How to Work Out How Many Solar Panels You Need

How to Work Out How Many Solar Panels You Need


If you are interested in the idea of using free, environmental friendly energy to power your household, and you want to have a solar panel array installed, one of the most basic requirements you need to keep track of is the number of solar panels that you need.


There are many factors that would determine just how many you would need to use, and how many you will actually be able to buy. Some of these include the results of your energy consumption target calculations (how much energy your household appliances and devices need in order to function properly), the budget you have at your disposal and the type of solar panel you are using.


Also, depending on whether you are considering the purchase of a high-tech solar array or you're thinking of building your own panels yourself out of cheaper materials, the prices may vary. Therefore, the number of solar panels you can put together in an array may be different, and their quality might also have to be assessed.


Calculating Energy Consumption


If you want to determine precisely how many solar panels you need, it is essential to measure the amount of energy that a solar panel can offer, and compare it with the value that you require. Considering that a normal household consumes about 8000 - 9000 kwh on a yearly basis, and the fact that a $300 solar panel of good quality can only provide about 100 - 200 watts of energy, the number of panels you need to power your entire home may be quite substantial. Get More Info solar panel in malaysia


Of course, depending on your needs, you might not always have to use up so much energy on a regular basis. Especially if you are an environmental enthusiast, and you know how to choose appliances that provide better functionality, while consuming less energy, you might actually be able to reduce that number to half, or even less.


Also, if you want to build your own solar panel, you might find that the manufacturing costs can effectively be reduced to under $200 for a standard 36 cell solar panel. Depending on the quality of your homemade solar array, you only need about 30 or 40 panels to provide enough power for your entire home.


This number may still be too large, but it can be reduced if you wish to use an additional type of energy, such as wind power. This can offer you more energy on cloudy and rainy days, when solar panels don't operate as well, and reduce the need for panels to half or even less. click here now malaysia solar


Use caution, as different types of solar cells will provide a varying amount of energy. You can calculate the energy output easily, however: after you build your DIY solar panel, measure the current and voltage it produces, and multiply them to obtain the watt value. As a result, a small, 6 ampere solar panel that produces 12 volts, for instance, will offer about 72 watts.


Now, such a weak solar panel may not provide you with too much energy, but the good news is that there are many inexpensive panels on the market that can offer two or more times as much power, and you don't have to pay more than 300 to 400 dollars for one. A solar array made of 10 to 20 of these panels would, therefore, represent a viable option when it comes to powering a large number of low energy appliances or gadgets.


Different Solar Panel Types


The rate and efficiency with which solar cells are able to transform solar energy into electricity also plays a part in determining how many solar panels you will need.


In the case of panels using monocrystalline solar cells, for example, the amount of sunlight needed for generating a specific amount of energy is far less than in the case of thin film or polycrystalline cells.


In 2010, a company that produces high quality monocrystalline solar panels was able to break the world record for solar energy efficiency, producing solar cells that could transform more than 24 % of the sun's rays into usable electrical power.


Some researchers even consider that, in a few years, it may be possible to create monocrystalline solar cells that are able to go beyond the 30 % or even the 40 % mark, significantly increasing the efficiency rating of these types of solar cells, and that of solar energy in general.


A good example of the energy efficiency that these solar panels can offer would be that a solar panel using a total of 36 monocrystalline cells can generally produce around 100 to 130 watts. This practically means that if you want to get 1 kw (1000 watts), you will need about 10 of these panels. Depending on the quality and brand of the panel, pricing can range between $3000 and $5000 for this plan.


In contrast with these results, technologies using polycrystalline cells are barely able to get close to the 20 % limit today, while thin film based technologies hardly provide about 15 to 17 % efficiency.


These numbers may conclude the technological superiority of monocrystalline PV cells, but they do not prove that the best decision is to buy such panels. It's true that you will not need as many panels to reach a general output of about 1 to 3 kw in this case, but the problem is that the more monocrystalline solar panels you buy, the greater the price difference becomes.


You may also opt for less energy efficiency and a better pricing option in order to save money. In this regard, polycrystalline cells are far better, as they are not as weak as thin film-based technologies, and are somewhat less expensive than monocrystalline solar cells.




Report Page