Классификация изменчивости генетического материала - Биология и естествознание курсовая работа

Классификация изменчивости генетического материала - Биология и естествознание курсовая работа




































Главная

Биология и естествознание
Классификация изменчивости генетического материала

Сущность и источники генетической изменчивости в природных популяциях. Характеристика комбинативного и мутационного видов наследственной изменчивости. Особенности фенотипической изменчивости, происходящей в результате влияния условий окружающей среды.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
- рассмотреть классификации изменчивости генетического материала;
- изучить наследственную изменчивость и ее виды;
- изучить ненаследственную изменчивость и ее виды.
Глава 1. Наследственная изменчивость
Мутационная изменчивость представляет собой лишь один из типов изменчивости. Различают изменчивость наследственную и ненаследственную . Под наследственной изменчивостью понимают способность к изменениям самого генетического материала, а под ненаследственной - способность организмов реагировать на условия окружающей среды, изменяться в пределах нормы реакции, заданной генотипом.
Наследственную изменчивость в свою очередь подразделяют на комбинативную и мутационную [рис. 1]. Комбинативная изменчивость представляет собой результат перекомбинации генов и перекомбинации хромосом, несущих различные аллели, и выражается в появлении разнообразия организмов - потомков, получивших новые комбинации дискретных единиц генетического материала, уже существовавших у родительских форм. В то же время мутационная изменчивость - это возникновение новых вариантов дискретных единиц генетического материала, прежде всего новых аллелей.
Принято также выделять онтогенетическую изменчивость . Онтогенетическая изменчивость - это реализация нормы реакции организма во времени, в ходе его индивидуального развития. По этому критерию она относится к ненаследственной изменчивости. Существует ряд факторов, несомненно указывающих и на изменения самого генетического материала в ходе онтогенеза, что приближает онтогенетическую изменчивость к наследственной.
Принято также выделять онтогенетическую изменчивость. Онтогенетическая - это реализация нормы реакции организма во времени, в ходе его индивидуального развития. По этому критерию она относится к ненаследственной изменчивости. Существует ряд факторов указывающих и на изменения самого генетического материала в ходе онтогенеза, что приближает онтогенетическую изменчивость к наследственной. Именно поэтому на схеме (рис. 1) онтогенетическая изменчивость перекрывается наследственной и ненаследственной изменчивостью [8].
Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т.е. таких комбинаций генов, которых не было у родителей.
В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:
ь Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами - пример комбинативной изменчивости.
ь Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
ь Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.
Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Мутации - это наследственные изменения генотипического материала. Они характеризуются как редкие, случайные, ненаправленные события. Большая часть мутаций приводит к различным нарушениям нормального развития, некоторые из них летальны, однако вместе с тем многие мутации являются исходным материалом для естественного отбора и биологической эволюции.
Частота мутаций возрастает под действием определенных факторов - мутагенов , способных изменять материал наследственности. В зависимости от их природы мутагены делятся на физические ( ионизирующее излучение, УФ-излучение и др. ), химические ( большое число различных соединений ), биологические ( вирусы, мобильные генетические элементы, некоторые ферменты ). Весьма условно деление мутагенов на эндогенные и экзогенные. Так, ионизирующее излучение, помимо первичного повреждения ДНК, образует в клетке нестабильные ионы ( свободные радикалы ), способные вторично вызывать повреждения генетического материала. Многие физические и химические мутагены являются также канцерогенами , т.е. индуцируют злокачественный рост клеток.
Частота мутаций подчиняется распределению Пуассона , применяемому в биометрии, когда вероятность отдельного события очень мала, а выборка, в которой может возникнуть событие, велика. Вероятность мутаций в отдельном гене довольно низкая, однако число генов в организме велико, а в генофонде популяции - огромно.
В литературе можно встретить различные мутации: по проявлению в гетерозиготе ( доминантные, рецессивные ), по ионизирующему фактору ( спонтанные, индуцированные ), по локализации ( генеративные, соматические ), по фенотипическому проявлению ( биохимические, морфологические, поведенческие, летальные и др. ).
Классифицируются мутации по характеру изменения генома. По этому показателю выделяют 4 группы мутаций.
Генные - изменения нуклеотидного состава ДНК отдельных генов.
Хромосомные (аберрации) - изменения структуры хромосом.
Геномные - изменения числа хромосом.
Цитоплазматические - изменения неядерных генов [10].
Мутационная теория , или, правильнее, теория мутаций , составляет одну из основ генетики. Она зародилась вскоре после первооткрытия законов Г. Менделя в трудах Г. Де Фриза (1901-1903). Еще раньше к представлениям о скачкообразном изменении наследственных свойств пришел русский ботаник С.И. Коржинский (1899) в своем труде «Гетерогенезис и эволюция». Справедливо говорить о мутационной теории Корженевского - Де Фриза, посвятившего большую часть жизни изучению проблемы мутационной изменчивости растений.
На первых порах мутационная теория всецело сосредоточилась на фенотипическом проявлении наследственных изменений, практически не занимаясь механизмом их проявления. В соответствии с определением Г. Де Фриза мутация представляет собой явление скачкообразного, прерывистого изменения наследственного признака. До сих пор, несмотря на многочисленные попытки, не существует краткого определения мутации, лучшего, чем дал Г. Де Фриз, хотя и оно не свободно от недостатков.
Основные положения мутационной теории Г. Де Фриза сводятся к следующему:
1. Мутации возникают внезапно как дискретные изменения признаков.
3. В отличие от ненаследственных изменений мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные изменения.
4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.
5. Вероятность обнаружения мутации зависит от числа исследованных особей.
6. Сходные мутации могут возникать неоднократно.
Как и многие генетики раннего периода, Г. Де Фриз ошибочно считал, что мутации могут сразу давать начало новым видам, т.е. минуя естественный отбор.
Г. Де Фриз создал свою мутационную теорию на основе экспериментов с различными видами Oenothera . В действительности он не получил мутаций, а наблюдал результат комбинативной изменчивости, поскольку формы, с которыми он работал, оказались сложными гетерозиготами по транслокации.
Честь строгого доказательства возникновения мутаций принадлежит В. Иогансену, изучавшему наследование в чистых (самоопыляющихся) линиях фасоли и ячменя. Полученный им результат касался количественного признака - массы семян. Мерные значения таких признаков обязательно варьируют, распределяясь вокруг некой средней величины. Мутационное изменение подобных признаков и обнаружил В. Иоганнсен (1908-1913). Сам этот факт уже ставит одно из положений Г. Де Фриза (пункт 3, мутационной теории Г. Де Фриза).
Так или иначе, но гипотеза о возможности скачкообразных наследственных изменений - мутаций, которую на рубеже столетий обсуждали многие генетики (в том числе У. Бэтсон), получила экспериментальное подтверждение.
Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости Н.И. Вавилова, который он сформулировал в 1920 г. в докладе на III Всероссийском селекционном съезде в Саратове. Согласно этому закону близким видам и родом организмов свойственны сходные ряды наследственной изменчивости. Чем ближе таксономически рассматриваемые организмы, тем больше сходство наблюдается в ряду (спектре) их изменчивости. Справедливость этого закона Н.И. Вавилов проиллюстрировал на огромном ботаническом материале.
Закон Н.И. Вавилова находит подтверждение в изучении изменчивости животных и микроорганизмов и не только на уровне целых организмов, но и отдельных структур. Очевидно, что закон Н.И. Вавилова стоит в ряду научных достижений, приведших к современным представлениям об универсальности многих биологических структур и функций.
Закон Н.И. Вавилова имеет большое значение для селекционной практики, поскольку прогнозирует поиск определенных форм культурных растений и животных. Зная характер изменчивости одного или нескольких близких видов, можно целенаправленно искать формы, еще не известные у данного организма, но уже открытые у его таксономических родственников. [8].
Трудности определения понятий «мутация» лучше всего иллюстрирует классификация ее типов.
Существует несколько принципов такой классификации.
1. Геномные мутации - изменение числа хромосом.
2. Хромосомные мутации, или хромосомные перестройки, - изменение структуры хромосом.
3. Генные мутации - изменение генов.
В. По уклонению от нормы или так называемого дикого типа:
2. Реверсии. Иногда говорят об обратных мутациях, однако очевидно, что они представляют собой только часть реверсий, поскольку в действительности широко распространены так называемые супрессорные мутации.
Г. В зависимости от причин, вызывающие мутации:
1. Спонтанные, возникающие без видимой причины, т.е. без каких-либо индуцирующих воздействий со стороны экспериментатора.
Только эти четыре способа классификации изменений генетического материала носят достаточно строгий характер и имеют универсальное значение. Каждый и подходов в этих способах классификации отражает некоторую существенную сторону возникновения либо проявления мутаций у любых организмов: эукариот, прокариот и их вирусов.
Существуют и более частные подходы к классификации мутаций:
2. Цитоплазматические. В этом случае обычно подразумевают мутации неядерных генов.
Е. По отношению к возможности наследования:
1. Генеративные, происходящие в половых клетках.
2. Соматические, происходящие в соматических клетках.
Очевидно, два последних способа классификации мутаций применимы к эукариотам, а рассмотрение мутаций с точки зрения их возникновения в соматических или половых клетках имеет отношение только к многоклеточным эукариотам.
Очень часто мутации классифицируют по их фенотипическому проявлению, т.е. в зависимости от изменяющегося признака. Тогда рассматривают мутации летальные, морфологические, биохимические, поведенческие, устойчивости или чувствительности к повреждающим агентам и т.д.
В общем виде можно сказать, что мутации - это наследуемые изменения генетического материала. Об их появлении судят по изменениям признаков. В первую очередь это относится к генным мутациям. Хромосомные и геномные мутации выражаются также в изменении характера наследования признаков [8].
Мутации, связанные с изменением структуры молекулы ДНК, называются генными. Мутационные изменения генов могут происходить в одной точке ( односайтовые мутации ) либо в нескольких разных точках ( многоса й товые мутации ). Термин сайт в генетике обозначает определенное место («точку») в цепи молекулы ДНК. Современные методы молекулярной генетики позволили определить два основных процесса формирования генных мутаций - это замена нуклеотидов и сдвиг рамки считывания, каждый из которых имеет свои варианты (рис. 2).
Основное внимание при изучении генных мутаций уделяют изменениям чередования пар нуклеотидов в ДНК и прежде всего изменениям, затрагивающим отдельные пары нуклеотидов, которые составляют класс точковых или точечных мутаций.
Точковые мутации представляют собой изменения пар нуклеотидов ДНК (или нуклеотида РНК). Далее этот класс мутаций подразделяется на следующие группы:
а) транзиции - такие замены пар нуклеотидов (АТ Размещено на http://www.allbest.ru/
СG), которые не изменяют не изменяют ориентации: пурин - пиримидин в пределах пары.
б) трансверсии - замены пар нуклеотидов (АТ Размещено на http://www.allbest.ru/
CG, AT Размещено на http://www.allbest.ru/
TA, GC Размещено на http://www.allbest.ru/
 CG), (пуриновые и пиримидиновые нуклеотиды меняются местами), изменяющиеся ориентационно.
в) вставка ( инсерция ) лишней пары нуклеотидов.
г) выпадение ( делеция ) пары нуклеотидов (рис. 3).
Необходимо отметить, что вставка сдвигает рамку считывания в одном направлении, а делеция - в противоположном.
В соответствии с физиологической теорией мутационного процесса мутации следует рассматривать как побочные продукты нормальных процессов клеточной физиологии. В последнее время получила распространение концепция американского генетика Р. фон Борстела, согласно которой мутации возникают в результате «ошибок трех Р »: репликации, репарации и рекомбинации. Такие ошибки происходят спонтанно и под влиянием мутагенов. В связи с этим вполне понятно, что решающую роль в понимании механизмов мутагенеза сыграло изучение энзимологии репликации, репарации, рекомбинации и их генетического контроля. Оказалось, многие гены, контролирующие эти процессы, одновременно контролируют частоту спонтанного и индуцированного мутационного процесса [8].
Репликация и мутационный процесс. В процессе репликации возможна замена нуклеотидов вследствие некоторой неоднозначности принципа комплементарности. Азотистые основания нуклеотидов ДНК могут существовать в нескольких таутомерных формах. Таутомеризация - изменение положения водорода в молекуле, меняющее ее химические свойства. Если аденин находится в обычной аминной форме, он спаривается с тимином. Будучи в редкой иммино форме, аденин образует пары с цитозином. Этот таутомерный переход аденина при последующей репликации может обеспечивать транзиции AT > GC. Редкий енольный таутомер тимина способен образовать пару с гуанином и это также приведет к замене пары нуклеотидов.
Некоторые таутомеры нуклеотидов меняют способность формировать водородные связи с другими нуклеотидами. У аналогов нуклеотидов таутомерия происходит чаще, чем у типичных форм, что объясняет их мутагенный эффект. Прямым указанием на участие процесса репликации в мутагенезе было открытие мутагенного эффекта аналогов оснований ДНК: тимидина 5-бромурацил , и 2- аминопурина, вызывающих мутации у бактериофагов и бактерий.
5-бромурацил включается в ДНК вместо тимина и образует пары с тимином. При этом возможно ошибочное спаривание с гуанином при репликации ДНК, уже включившей 5-бромурацил ( ошибка репликации ), а возможна ошибка при включении аналога в ДНК ( ошибка включения )
Большинство мутаций со сдвигом рамки считывания обнаружено в участках ДНК, состоящих из одинаковых нуклеотидов. Существует гипотеза возникновения этих мутаций вследствие диссоциации и неправильного восстановления нитей в данных участках. В первом случае в результате ошибки репликации происходят транзиции, а во втором - в результате ошибки включения - трансверсии. Аналогичны ошибки включения и ошибки репликации и при действии другого аналога оснований - 2-аминопурина.
Изучение мутационного процесса в связи с репликацией ДНК позволило выявить некоторые высокоэффективные мутагены, действующие непосредственно в репликативной вилке. К их числу относится N-метил-N-нитро-N-нитрозогуанидин (МННГ), который взаимодействует с одноцепочечными участками в вилке репликации или действует непосредственно на ферменты реплисомы [8, 10].
Выявляемая частота мутаций не отражает величину потенциальных повреждений ДНК. Повреждения ДНК сводятся к минимуму благодаря наличию в клетке особых систем репарации, которые узнают эти повреждения и справляют их. Системы репарации возникли в процессе эволюции для поддержания стабильности геномов. Некоторые рапаративные системы обладают специфичностью, другие не специфичны в отношении каких-то определенных типов повреждений - они узнают изменения в структуре ДНК как сигналы к действию. Рапаративные системы представляют собой ферментативные механизмы, обнаруженные в клетках самых различных организмов [10].
Мутации некоторых генов, ответственных за репарацию у E . C oli , бактериофага Т4, дрожжей, а также в клетках высших эукариот, проявляют мутаторный или антимутаторный эффект, подобно мутациям в генах, ответственных за репликативный комплекс.
Изучение генетического контроля репарации (а также рекомбинации) позволило доказать участие некоторых нормальных процессов, происходящих в клетке, в превращении предмутационных изменений ДНК в мутации. В частности, оказалось, что процесс становления мутаций может быть генетически блокирован так же, как и любой другой физиологический процесс. Так, изменение генов lex A или rec A ведет к частичному или полному подавлению мутационного процесса под воздействием ультрафиолетового света, ионизирующих излучений и некоторых химических мутагенов.
Наиболее подробно участие процессов репарации в возникновении мутаций исследовано у бактерии E . Coli . Показано, что мутация в гене uvr E , контролирующем ликвидацию однонитевых разрывов после ультрафиолетового (но не ионизирующего) облучения, повышает спонтанное возникновении транзиций AT - GC в 350-400 раз, а трансверсий GC - AT в 150-200 раз. Она также повышает частоту мутаций, индуцированных ультрафиолетовым светом и метилметансульфонатом.
Э. Виткин обратила внимание на связь нескольких явлений, для которых общей причиной служит облучение клеток ультрафиолетовым светом:
2) повышение выживаемости облученного бактериофага при заражении им предварительно облученных клеток E . Coli по сравнению с выживаемостью в необлученных клетках - так называемая W -реактивация , открытая Дж. Уэйглом;
3) блокирование клеточных делений у некоторых мутантов E . Coli , в результате чего клетки приобретают нитевидную форму;
Рекомбинация и мутационный процесс. Связь между мутационным процессом и рекомбинацией следует из общности некоторых ферментативных этапов репликации, репарации и кроссинговера. Кроме того, источником мутаций могут быть ошибки рекомбинации, приводящие к появлению новых аллелей.
На связь самого процесса рекомбинации с возникновением мутаций указывает корреляция обменов гомологичных участков хромосом с изменениями генов в непосредственной близости к ним. Так, у Bacillus subtilis трансформация сопровождается повышением мутабельности. Известно, что мутаген профлавин (диаминоакридин) вызывает вставки и выпадения оснований у бактериофагов, но он практически не мутагенен для бактерий. Тем не менее, с его помощью удалось получить мутантов у E . Coli в процессе конъюгации. Такой результат согласуется с точкой зрения о мутагенном действии акридинов в процессе рекомбинации.
Наиболее подробно охарактеризован мутагенный эффект рекомбинации у дрожжей. В начале 60-х годов К. Маньи и Р. фон Борстел описали у Sacch . cerevisia так называемый мейотический эффект , который заключается в том, что некоторые типы спонтанных мутаций возникают в мейозе чаще, чем в митозе. Это касалось появления и ревертирования мутаций-вставок или выпадений пар оснований . У другого вида дрожжей - Schizosaccharomyces pombe У. Лойпольд с сотрудниками среди 118 спонтанных мутантов по локусу ade 1 , полученных в митозе, не нашли ни одного, ревертирующего под действием производного акридин-иприта - ICR-170, способного вызывать вставки и выпадения оснований, в то время как среди 59 мутантов, полученных в мейозе, 7 ревертировали под действием этого соединения. Следовательно, в ходе мейотический рекомбинации могут происходить мутации вставки и выпадения оснований.
Вклад рекомбинации в мутационный процесс не ограничивается только ее ошибками. Целый ряд мутаций может возникать в результате реципрокной рекомбинации, например хромосомные аберрации, а также некоторые другие [8].
генетический изменчивость наследственный фенотипический
Мутации, происходящие вследствие изменения количества хромосом, составляют группу количественных хромосомных мутаций. Они называются также геномными , поскольку представляют собой нарушение геномного числа хромосом. В основе этого нарушения лежат механизмы нерасхождения хромосом в момент деления клеток, главным образом в мейозе. Изменение числа хромосом осуществляется в двух направлениях: в сторону увеличения или уменьшения их количества, кратного гаплоидному (полиплоидия), и в сторону потери или включении отдельных хромосом или их пар в клеточном наборе (гетероплоидия). Полиплоидия в свою очередь подразделяется на автополиплоидию (увеличение числа хромосом за счет умножения геномов одного вида) и аллополиплоидию (увеличение числа хромосом за счет слияния геномов разных видов) [9].
Робертсоновские перестройки - слияние и разделение хромосом в области центромеры. Названы они по имени В. Робертсона, который предложил свою гипотезу механизма таких мутаций. Слияния хромосом («робертсоновские транслокации») заключается в соединении двух негомологичных хромосом в одну. Под разделением хромосом понимают разрыв одной хромосомы на две. Слияния и разделения изменяют число хромосом в наборе, но не влияют на количества наследственного материала клетки.
Считается, что слияния хромосом происходят чаще, чем их разделение. Практически для любой большой группы растений и животных можно найти данные о хромосомных слияниях. Увеличение числа хромосом в результате их разделения в некоторых случаях также хорошо установлено, например, для ящериц Anolis . Число хромосом в гаплоидном наборе большинства растений и животных колеблется от 6 до 20, но общий размах изменчивости простирается от 1 до нескольких сотен. Число хромосом в наборе может быть различным даже для видов одного рода. Так, например, хромосомное число у дрозофил может принимать любое значение от 3 до 6 (рис. 5) [1].
Автополиплоидия , или повторение в клетке одного и того же хромосомного набора. Эта разновидность довольно широко представлена в природе у протистов, грибов и растений. Плоидность макронуклеуса инфузорий может достигать нескольких сотен. У животных встречается редко и обычно приводит к летальному исходу на ранних стадиях эмбриогенеза.
По мнению А. Мюнтцинга (1967), более половины их относятся к полипоидам. В настоящее время явление полиплоидии широко используется в селекции растений, поскольку увеличение числа хромосом в клеточном наборе нередко приводит к усилению хозяйственно полезных признаков: к увеличению размеров клеток, цветов, плодов, количества зерна, зеленой массы, содержания белка, сахара в плодах и корнеплодах, иногда к повышению устойчивости к вредным воздействиям и заболеваниям. Описана полиплоидия и у некоторых животных, таких, как аскарида, дрозофила, водяной рачок, морской еж. У позвоночных и многих беспозвоночных полиплоидия встречается редко. Она приводит обычно к гибели организма уже на ранних стадиях развития.
Первые исследования полиплоидии были проведены И.И. Герасимовым в 1898-1901 гг. Ему удалось получить тетраплоидные клетки у водоросли спирогиры путем воздействия на них парами эфира и высокими температурами. Искусственное получение полиплоидов стало возможным с 1937 г., когда А. Блекси и А. Эйвери применили для этих целей колхицин.
У культурных растений сбалансированные полиплоиды (т.е. кариотипы с четным числом гаплоидных наборов - 4n, 6n, 8n и т.п.) получают искусственным путем из-за их более крупных размеров. Несбалансированные полиплоиды (3n, 5n, 7n и т.п.) растений часто имеют пониженную фертильность вследствие нарушений мейоза. Но, тем не менее, некоторые растения-триплоиды обладают большими размерами и продуктивностью по сравнению с диплоидными и тетраплоидными.
В настоящее время внутри некоторых видов растений (пшеница, рожь, овес, картофель, хлопчатник, земляника, сахарная свекла, шелковица и др.) изучены полиплоидные ряды, включающие все формы полиплоидии - от геномного числа (гаплоиды) до разных уровней полиплоидизации. В качестве примера можно привести полиплоидный ряд пшеницы, где n=7:2n (однозернянка Triticum durum) и 6n (мягкая Triticum aestivum). Хозяйственно ценные признаки могут возникать на разных уровнях полиплоидизации, но существует так называемый оптимальный уровень ее, увеличение или снижение которого не дает положительного эффекта. У картофеля и пшеницы, например, оптимальный уровень 4n, у земляники - 8n. Для увеличения числа хромосом у этих видов не приводит к усилению полезных свойств, а в ряде случаев даже ослабляет их [9].
Один из путей возникновения автополиплоидов у растений - образование нередуцированных микро - и макроспор , которое может происходить под влиянием повышения или понижения температуры, действия наркотических веществ и др. В этих случаях хромосомы не конъюгируют в профазе I и могут быть включены в одно ядро в телофазе I. Далее это ядро проходит II деление и образует не четыре, а две клетки - диады. Возможно также нарушение II деление мейоза. В обоих случаях в итоге образуется нередуцированные - диплоидные пыльцевые зерна или яйцеклетки.
Полиплоиды можно получить и у некоторых животных, в частности амфибий. Если на свежеоплодотворенные яйца тритона воздействовать высокой или низкой температурой, из них иногда возникают триплоидные экземпляры. Особым гигантизмом они не отличаются они не отличаются и обычно рано погибают. Находили и триплоидных головастиков лягушек [8].
Аллополиплоидия - впервые была описана советским ученым Г.Д. Карпеченко в 1927 г. Многие растения являются природными полиплоидами.
Ему удалось получить плодовитый гибрид редьки и капусты. В клетках этих растений содержится одинаковый по количеству набор хромосом (2n=18), но они не гомологичны. Капустно-редичный гибрид, имеющий 2n хромосом (n=9 - капусты + n=9 - редьки) и совмещающий признаки редьки и капусты, бесплоден, поскольку у него в связи с отсутствием парных гомологичных хромосом нарушается процесс их конъюгации в мейозе: вместо бивалентов формируются униваленты, а гаметы содержат самое различное число хромосом - от 0 до 18. При объединении двух нередуцированных гамет с 18 хромосомами получаются гибриды (рафанобрассика) с 4n хромосомами, где каждая из них имеет гомологичного партнера (2n = 18 - капусты + 2n = 18 - редьки). У гибридов мейоз протекает нормально и в ряду поколений сохраняется плодовитость. Такие гибриды носят название амфидиплоидов . При их образовании происходит как бы синтез новых видов. В 1938 г. белорусский ученый А.Р. Жебрак получил 42-, 56- и 70-хромосомные амфидиплоиды пшеницы от скрещивания однозернянки, твердой пшеницы и пшеницы Тимофеева. Б.Л. Астауров в 40-х годах получил полиплоидную форму у шелкопряда при скрещивании двух видов шелкопряда - Bombyx mori и B. mandarina.
В ряде случаев при отдаленной гибридизации могут развиться формы, существующие в природе. Это явление носит название ресинтеза. Так, в 30-х годах В.А. Рыбин синтезировал культурную сливу, скрещивая терн с алычой. Среди гибридов оказалось растение, похожее на домашнюю сливу и имеющее такое же число хромосом (2n = 48). Жебраку удалось провести ресинтез 42-хромосомной пшеницы [9].
Гетероплоидия, или а неуплоидия , возникает вследствие изменения числа хромосом, не кратного гаплоидному набору. В результате не расхождение хромосом при гаметогенезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготы 2n + 1, или трисомики , по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приведет к образованию зиготы 2n - 1, или моносомика , по какой-либо из хромосом. Полисомия и моносомия могут иметь самостоятельное фенотипическое проявление вследствие изменения соотношений доз некоторых генов или нарушения генного баланса. Так, А. Брексли и Дж. Беллинг в 20-х годах показали, что создание трисомиков по каждой из 12 хромосом дурмана ( Datura stramonium ) приводит к появлению характерного, отличного от других типа растения. В частности, это выражалось в специфическом изменении формы семенной коробочки.
Часто, особенно у животных и человека, лишняя хромосома обусловливает депрессию развития и летальность. (например: лишняя Х-хромосома или 21-я хромосома у человека обусловливает тяжелые аномалии).
Расщепление по генам, локализованным в лишней хромосоме, подчиняется законам расщепления полиплоидов с учетом явления двойной редукции. В этом случае при скрещивании трисомика и нормального диплоида анализ ведется, как и при скрещивании триплоида и диплоида [8].
Гетероплоидия сопровождается значительными фенотипическими изменениями. У людей при этом обнаруживаются множественные дефекты физического и умственного развития. Описана гетероплоидия у растений (пшеница, табак, кукуруза) и некоторых домашних животных. Она используется для изучения групп сцепления, маркирования хромосом и для селекционных целей (вводя в геном реципиента определенные хромосомы, можно направленно изменять признаки и свойства растений).
У гетероплоидов также нарушен гаметогенез, но вместе с тем у них могут образовываться нормальные гаплоидные половые клетки [9].
Различные клетки одного организма и различные особи одного вида обладают, как правило, одинаковым числом хромосом, за исключением гамет, в которых вдвое меньше
Классификация изменчивости генетического материала курсовая работа. Биология и естествознание.
Контрольная Работа Логарифмическая Функция Вариант 8
Реферат: Князь Михаил Тверской. Скачать бесплатно и без регистрации
Доклад: Ударение. Фонетическое слово. Характеристики русского словесного ударения
Основные Эссе По Обществознанию
Реферат Тему Стационар
Лабораторная Работа Насосы
Дипломная работа по теме Развитие Карибского кризиса 1962 года
Реферат: Мода быть русским. Скачать бесплатно и без регистрации
Дипломная работа по теме Организация, планирование и управление энергохозяйством предприятия
Курсовая Работа На Тему The History Of Germany And Tourism
Курсовая Работа По Гражданскому Праву На Тему Договор Купли-Продажи
Реферат: Историческое развитие литературы
Как Написать Рецензию На Дипломную Работу Образец
Дипломная работа: Русское устное народное поэтическое творчество
Реферат по теме Прибыль и рентабельность коммерческого предприятия
Сочинение Миниатюра На Тему День Обломова
Реферат: Как успешно сдать экзамены
Реферат: работа на тему «Грамматические трансформации при переводе»
Доходные и расходные статьи бюджета.
Реферат: Первая мировая война. Цели России в войне
Витамин К - Биология и естествознание презентация
Выбор метода формирования липосомальных контейнеров со встроенными в них полупроводниковыми наночастицами - Биология и естествознание дипломная работа
Выведение нового гибрида помидор - Биология и естествознание контрольная работа


Report Page