Изучение метода координат в курсе геометрии основной школы. Дипломная (ВКР). Педагогика.

Изучение метода координат в курсе геометрии основной школы. Дипломная (ВКР). Педагогика.




⚡ 👉🏻👉🏻👉🏻 ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Изучение метода координат в курсе геометрии основной школы

Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе

Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

Федеральное агентство по образованию


Государственное
образовательное учреждение высшего профессионального образования
Вятский государственный
гуманитарный университет


Кафедра математического анализа и
методики преподавания математики


студентка V курса
математического факультета


кандидат педагогических
наук, доцент кафедры математического анализа и МПМ М.В. Крутихина


кандидат педагогических наук,
доцент кафедры математического анализа и МПМ И.В. Ситникова




Допущена к защите в государственной
аттестационной комиссии


«___» __________2005 г.    Зав.
кафедрой                          М.В. Крутихина


«___»___________2005 г.    Декан
факультета                    В.И. Варанкина




Введение........................................................................................................... 3


Глава 1 Теоретические основы
использования метода координат в основной школе.  5


1.1 Основные положения
изучения метода координат в школе................ 5


1.2 Анализ школьных
учебников............................................................... 7


1.3 Суть метода координат....................................................................... 11


Глава 2 Методические основы изучения
метода координат....................... 14


2.1 Этапы решения задач
методом координат........................................ 14


2.2 Задачи, обучающие
координатному методу..................................... 15


2.3 Виды задач, решаемых
координатным методом.............................. 25


2.4 Опытное преподавание....................................................................... 30


Заключение.................................................................................................... 38


Библиографический список........................................................................... 39





В геометрии применяются различные методы решения задач – это
синтетический (чисто геометрический) метод, метод преобразований, векторный,
метод координат и другие. Они занимают различное положение в школе. Основным
методом считается синтетический, а из других наиболее высокое положение
занимает метод координат потому, что он тесно связан с алгеброй. Изящество
синтетического метода достигается с помощью интуиции, догадок, дополнительных
построений. Координатный метод этого не требует: решение задач во многом
алгоритмизировано, что в большинстве случаев упрощает поиск и само решение
задачи.


Можно с уверенностью говорить о том, что изучение
данного метода является неотъемлемой частью школьного курса геометрии. Но нельзя
забывать, что при решении задач координатным методом необходим навык алгебраических
вычислений и не нужна высокая степень сообразительности, а это в свою очередь негативно
сказывается на творческих способностях учащихся. Поэтому необходима методика
изучения метода координат, позволяющая учащимся научиться решать разнообразные
задачи координатным методом, однако не показывающая этот метод как основной для
решения геометрических задач. Этим и определяется
актуальность выбранной темы: «Изучение метода координат в школьном курсе
геометрии основной школы».


Объект исследования данной работы – это процесс
изучения учащимися геометрии.


Предметом исследования является изучение метода
координат в курсе геометрии основной школы.


Цель работы – разработать методику изучения и
использования метода координат в школьном курсе геометрии.


Гипотеза: изучение
метода координат школе будет более эффективно, если:


§ 
в 5-6
классе проведена пропедевтическая работа по формированию основных умений и
навыков;


§ 
в
системном курсе планиметрии учащиеся знакомятся со структурой этого метода;


§ 
используется
продуманная система задач для формирования отдельных компонентов метода.


Предмет, цель и гипотеза исследования определяют
следующие задачи:


1.Анализ вариантов изучения
метода координат в некоторых из действующих учебников, а также содержание
программы по математике по данной теме.


2.Описание метода координат
и способов его применения на примере конкретных математических задач.


3.Выделение умений,
необходимых для успешного овладения методом координат и подбор задач,
формирующих данные умения.


Для достижения целей работы, проверки гипотезы и
решения поставленных выше задач были использованы следующие методы:


· анализ программы по
математики, учебных пособий, методических материалов, касающихся метода
координат;


· наблюдение за ходом
образовательного процесса, за деятельностью учащихся.


Основной опытной базой являлась средняя общеобразовательная
школа №51.





Теоретические основы использования
метода координат в основной школе


1.1 Основные
положения изучения метода координат в школе


Придавая
геометрическим исследованиям алгебраический характер, метод координат переносит
в геометрию наиболее важную особенность алгебры — единообразие способов решения
задач. Если в арифметике и элементарной геометрии приходится, как правило,
искать для каждой задачи особый путь решения, то в алгебре и аналитической
геометрии решения проводятся по общему для всех задач плану, легко
приспособляемому к любой задаче. Перенесение в геометрию свойственных алгебре и
поэтому обладающих большой общностью способов решения задач составляет главную
ценность метода координат.


Другое достоинство
метода координат состоит в том, что его применение избавляет от необходимости
прибегать к наглядному представлению сложных пространственных изображений.


Можно выделить
следующие цели изучения метода координат в школьном курсе геометрии:


§ дать учащимся эффективный метод решения задач и
доказательства ряда теорем;


§ показать на основе этого метода тесную связь алгебры
и геометрии;


§ способствовать развитию вычислительной и графической
культуры учащихся.


В школе изучение
координатного метода и обучение его применению для решения различных
математических задач происходит в несколько этапов. На первом этапе вводится
основной понятийный аппарат, который хорошо отрабатывается в 5-6 классах и
систематизируется в курсе геометрии. В 5 классе учащиеся знакомятся с
координатным лучом, который в последствии, при изучении отрицательных чисел,
дополняется до координатной прямой. И уже после введения рациональных чисел в
6 классе учащиеся изучают координатную плоскость. На втором этапе ученики
знакомятся с уравнениями прямой и окружности. Данные понятия изучаются ими как
в алгебре, так и в геометрии с разной содержательной целью, поэтому учащиеся
часто не видят связи между ними, а, значит, и плохо усваивают суть метода. Так,
в курсе алгебры VII класса графики основных функций
вводятся путем построения ряда точек, координаты которых вычисляются по
аналитическому заданию функции. В курсе геометрии уравнение прямой и окружности
вводится на основе геометрических характеристических свойств, как множество
точек, обладающих определенным свойством (равноудаленности от 2 точек – для
прямой, от одной точки – для окружности). Обучение применению самого метода
координат для решения задач происходит в курсе геометрии 9 класса. Для этого
сначала раскрываются основные этапы применения метода, а затем на примере ряда
задач показывается непосредственное применение метода координат.


Но не следует принимать
координатный метод за основной метод решения задач и доказательства теорем. Шарыгин
И. Ф. в своей статье [19] говорит о вреде метода координат, как для сильных,
так и для слабых учеников. Что касается слабых учеников, то «большей частью в
этой группе находятся дети, которые плохо считают, с трудом понимают и
запоминают формулы. Для этих детей Геометрия могла бы стать предметом, за счет
которого они могли бы компенсировать недостатки общематематического развития. А
вместо этого она ложится на них дополнительным грузом… Координатный метод оставляет
в стороне геометрическую суть изучаемой геометрической ситуации. Воспитывается
исполнитель, решающий заданную конкретную задачу. Не меньше, но и не больше. Не
развивается геометрическая, и даже математическая интуиция, столь необходимая
математику-исследователю», что в свою очередь составляет опасность для сильных
учеников.





Хорошо известно, что, как бы ни строился школьный
курс геометрии, в нем обязательно присутствуют различные методы доказательства
теорем и решения задач. Среди таких методов важное место занимают такие методы,
как метод геометрических преобразований, метод координат, векторный метод. Сами
эти методы тесно связаны между собой. В зависимости от концепции, раскрываемой авторами учебников геометрии для средней школы, тот или иной метод может занимать
доминирующее значение. Так в учебнике [22]
активную роль играет метод координат, который весьма плодотворен.


В школьной программе по
математике методу координат уделяется сравнительно мало внимания. В разделе «Цели
изучения курса геометрии» говорится: «При доказательстве теорем и решении
задач… применяются геометрические преобразования, векторы и координаты».
Следовательно, программа не ставит целью изучение метода координат как метода
решения задач. В программе говорится, что «в результате изучения курса
геометрии учащиеся должны уметь использовать координаты для решения несложных
стандартных задач». Ни слова не говориться об овладении учащимися методом
координат для доказательства теорем и решении задач. Упор делается на
«несложные стандартные задачи», тогда как метод координат лучше проявляет свои
достоинства при решении нестандартных и довольно сложных (если не решать их
другими способами) задач.


В соответствии с программой по математике для
средней общеобразовательной школы координаты впервые появляются в 5 классе. При
этом, ребята знакомятся с изображением чисел на прямой и координатами точек.
Причем введение этих понятий в учебниках различно. Так в учебнике [3] в пятом
параграфе первой главы рассматривается координатный луч, с его помощью в
дальнейшем происходит сравнение натуральных и дробных чисел, а так же
иллюстрация действий сложения и вычитания над натуральными числами. С понятием
координатной прямой авторы учебника [4] знакомят учащихся в 6 классе. В
учебнике же [6] нет определения «координатный луч». Авторы в начале 5 класса
вводят понятие координатной прямой, хотя, до изучения отрицательных чисел,
которое происходит в 6 классе, работа идет только с правой частью координатной
прямой, представляющей собой координатный луч. Это не совсем удобно, так как
могут возникнуть не нужные пока вопросы о другой части этой координатной
прямой. В целом, учебники [3], [4] содержат больше заданий, связанных с
определением координатного луча, (координатной прямой, а затем и координатной плоскости)
и чаще обращаются к нему для введения других понятий или рассмотрения действий
над числами, чем учебники [6], [7].


Согласно программе в геометрии координаты
изучаются в следующем объеме: «Координатная плоскость. Формула расстояния между
двумя точками плоскости с заданными координатами. Уравнение прямой и
окружности».[24]


Так, в
учебнике [2] координатам посвящена отдельная глава в 9 классе. Причем этот
материал изучается после изучения темы «Векторы», но до изучения скалярного
произведения векторов. На рассмотрение темы отводиться 18 часов. В данном
учебнике метод координат
выделен в отдельную главу, в которой изучаются координаты вектора, уравнение
окружности и прямой, решаются простейшие задачи в координатах. В этой главе дается
понятие метода координат как метода изучения геометрических фигур с помощью
средств алгебры. Школьники учатся решать задачи путем введения системы
координат. Автор ставит целью научить школьников владеть методом координат не
только в применении к задачам на построение фигур по их уравнению, но и при
решении задач на доказательство, а также для вывода геометрических формул.


В отличии от других школьных учебников по
геометрии в учебнике [22] координаты заняли одно из центральных мест. Они
вводятся начиная с 8 класса после изучения тем «Четырехугольники» и «Теоремы Пифагора». На изучение темы отводится 19 часов.
Сразу, после рассмотрения основных понятии, связанных с введением координат на
плоскости, уравнений окружности и прямой, с учащимися изучаются такие вопросы,
как пересечение двух окружностей, пересечение прямой и окружности, определение
синуса, косинуса и тангенса любого
угла от 0° до 180°. Это и есть первые приложения метода координат, с которыми
знакомятся учащиеся.


В курсе алгебры, исходя из уравнения y=f(x), где f(x) заданная функция,
строили кривую, определяемую этим уравнением, т. е. строили график функции y=f(x) . Таким образом, шли
как бы «от алгебры к геометрии». При изучении метода координат в геометрии мы
выбираем обратный путь: исходя из геометрических свойств некоторых кривых,
выводим их уравнение, т. е. идем как бы «от геометрии к алгебре». В 8 классе по
учебнику [22] и в 9 по учебнику [2] рассматривается уравнение прямой и
окружности. При этом обращается внимание на общее понятие «уравнение фигуры»:
«Уравнением фигуры на плоскости в декартовых координатах называется уравнение с
двумя неизвестными х и у, которому удовлетворяют координаты любой точки фигуры.
И обратно: любые два числа, удовлетворяющие данному уравнению, являются координатами
некоторой точки фигуры»[22]. Уравнение фигуры на плоскости в общем виде можно
записывать так: F(х,у)=0, где F(х,у) функция двух переменных х и у.


Учебник [28] реализует
авторскую концепцию построения школьного курса геометрии, в нем больше внимания
по сравнению с традиционными учебниками уделяется методам решения
геометрических задач. Метод координат по данному учебнику является
предпоследней темой 9 класса. При его изучении учащиеся знакомятся с
декартовыми координатами на плоскости, рассматривают два уравнения «плоских
линий: прямой и окружности», которые в дальнейшем будут необходимы при решении
задач. В процессе этого отрабатываются некоторые умения, необходимые для
решения задач координатным методом. Следует отметить, что в учебнике
сравнительно небольшой теоретический материал по данной теме. Так, например,
единственной доказанной формулой (причем только для одного случая когда х 1 ≠х 2
и у 1 ≠у 2 ), если не считать уравнений линий, является
формула расстояния между точками. В отличие от учебников [22] и [2] формула
середины отрезка в теоретическом материале не рассматривается, хотя в
практических заданиях присутствует задача «Рассмотрим на координатной прямой
точки А(-2,5) и В(4,3). Найти координаты точки М, если М – середина АВ», таким
образом учащимся предлагается самим вывести формулу координат середины отрезка,
рассматривая данный конкретный случай и используя понятия координат и формулу
расстояния между точками. 
А после
изучения векторов рассматривается параграф «Координатный метод», в котором на
примере двух разобранных задач, в одной из которых рассматривается окружность
Аполлония, а в другой обращается внимание на выбор системы координат, учащимся
предлагается ряд задач, решаемых данным методом. Это довольно сложные задачи, в
основном связанные с нахождением геометрического места точек.


 Автор данного
учебника признает, что «координатный метод является одним их самых
универсальных методов», но отмечает, что «метода на все случаи жизни нет». 





Немного из истории
координатного метода.


В настоящее время уже очень большое число специалистов из разных областей науки имеют
представление о прямоугольных декартовых координатах на плоскости, так как эти
координаты дают возможность наглядно при помощи графика изобразить зависимость
одной величины от другой. Название «декартовы координаты» наводит на ложную
мысль о том, что эти координаты были открыты Декартом. В действительности
прямоугольные координаты использовались в геометрии еще до нашей эры. Древний
математик александрийской школы Аполлоний Пергский (живший в III-II веке до н. э.) уже фактически
пользовался прямоугольными координатами. Он определял и изучал с их помощью
хорошо известные в то время кривые: параболу, гиперболу и эллипс.


Аполлоний задавал их уравнениями: у 2
=рх (парабола)


Он, конечно, не выписывал уравнения в этой
геометрической форме, так как в те времена не существовало еще алгебраической
символики, а описывал уравнения, пользуясь геометрическими понятиями; у 2
в его терминологии есть площадь квадрата со стороной у; рх - площадь
прямоугольника со сторонами р и х и т.д. С этими уравнениями связаны названия
кривых. Парабола по-гречески обозначает равенство: квадрат имеет площадь у 2 равную площади рх прямоугольника. Гипербола
по-гречески обозначает избыток: площадь квадрата у 2 превосходит
площадь рх прямоугольника. Эллипс по-гречески обозначает недостаток: площадь
квадрата меньше площади прямоугольника.


Декарт внес в прямоугольные координаты очень
важное усовершенствование, введя правила выбора знаков. Но главное, пользуясь
прямоугольными координатами, он построил аналитическую геометрию на плоскости,
связав этим геометрию и алгебру. Нужно сказать, однако, что одновременно с
Декартом построил аналитическую геометрию и другой французский математик, Ферма.



Значение аналитической геометрии состоит, прежде
всего, в том, что она установила тесную связь между геометрией и алгеброй. Эти
две ветви математики ко времени Декарта достигли уже высокой степени
совершенства. Но развитие их в течение тысячелетий шло независимо друг от
друга, и ко времени появления аналитической геометрии между ними намечалась
лишь довольно слабая связь.


Координаты позволяют определять с помощью чисел
положение любой точки пространства или плоскости. Это дает возможность «шифровать» различного рода
фигуры, записывая их при помощи
чисел. Соотношения между координатами чаще всего определяет не одну точку, а
некоторое множество (совокупность) точек. Например, если отметить все точки, у
которых абсцисса равна ординате, т. е. точки, координаты которых удовлетворяют
уравнению х=у, то получится прямая линия
- биссектрисы первого и третьего координатных углов.


Иногда, вместо «множество точек»,
говорят «геометрическое место точек». Например, геометрическое место точек,
координаты которых удовлетворяют соотношению х=у - это, как было сказано 
выше, биссектрисы первого и третьего координатного угла. Установление связей
между алгеброй, с одной стороны, и геометрией - с другой, было по существу,
революцией в математике. Оно восстановило математику как единую науку, в
которой нет «китайской стены» между отдельными ее частями.


Сущность метода координат
как метода решения задач состоит в том, что, задавая фигуры уравнениями и
выражая в координатах различные геометрические соотношения, мы можем решать
геометрическую задачу средствами алгебры. Обратно, пользуясь координатами,
можно истолковывать алгебраические и аналитические соотношения и факты
геометрически и таким образом применять геометрию к решению алгебраических
задач.


Метод координат – это
универсальный метод. Он обеспечивает тесную связь между алгеброй и геометрией,
которые, соединяясь, дают «богатые плоды», какие они не могли бы дать,
оставаясь разделенными.


В отношении школьного
курса геометрии можно сказать, что в некоторых случаях метод координат дает
возможность строить доказательства и решать многие задачи более рационально,
красиво, чем чисто геометрическими способами. Метод координат связан, правда, с
одной геометрической сложностью. Одна и та же задача получает различное
аналитическое представление в зависимости от того или иного выбора системы
координат. И только достаточный опыт позволяет выбирать систему координат
наиболее целесообразно.





Методические
основы обучения координатному методу


2.1.Этапы решения задач методом координат


Чтобы решать задачи как алгебраические, так и геометрические методом координат необходимо
выполнение 3 этапов:


1) перевод задачи на координатный (аналитический)
язык;


2)преобразование аналитического выражения;


3)обратный
перевод, т. е. перевод с координатного языка на язык, в терминах которого
сформулирована задача.


Для примера рассмотрим алгебраическую и геометрическую
задачи и проиллюстрируем выполнение данных 3 этапов при их решении координатным
методом.


№1.
Сколько решений имеет система уравнений.


1 этап: на геометрическом языке в данной задаче требуется найти, сколько точек пересечения имеют фигуры, заданные данными уравнениями. Первое из них
является уравнением окружности с
центром в начале координат и радиусом, равным 1, а второе — уравнением
параболы.


2 этап: построение окружности и параболы;
нахождение точек их пересечения.


3 этап: количество точек пересечения окружности и
параболы является ответом на поставленный вопрос.


№2. Найдите множество точек, для каждой из
которых расстояния от двух данных точек равны.


Обозначим
данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала
с прямой АВ, а началом координат служила точка А Предположим далее, что АВ=а, тогда
в выбранной системе координат А(0,0) и В(а,0). Точка М(х,у) принадлежит
искомому множеству тогда и только тогда, когда АМ=МВ, или, что то же самое, АМ 2= МВ 2 . Используя формулу расстояния от одной точки координатной
плоскости до другой, получаем АМ 2 = x 2 + y 2 , MB 2 =( x - a ) 2 + y 2 . Тогда х 2 +у 2 =(х-а) 2
+ у 2


Равенство х 2 +у 2 =(х-а) 2 +у 2 и является алгебраической
моделью ситуации, данной в задаче. На этом заканчивается первый этап ее решения
(перевод задачи на координатный язык).


На втором этапе осуществляется преобразование
полученного выражения, в результате которого получаем соотношение .


На третьем этапе осуществляется перевод языка
уравнения на геометрический язык. Полученное уравнение является уравнением
прямой, параллельной оси Оу и отстоящей от
точки А на расстояние , т.е. серединного
перпендикуляра к отрезку АВ.


2.2 Задачи, обучающие координатному методу


Для разработки методики формирования умения
применять координатный метод важно
выявить требования, которые предъявляет логическая структура решения задач
мышлению решающего. Координатный метод предусматривает наличие у обучающихся
умений и навыков, способствующих применению данного метода на практике.
Проанализируем решение нескольких задач. В процессе этого анализа выделим
умения, являющиеся компонентами умения использовать координатный метод при
решении задач. Знание компонентов этого умения позволит осуществить его
поэлементное формирование.


Задача №1 . В треугольнике ABC: AC=b, AB=c, ВС=а, BD - медиана. Докажите, что .


Выберем систему координат так, чтобы точка А
служила началом координат, а осью Ох - прямая АС (рис. 2).


 (умение оптимально выбирать систему
координат, т. е. так, чтобы наиболее просто находить координаты данных точек).


В выбранной системе
координат точки А, С и D имеют
следующие
координаты: А(0,0), D( ,0) и С(b,0)


(умение вычислять
координаты заданных точек). Обозначим координаты точки В через х и у. Тогда
используя формулу для нахождения расстояний между двумя точками, заданными
своими координатами, получаем:


х 2 +у 2 =с 2 , ( x - b ) 2 + y 2 = a 2                            (1)


(умение находить расстояние
между двумя точками, заданными координатами)


По той же формуле .                               (2)


Используя формулы (1)
находим х и у.


Далее, подставляя х и у в
формулу (2), находим .


(умение выполнять
преобразования алгебраических выражений)


Задача №2. Найти множество точек, для каждой из
которых разность квадратов расстояний от двух данных точек есть величина
постоянная.


Обозначим данные точки
через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ,
а началом координат служила точка А.


(умение оптимально выбирать
систему координат).


Предположим АВ=а, тогда в
выбранной системе координат А(0,0), В(а,0).


(умение находить
координаты заданных точек)


Точка М(х,у) принадлежит
искомому множеству тогда только тогда, когда AM 2 -MB 2 =b 2 где b - постоянная величина


(умение переводить
геометрический язык на аналитический, составлять уравнения фигур).


Используя формулу
расстояний между двумя точками, получаем:


(умение вычислять
расстояние между точками, заданными координатами), или . Данное уравнение является уравнением
прямой, параллельной оси Оу и отстоящей от точки А на расстояние .


(умение видеть за
уравнением конкретный геометрический образ)


Нетрудно видеть, что и для
решения этой задачи необходимо овладение перечисленными выше умениями. Кроме
того, для решения приведенной задачи, а также и других задач важно умение
«видеть за уравнением» конкретный геометрический образ, которое
является обратным к
умению составлять уравнения конкретных фигур.


Выделенные умения являются
основой при решении и более сложных задач.


Задача №3. В трапеции меньшая диагональ перпендикулярна основаниям.
Найти большую диагональ, если сумма противоположных углов равна , а основания равны а и b.
(умение оптимально выбирать систему координат).


Тогда точка А имеет
координаты (0,0), точка В - (а,0), точка С - (0,c), точка D - (b,c). 


(умение находить
координаты заданных точек)


Пусть и острые углы в трапеции АВСD, тогда их сумма равна . Для вычисления длины большей диагонали BD надо найти значение с.
Его можно вычислить 2 способами. Первый - из прямоугольного треугольника АВС по
формуле находим . Второй
способ из прямоугольного треугольника ACD: . Отсюда получили, что


Из равенства (1) находим отношение : оно равно - , так
как . Выразим . Он
равен , исходя из этого, пользуясь зависимостью
(1), получаем .


(умение выразить недостающие координаты через уже
известные величины)


Далее воспользовавшись координатной формулой
расстояния между двумя точками, найдем длину BD.


(умение вычислять расстояние между точками,
заданными координатами)


Итак, компонентами умения
применять координатный метод в конкретных ситуациях являются следующие умения:


1.
переводить
геометрический язык на аналитический для одного типа задач и с аналитического
на геометрический для другого;


2.
стоить
точку по заданным координатам;


3.
находить
координаты заданных точек;


4.
вычислять
расстояние между точками, заданными координатами;


5.
оптимально
выбирать систему координат;


6.
составлять
уравнения заданных фигур;


7.
видеть
за уравнением конкретный геометрический образ;


8.
выполнять
преобразование алгебраических соотношений.


Данные умения можно отработать на примере
следующих задач, формирующих координатный метод:


1) 
задачи
на построение точки по ее координатам;


2) 
задачи
на нахождение координат заданных точек;


3) 
задачи
на вычисление расстояния между точками, заданными координатами;


4) 
задачи
на оптимальный выбор системы координат;


5) 
задачи
на составление уравнения фигуры по ее характеристическому свойству;


6) 
задачи
на определение фигуры по ее уравнению;


7) 
задачи
на преобразование алгебраических равенств;


С координатной прямой, а затем и с координатной
плоскостью учащиеся знакомятся в 5-6 классах при изучении математического материала.
При этом удобно использовать мультимедийные презентации, которые позволяют в
динамике излагать необходимый материал, использовать всевозможные иллюстрации и
звуковые эффекты, тем самым, заинтересовывая учащихся и являясь хорошим
наглядным средством. Одним из примеров является презентация «Метод координат»,
опирающаяся на учебник [7]. (см. приложение 1). Приведем несколько примеров задач,
которые можно использовать при изучении координатной плоскости. Эти задачи
могут быть использованы:


§ для оттачивания навыков
построения точек по их координатам со всем классом;


§ для дополнительных
заданий отстающим ученикам;


§ для развития интереса к
изучаемой теме.


1) 
На
координатной плоскости постройте
точки А(7,2), B(-2,1), C(0,2).


2) 
 Отметьте на плоскости
несколько точек. Начертите произвольную систему координат и найдите в ней
координаты заданных точек.


3) 
Постройте
фигуры по координатам их узловых точек. Указание: узловыми будем называть
точки, служащие концами отрезков, образующих фигуры. Точки, координаты которых
записаны подряд через запятую, соединяйте последовательно друг с другом. Если
же координаты разделяются знаком «;», то соответствующие точки не следует соединять.
Они нужны для изображения вспомогательных элементов.


   А) Камбала (Рис. 4)                                                           


(-4,-2),(-2,0),(-2,2),(-3,5);(-3,3).


Б)Найдите координаты выделенных
на рисунке точек, двигаясь по часовой стрелке от самой жирной точки. (Рис. 5 и 6)


II .Задачи на выбор системы координат


Выбор системы координат имеет очень важное значение при
применении метода координат.


Для
примера возьмем задачу, которая рассмотрена в учебнике [2] «Середина гипотенузы
прямоугольного треугольника равноудалена от его вершин».


Первым шагом при применении метода координат
является такой выбор осей и системы координат, при котором алгебраические
выкладки становятся более простыми. Для данной задачи удачный выбор системы
координат показан на рисунке 7. Таким образом, начало координат помещаем в
точку А, а оси проводим через точки В и С так, чтобы эти точки лежали на
положительных лучах осей. Следовательно, В(а,0) и С(0,b). Поэтому по формуле середины
отрезка D( ). Теперь , .


Поэтому AD=BD. А так как по определению середины отрез
Похожие работы на - Изучение метода координат в курсе геометрии основной школы Дипломная (ВКР). Педагогика.
Дипломная работа по теме Управленческий контроль, его формы и методы
Курсовая работа по теме Уклонение от уплаты налогов
Производственная Практика В Больнице Отчет
Оформление Литературы По Курсовой
Каким Я Вижу Свое Будущее Контрольное Сочинение
Реферат по теме Нормы выбросов отработанных газов автомобилей
Реферат: Проблема бедности в России и пути её решения 2
Курсовая работа по теме Учет кредитов и займов
Курсовая работа по теме Реализация вариативного подхода при изучении темы "Соли аммония" на уроках химии
Реферат: Европейский Союз: особенности формирования, этапы и перспективы развития. Скачать бесплатно и без регистрации
График Работы Аттестационной Комиссии
Купить Сигареты Эссе
Реферат Архитектура Марокко
Шпаргалка: Основные категории экономической теории
Реферат: Bridgewater State College Guidelines Not An Essay
Курсовая Работа По Гражданскому Праву На Тему Лизинг
Дипломная работа по теме Роль налогов в экономической системе Республики Казахстан
Реферат по теме Гималайский медведь
Курсовая Работа Льготы По Системе Социального Обеспечения
Реферат по теме Политика реформ и экономическая безопасность России
Похожие работы на - Кризис политической системы СССР в период 1985-1991 годов
По месту производства
Курсовая работа: Вузол підготовки сировини

Report Page