутой.
Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе группы называется такая подгруппа из , что .
Цепь --- это совокупность вложенных друг в друга подгрупп.
Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.
главным, если является минимальной нормальной подгруппой в для всех .
Класс групп --- совокупность групп, содержащая с каждой своей группой и все ей изоморфные группы.
-группа --- группа, принадлежащая классу групп .
Формация --- класс групп, замкнутый относительно факторгрупп и подпрямых произведений.
--- множество всех простых делителей порядков всех групп из ;
--- множество всех тех простых чисел , для которых ;
--- формация, порожденная классом ;
--- насыщенная формация, порожденная классом ;
--- класс всех групп , представимых в виде
--- класс всех минимальных не -групп, т. е. групп не принадлежащих , но все собственные подгруппы которых принадлежат ;
--- класс всех разрешимых конечных групп;
--- класс всех нильпотентных групп;
--- класс всех разрешимых групп с нильпотентной длиной .
Если --- класс групп и --- группа, то:
--- пересечение всех нормальных подгрупп из таких, что ;
--- произведение всех нормальных -подгрупп группы .
--- пересечение всех -абнормальных максимальных подгрупп группы .
--- существенная характеристика формации .
-абнормальной называется максимальная подгруппа группы , если
-гиперцентральной подгруппой в называется разрешимая нормальная подгруппа группы , если обладает субнормальным рядом таким, что
(1) каждый фактор является главным фактором группы ;
(2) если порядок фактора есть степень простого числа , то .
--- -гиперцентр группы , т. е. произведение всех -гиперцентральных подгрупп группы .
Известно, что формация всех сверхразрешимых групп не замкнута относительно произведения нормальных сверхразрешимых подгрупп, но замкнута относительно произведения нормальных сверхразрешимых подгрупп взаимно простых индексов. В связи с этим можно сформулировать следующую проблему.
Проблема. Классифицировать наследственные насыщенные формации с тем свойством, что любая группа , где и --- -субнормальные -подгруппы взаимно простых индексов, принадлежит .
Именно изучению таких формаций посвящена данная работа. В частности, в классе конечных разрешимых групп получено полное решение данной проблемы.
В данном разделе доказаны леммы, которые существенным образом используются при доказательстве основного раздела данной главы.
1.1 Лемма [18-A]. Пусть --- насыщенная формация, принадлежит и имеет нормальную силовскую -подгруппу для некоторого простого числа . Тогда справедливы следующие утверждения:
2) , где --- любое дополнение к в .
Доказательство. Так как , то , а значит, . Так как и формация насыщенная, то не содержится в . Так как --- элементарная группа, то по теореме 2.2.16, обладает -допустимым дополнением в . Тогда , . Если , то отлична от и, значит, принадлежит . Но тогда, ввиду равенства , имеем
отсюда следует и . Тем самым доказано, что .
Докажем утверждение 2). Очевидно, что является -корадикалом и единственной минимальной нормальной подгруппой группы , причем . Поэтому, ввиду теоремы 2.2.17,
Пусть и --- произвольные классы групп. Следуя [55], обозначим через --- множество всех групп, у которых все -подгруппы принадлежат .
Если --- локальный экран, то через обозначим локальную функцию, обладающую равенством для любого простого числа .
1.2 Лемма [18-A]. Пусть и --- некоторые классы групп. Тогда справедливы следующие утверждения:
5) если --- формация, а --- насыщенный гомоморф, то --- формация;
6) если , , --- некоторые классы групп и --- наследственный класс, то в том и только в том случае, когда ;
Доказательство. Доказательство утверждений 1), 2), 3) и 4) следует непосредственно из определения класса групп .
Пусть , --- нормальная подгруппа группы и --- -подгруппа из . Пусть --- добавление к в . Покажем, что . Предположим противное. Пусть не входит в . Тогда обладает максимальной подгруппой , не содержащей . Поэтому , а значит, , что противоречит определению добавления.
Так как --- насыщенный гомоморф, то . Но тогда и . Значит, класс замкнут относительно гомоморфных образов.
Пусть . Пусть --- -подгруппа из . Тогда , а значит ввиду определения класса , имеем
Так как --- формация и , то отсюда получаем, что . Таким образом, .
Докажем утверждение 6). Пусть , . Если не входит в , то получается, что каждая -подгруппа из принадлежит , а значит, . Получили противоречие. Поэтому .
Покажем, что . Предположим, что множество непусто, и выберем в нем группу наименьшего порядка. Тогда не входит в . Пусть --- собственная подгруппа из . Так как классы и --- наследственные классы, то . Ввиду минимальности имеем . Значит, . Получили противоречие. Поэтому .
Докажем утверждение 7). Пусть и --- -подгруппа из группы . Отсюда следует, что , . А это значит, что . Отсюда нетрудно заметить, что . Следовательно, . Итак, . Лемма доказана.
1.3 Лемма [18-A]. Пусть --- наследственная насыщенная формация, --- ее максимальный внутренний локальный экран. Тогда и только тогда -корадикал любой минимальной не -группы является силовской подгруппой, когда:
2) формация имеет полный локальный экран такой , что для любого из .
Доказательство. Необходимость. Пусть --- максимальный внутренний локальный экран формации . Пусть --- произвольное простое число из . Так как --- насыщенный гомоморф, то по лемме 4.1.2, --- формация.
Пусть --- формация, имеющая локальный экран такой, что для любого из . Покажем , что . Согласно теореме 2.2.13, --- наследственная формация для любого из . Отсюда нетрудно заметить, что для любого из . А это значит, что .
Пусть --- группа минимального порядка из . Так как --- наследственная формация, то очевидно, что --- наследственная формация. А это значит, что и . Покажем, что --- полный локальный экран, т. е. для любого из . Действительно. Пусть --- произвольная группа из . Отсюда . Пусть --- произвольная -группа из . Так как , то . Отсюда . Так как --- полный экран, то . А это значит, что . Следовательно, . Отсюда нетрудно заметить, что . Теперь, согласно теореме 2.2.5, , где --- единственная минимальная нормальная подгруппа группы , --- -группа и . Так как и , то . Отсюда . Противоречие. Итак, . Покажем, что для любого из . Пусть и --- -группа. Пусть --- произвольная -подгруппа из . Тогда . Отсюда . А это значит, что . Противоречие.
Достаточность. Пусть --- произвольная минимальная не -группа. Так как разрешима, то по теореме 2.2.5,
где --- -группа, . Согласно условию, --- -группа. А это значит, что --- -замкнутая группа. Но тогда, --- -замкнутая группа. Согласно лемме 4.1.1, --- силовская подгруппа группы . Лемма доказана.
1.4 Лемма [18-A]. Пусть --- наследственная насыщенная формация, --- ее максимальный внутренний локальный экран. Тогда и только тогда любая минимальная не -группа бипримарна и -замкнута, где , когда:
2) формация имеет полный локальный экран такой, что и любая группа из является примарной -группой для любого простого из .
Доказательство. Необходимость. Пусть --- произвольная минимальная не -группа. Согласно условию, --- бипримарная -замкнутая группа, где . По лемме 4.1.1, . Согласно лемме 4.1.3, формация имеет полный локальный экран такой, что и для любого простого из . Покажем, что любая группа из примарна. Предположим противное. Тогда существует группа и . Пусть --- группа наименьшего порядка такая, что . Очевидно, что и . Нетрудно заметить, что и имеет единственную минимальную нормальную подгруппу. Значит, по лемме 2.2.18, существует точный неприводимый -модуль , где --- поле из элементов.
Пусть . Покажем, что . Поскольку и , то .
Пусть --- собственная подгруппа из . Покажем, что . Пусть . Если , то . Следовательно, . Пусть . Тогда --- собственная подгруппа из . А это значит, что и . Так как и --- наследственная формация, то . Но тогда и , а значит и .
Пусть теперь . Так как , то и . Отсюда следует, что . Итак, . Cогласно условию, бипримарна, что невозможно, т. к. .
Достаточность. Пусть --- произвольная минимальная не -группа. Согласно условию, разрешима. По теореме 2.2.5,
Согласно условию, --- примарная -группа. А это значит, что --- бипримарная -замкнутая группа. Но тогда --- бипримарная -замкнутая группа. Лемма доказана.
В данном разделе в классе конечных разрешимых групп получена классификация наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп, индексы которых взаимно просты.
2.1 Теорема [18-A]. Пусть --- наследственная насыщенная формация, --- ее максимальный внутренний локальный экран. Тогда следующие утверждения эквивалентны:
1) формация содержит любую группу , где и --- -субнормальные -подгруппы и индексы , взаимно просты;
2) любая минимальная не -группа либо бипримарная -замкнутая группа , либо группа простого порядка;
3) формация имеет полный локальный экран такой, что и любая группа из является примарной -группой для любого простого из .
Доказательство. Покажем, что из 1) следует 2).
Пусть --- произвольная минимальная не -группа. Предположим, что , где --- характеристика формации . Покажем, что --- группа простого порядка. Пусть . Тогда существует простое число , . Так как , то , что невозможно. Итак, --- примарная -группа. Так как , то, очевидно, что .
Пусть теперь . Рассмотрим случай, когда .
Покажем, что имеет единственную минимальную нормальную подгруппу . Предположим противное. Тогда содержит, по крайней мере, две минимальные нормальные подгруппы и . Так как , то в группе найдутся максимальные подгруппы и такие, что , . Так как и принадлежат , , , то , . Так как --- формация, то . Получили противоречие. Итак, , где --- единственная минимальная нормальная -подгруппа группы .
Покажем, что --- примарная -группа, где . Предположим, что существуют простые числа , где . Тогда в найдутся максимальные подгруппы и такие, что --- -число, --- -число. Рассмотрим подгруппы и . Очевидно, что индексы и взаимно просты. Так как и , то . Согласно лемме 3.1.4, подгруппы и -субнормальны в . Так как --- минимальная не -группа, и --- собственные подгруппы группы , то и . Так как , то согласно условию, . Получили противоречие.
Покажем, что --- -группа, где . Предположим, что . Так как , то согласно лемме 3.1.4, --- -субнормальная подгуппа группы . Рассмотрим подгруппу . Так как --- собственная подгруппа и , то . Согласно лемме 3.1.4, --- -субнормальная подгруппа . Очевидно, что --- -субнормальная подгруппа . По лемме 3.1.4, --- -субнормальная подгруппа группы . Так как , то из и условия теоремы следует, что . Получили противоречие. Итак, --- -группа. Тогда --- бипримарная -замкнутая группа, где .
Пусть . Рассмотрим фактор-группу . Так как , то, как показано выше, --- бипримарная -замкнутая группа. Отсюда следует, что --- бипримарная -замкнутая группа.
Из леммы 4.1.4 следует, что утверждение 3) следует из 2).
Пусть --- группа наименьшего порядка такая, что , где и --- -субнормальные -подгруппы группы взаимно простых индексов, то . Так как --- разрешимая группа и , где , то нетрудно заметить, что , где и --- холловские подгруппы группы , и , , где , --- некоторые элементы группы .
Пусть --- собственная подгруппа группы . Покажем, что . Так как --- разрешимая группа, то согласно теореме Ф. Холла [63], , где , , где , --- некоторые элементы из . Согласно лемме 3.1.4, и --- -субнормальные подгруппы группы . Так как и , а --- наследственная формация, то и --- -субнормальные подгруппы и соответственно. Согласно лемме 3.1.4, нетрудно показать, что и --- -субнормальные подгруппы группы , а значит, согласно лемме 3.1.4 и в . Так как , то по индукции, получаем, что . А это значит, что --- минимальная не -группа.
Если --- группа простого порядка, то ее нельзя представить в виде произведения собственных подгрупп взаимно простых индексов.
Пусть --- бипримарная группа. Тогда согласно лемме 4.1.4, . Согласно лемме 4.1.1, . А это значит, что все подгруппы группы , содержащие -абнормальны, т. е. группа не представима в виде произведения собственных -субнормальных -подгрупп взаимно простых индексов. Получили противоречие. Теорема доказана.
Напомним, что формация называется 2-кратно насыщенной, если она имеет локальный экран такой, что --- насыщенная формация для любого простого числа из .
Следующая теорема доказана в классе конечных разрешимых групп.
2.2 Теорема [18-A]. Пусть --- наследственная 2-кратно насыщенная формация. Тогда следующие утверждения эквивалентны:
1) формация содержит любую группу , где и --- -субнормальные -подгруппы из взаимно простых индексов;
3) формация содержит любую группу , где и --- -субнормальные -подгруппы из ;
Доказательство. Покажем, что из 1) следует 2).
Пусть --- произвольная минимальная не -группа. Рассмотрим случай, когда . Как и в теореме 4.2.1 можно показать, что либо --- группа простого порядка , где , либо , где и из . А также нетрудно показать, что --- единственная минимальная нормальная подгруппа группы . А это значит, что . Пусть --- максимальный внутренний локальный экран формации . Если , то из полноты экрана следует, что . Так как --- внутренний экран, то . А это значит, что . Противоречие. Итак, .
Покажем, что . Предположим, что это не так. Тогда в найдется неединичная собственная подгруппа . Рассмотрим подгруппу . Так как --- минимальная не -группа и --- собственная подгруппа , то . Покажем, что . Если это не так, то в существует неединичная нормальная -подгруппа . Тогда . Так как , то , что невозможно. Согласно лемме 2.2.12, . Отсюда . Так как , то . А это значит, что . Так как --- насыщенная формация, то . Следовательно, , что невозможно. Итак, , значит, --- группа Шмидта. Итак, --- группа Шмидта. По лемме 3.1.1, --- группа Шмидта.
Тот факт, что из 2) 3) следует из теоремы 2.2.19; 3) 4) следует из теоремы 2.2.10; 4) 1) следует из теоремы 2.2.10. Теорема доказана.
Очевидно, что любая сверхрадикальная формация содержит любую группу , где и -субнормальны в и принадлежат и имеют взаимно простые индексы в .
Следующий пример показывает, что существует несверхрадикальная наследственная насыщенная формация , содержащая любую группу , где и -субнормальны в и принадлежат и имеют взаимно простые индексы в .
2.3 Пример. Пусть --- формация всех сверхразрешимых групп, а --- формация всех -групп, где , и --- различные простые числа. Рассмотрим формацию . Так как существуют минимальные не -группы, которые не являются либо группой Шмидта, либо группой простого порядка, то не является формацией Шеметкова. Так как , то согласно теореме 3.3.9, формация не является сверхрадикальной формацией.
С другой стороны хорошо известно, что любая минимальная несверхразрешимая группа -замкнута, где . Очевидно, что любая минимальная не -группа является либо группой простого порядка, либо бипримарной -замкнутой группой, где . Теперь из теоремы 4.2.1 следует, что содержит любую группу , где , и принадлежат и и --- субнормальны в .
В главе 1 доказаны леммы, которые используются для доказательства основных результатов главы 2.
В главе 2 важную роль сыграл метод экстремальных классов, разработанный в работе Картера, Фишера, Хоукса [55] и метод критических групп, разработанный В.Н. Семенчуком в работе [19]. С помощью этих методов в классе конечных разрешимых групп получено описание наследственных насыщенных формаций , содержащих любую группу , где , и принадлежат и и --- -субнормальны в , теорема 2.1 .
Доказано, что любая разрешимая --- наследственная 2-кратно насыщенная формация, обладающая отмеченным выше свойством, является сверхрадикальной, теорема 2.2 .
1. Васильев, А.Ф. О максимальной наследственной подформации локальной формации / А.Ф. Васильев // Вопросы алгебры: межведомств. сб. / Мин-во народного обр. БССР, Гомельский гос. ун-т; редкол.: Л.А. Шеметков [и др.]. -- Минск: Университетское, 1990. -- Вып. 5. -- С. 39--45.
2. Васильев, А.Ф. О решетках подгрупп конечных групп / А.Ф. Васильев, С.Ф. Каморников, В.Н. Семенчук // Бесконечные группы и примыкающие алгебраические системы / Ин-т математики Акад. Украины; редкол.: Н.С. Черников [и др.]. -- Киев, 1993. -- С. 27--54.
3. Васильев, А.Ф. О влиянии примарных -субнормальных подгрупп на строение группы / А.Ф. Васильев // Вопросы алгебры: межведомств. сб. / Мин-во обр. и науки Республики Беларусь, Гомельский гос. ун-т им. Ф. Скорины; редкол.: Л.А. Шеметков [и др.]. -- Гомель, 1995. -- Вып. 8. -- С. 31--39.
4. Васильева, Т.И. О конечных группах с -достижимыми силовскими подгруппами / Т.И. Васильева, А.И. Прокопенко. -- Гомель, 2006. -- 18 с. -- (Препринт / Гомельский гос. ун-т им. Ф. Скорины; № 4).
5. Ведерников, В.А. О локальных формациях конечных групп / В.А. Ведерников // Матем. заметки. -- 1989. -- Т. 46, № 3. -- С. 32--37.
6. Казарин, Л.С. Признаки непростоты факторизуемых групп / Л.С. Казарин // Известия АН СССР. -- 1980. -- Т. 44, № 2. -- С. 288--308.
7. Казарин, Л.С. О произведении конечных групп / Л.С. Казарин // ДАН СССР. -- 1983. -- Т. 269, № 3. -- С. 528--531.
8. Каморников, С.Ф. О некоторых свойствах формаций квазинильпотентных групп / С.Ф. Каморников // Матем. заметки. -- 1993. -- Т. 53, № 2. -- С. 71--77.
9. Каморников, С.Ф. О двух проблемах Л.А. Шеметкова / С.Ф. Каморников // Сибир. мат. журнал. -- 1994. -- Т. 35, № 4. -- С. 801--812.
10. Коуровская тетрадь (нерешенные вопросы теории групп) // Институт математики СО АН СССР. -- Новосибирск, 1992. -- 172 с.
11. Коуровская тетрадь (нерешенные вопросы теории групп) // Институт математики СО РАН. -- Новосибирск, 1999. -- 146 с.
12. Легчекова, Е.В. Конечные группы с заданными слабо квазинормальными подгруппами / Е.В. Легчекова, А.Н. Скиба, О.В. Титов // Доклады НАН Беларуси. -- 2007. -- Т. 51, № 1. -- С. 27--33.
13. Монахов, В.С. Произведение конечных групп, близких к нильпотентным / В.С. Монахов // Конечные группы. -- 1975. -- С. 70--100.
14. Монахов, В.С. О произведении двух разрешимых групп с максимальным пересечением факторов / В.С. Монахов // Вопросы алгебры: межведомств. сб. / Мин-во высш. и ср. спец. обр. БССР, Гомельский гос. ун-т; редкол.: Л.А. Шеметков [и др.]. -- Минск: Университетское, 1985. -- Вып. 1. -- С. 54--57.
15. Мокеева, С.А. Конечные группы с перестановочными -субнормальными (-достижимыми) подгруппами / С.А. Мокеева. -- Гомель, 2003. -- 25 с. -- (Препринт / Гомельский гос. ун-т им. Ф. Скорины; № 56).
16. Прокопенко, А.И. О конечных группах с -достижимыми силовскими подгруппами / А.И. Прокопенко // Известия Гомельского гос. ун-та им. Ф. Скорины. -- 2004. -- № 6 (27). -- С. 101--103.
17. Семенчук, В.Н. О минимальных не -группах / В.Н. Семенчук // ДАН БССР. -- 1978. -- № 7. -- С. 596--599.
18. Семенчук, В.Н. Конечные группы с заданными свойствами подгрупп / В.Н. Семенчук // ДАН БССР. -- 1979. -- № 1. -- С. 11--15.
19. Семенчук, В.Н. Минимальные не -группы / В.Н. Семенчук // Алгебра и логика. -- 1979. -- Т. 18, № 3. -- С. 348--382.
20. Семенчук, В.Н. Конечные группы с системой минимальных не -подгрупп / В.Н. Семенчук // Подгрупповое строение конечных групп: Тр. / Ин-т математики АН БССР. -- Минск: Наука и техника, 1981. -- С. 138--149.
21. Семенчук, В.Н. Минимальные не -группы / В.Н. Семенчук // Исследование нормального и подгруппового строения конечных групп: Тр. / Ин-т математики АН БССР. -- Минск: Наука и техника, 1984. -- С. 170--175.
22. Семенчук, В.Н. Характеризация локальных формаций по заданным свойствам минимальных не -групп / В.Н. Семенчук, А.Ф. Васильев // Исследование нормального и подгруппового строения конечных групп: Тр. / Ин-т математики АН БССР. -- Минск: Наука и техника, 1984. -- С. 175--181.
23. Семенчук, В.Н. Описание разрешимых минимальных не -групп для произвольной тотально локальной формации / В.Н. Семенчук // Матем. заметки. -- 1988. -- Т. 43, № 4. -- С. 251--260.
24. Семенчук, В.Н. О разрешимых минимальных не -группах / В.Н. Семенчук // Вопросы алгебры. -- Минск: Университетское, 1987. -- Вып. 3. -- С. 16--21.
25. Семенчук, В.Н. Роль минимальных не -групп в теории формаций / В.Н. Семенчук // Матем. заметки. -- 1991. -- Т. 98, № 1. -- С. 110--115.
26. Семенчук, В.Н. Конечные группы с -абнормальными или -субнормальными подгруппами / В.Н. Семенчук // Матем. заметки. -- 1994. -- Т. 56, № 6. -- С. 111--115.
27. Семенчук, В.Н. Разрешимые тотально локальные формации / В.Н. Семенчук // Сибир. мат. журн. -- 1995. -- Т. 36, № 4. -- С. 861--872.
28. Семенчук, В.Н. Разрешимые -радикальные формации / В.Н. Семенчук // Матем. заметки. -- 1996. -- Т. 59, № 2. -- С. 261--266.
29. Семенчук, В.Н. Об одной проблеме в теории формаций / В.Н. Семенчук // Весцi АН Беларусi. -- 1996. -- № 3. -- С. 25--29.
30. Семенчук, В.Н. О разрешимых тотально локальных формациях / В.Н. Семенчук // Вопросы алгебры. -- 1997. -- № 11. -- С. 109--115.
31. Семенчук, В.Н., Поляков Л.Я. Характеризация минимальных не -групп / В.Н. Семенчук // Известия высших учебных заведений. -- 1998. -- № 4 (431). -- С. 1--4.
32. Семенчук, В.Н. Классификация локальных наследственных формаций критические группы которых бипримарны / В.Н. Семенчук // Известия Гомельского гос. ун-та им. Ф. Скорины. -- 1999. -- № 1 (15). -- С. 153--162.
33. Семенчук, В.Н. Сверхрадикальные формации / В.Н. Семенчук, Л.А. Шеметков // Доклады НАН Беларуси. -- 2000. -- Т. 44, № 5. -- С. 24--26.
34. Семенчук, В.Н. Конечные группы, факторизуемые -достижимыми подгруппами / В.Н. Семенчук, С.А. Мокеева // Известия Гомельского гос. ун-та им. Ф. Скорины. -- 2002. -- № 5 (14). -- С. 47--49.
35. Скиба, А.Н. Об одном классе локальных формаций конечных групп / А.Н. Скиба // ДАН БССР. -- 1990. -- Т. 34, № 11. -- С. 382--385.
36. Скиба, А.Н. Алгебра формаций / А.Н. Скиба. -- Минск: Беларуская навука, 1997. -- 240 с.
37. Старостин, А.И. О минимальных группах, не обладающих данным свойством / А.И. Старостин // Матем. заметки. -- 1968. -- Т. 3, № 1. -- С. 33--37.
38. Тютянов, В.Н. Факторизации -нильпотентными сомножителями / В.Н. Тютянов // Матем. сб. -- 1996. -- Т. 187, № 9. -- С. 97--102.
39. Чунихин, С.А. О специальных группах / С.А. Чунихин // Матем. сб. -- 1929. -- Т. 36, № 2. -- С. 135--137.
40. Чунихин, С.А. О специальных группах / С.А. Чунихин // Матем. сб. -- 1933. -- Т. 40, № 1. -- С. 39--41.
41. Чунихин, С.А. О группах с наперед заданными подгруппами / С.А. Чунихин // Матем. сб. -- 1938. -- Т. 4 (46), № 3. -- С. 521--530.
42. Чунихин, С.А. О существовании подгрупп у конечной группы / С.А. Чунихин // Труды семинара по теории групп. -- ГОНТИ, М.--Л. -- 1938. -- С. 106--125.
43. Чунихин, С.А. Подгруппы конечных групп / С.А. Чунихин. -- Минск: Наука и техника, 1964. -- 158 с.
44. Шеметков, Л.А. Формации конечных групп / Л.А. Шеметков. -- М.: Наука, 1978. -- 272 с.
45. Шеметков, Л.А. Экраны произведения формаций / Л.А. Шеметков // ДАН БССР. -- 1981. -- Т. 25, № 8. -- С. 677--680.
46. Шеметков, Л.А. О произведении формаций / Л.А. Шеметков // ДАН БССР. -- 1984. -- Т. 28, № 2. -- С. 101--103.
47. Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. -- М.: Наука, 1989. -- 256 с.
48. Шмидт, О.Ю. Группы, все подгруппы которых специальные / О.Ю. Шмидт // Матем. сб. -- 1924. -- Т. 31, № 3. -- С. 366--372.
49. Ballester-Bolinches, A. On the lattice of -subnormal subgroups / A. Ballester-Bolinches, К. Doerk, M.D. Perez-Ramos // J. Algebra. -- 1992. -- Vol. 148, № 2. -- P. 42--52.
50. Ballester-Bolinches, A. On -critical groups / A. Ballester-Bolinches, M.D. Perez-Ramos // J. Algebra. -- 1995. -- Vol. 174. -- P. 948--958.
51. Ballester-Bolinches, A. Two questions of L.A. Shemetkov on critical groups / A. Ballester-Bolinches, M.D. Perez-Ramos // J. Algebra. -- 1996. -- Vol. 179. -- P. 905--917.
52. Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L.M. Ezquerro. -- Springer, 2006. -- 385 p.
53. Bryce, R.A. Fitting formations of finite soluble groups / R.A. Bryce, J. Cossey // Math. Z. -- 1972. -- Bd. 127, № 3. -- S. 217--233.
54. Carter, R.O. The -normalizers of a finite soluble group / R. Carter, T. Hawkes // J. Algebra. -- 1967. -- Vol. 5, № 2. -- Р. 175--202.
55. Carter, R. Extreme classes of a finite soluble groups / R. Carter, B. Fisсher, T. Hawkes // J. Algebra. -- 1968. -- Vol. 9, № 3. -- P. 285--313.
56. Doerk, K. Minimal nicht Uberauflosbare, endliche Gruppen / K. Doerk // Math. Z. -- 1966. -- Vol. 91. -- P. 198--205.
57. Doerk, K. Finite soluble groups / K. Doerk, T. Hаwkes. -- Berlin -- New York: Walter de Gruyter, 1992. -- 891 p.
58. Fisman, E. On product of two finite solvable groups / E. Fisman // J. Algebra. -- 1983. -- Vol. 80, № 2. -- P. 517--536.
59. Gaschutz, W. Zur Theorie der endlichen auflosbaren Gruppen // Math. Z. -- 1963. -- Vol. 80, № 4. -- P. 300--305.
60. Guo, W. The Theory of Classes of Groups / W. Guo. -- Dordrecht -- Boston -- London: Kluwer Academic Publishers, 2000. -- 257 p.
61. Guo, W. X-semipermutable subgroups of finite groups / W. Guo, K.P. Shum, A.N. Skiba // J. Algebra. -- 2007. -- Vol. 315. -- P. 31--41.
62. Hall, P. A note on soluble groups / P. Hall // Proc. London Math. Soc. -- 1928. -- Vol. 3. -- P. 98--105.
63. Hall, P. On the Sylow systems of a soluble group / P. Hall // Proc. London Math. Soc. -- 1937. -- Vol. 43. -- P. 316--323.
64. Hawkes, T. On Fitting formations / T. Hawkes // Math. Z. -- 1970. -- Vol. 117. -- P. 177--182.
65. Huppert, B. Normalteiler und maximal Untergruppen endlichen Gruppen / B. Huppert // Math. Z. -- 1954. -- Vol. 60. -- P. 409--434.
66. Ito, N. Note on (LN)-groups of finite order / N. Ito // Kodai Math. Seminar Report. -- 1951. -- Vol. 1--2. -- P. 1--6.
67. Kazarin, L.S. Product of two solvable subgroups / L.S. Kazarin // Comm. Algebra. -- 1986. -- Vol. 14, № 6. -- P. 1001--1066.
68. Kegel, O.H. Produkte nilpotenter Gruppen // Arch. Math. -- 1961. -- Vol. 12, № 2. -- P. 90--93.
69. Kegel, O.H. Untergruppenverbande endlicher Gruppen, die Subnormalteilerverband echt enthalten / O.H. Kegel // Arch. Math. -- 1978. -- Bd. 30, № 3. -- S. 225--228.
70. Miller, G.A. Nonabelian groups in which every subgroup is abelian / G.A. Miller, H.C. Moreno // Trans. Amer. Math. Soc. -- 1903. -- Vol. 4. -- P. 398--404.
71. Semenchuk, V.N. Finite groups with permutable -subnormal and -accessible subgroups / V.N. Semenchuk, S.A. Mokeeva // 4th International Algebraic Conference in Ukraine. Abstracts, August 4--9. -- 2003. -- P. 153--154.
72. Thompson, J.G. Nonsolvable finite groups all of whose local subgroups are solvable / J.G. Thompson // Bull. Amer. Math. Soc. -- 1968. -- Vol. 74. -- P. 383--437.
73. Wielandt, H. Eine Verallgemeinerung der invarianten Untergruppen // H. Wielandt // Math. Z. -- 1939. -- Bd. 45. -- S. 209--244.
74. Wielandt, H. Uber den Normalisator der subnormalen U
Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп курсовая работа. Математика.
Контрольная Работа На Тему Режимы Работы Оператора В Системе "Человек-Машина"
Реферат по теме Приватизация на Украине, сравнительный анализ с опытом зарубежных стран
Реферат На Тему Информационное Обеспечение Мтк
Реферат На Тему Norton Commander. Меню И Конфигурация
Контрольная работа по теме Профицит бюджета. Плюсы и минусы
Курсовая работа по теме Регулирование труда и заработной платы в Республике Беларусь
Сочинение Картина Русского Общества В Драме Гроза
Контрольная Работа N1 Вариант 3
Административное право (шпаргалка)
Реферат: Общество с ограниченной ответственностью, правовое положение
Реферат: Analysis Humor In Advertising Essay Research Paper
Темы Конкурса Сочинений
Дипломная Работа На Тему Причинение Умышленного Вреда Здоровью, Повлекшее По Неосторожности Смерть Потерпевшего
Реферат Образец Библиографический Список
Дипломная работа по теме Анализ кредитного рейтинга сельскохозяйственного предприятия (на примере конкретного предприятия)
Авторефераты Диссертаций По Праву
Реферат: Костюм Древней Греции классического периода
Реферат: Психология толпы 2
Учебное пособие: Методические указания по выполнению выпускной квалификационной работы бакалавриата по направлению подготовки 080500. 62 «Менеджмент»
Контрольная Работа По Алгебре 11 Профильный
Поэтичный мир образов и национальные мотивы в творчестве В.М. Васнецова - Культура и искусство реферат
Эпоха Возрождения - Культура и искусство курсовая работа
Учет собственного капитала организации - Бухгалтерский учет и аудит курсовая работа


Report Page