Характеристика Примесей Природных Вод Реферат

Характеристика Примесей Природных Вод Реферат



>>> ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ <<<






























Характеристика Примесей Природных Вод Реферат

Главная
Коллекция "Otherreferats"
Химия
Природные воды. Классификация примесей

Фазово-дисперсная и анионная классификация природных вод и состав их примесей. Правила проведения пробоотбора и пробоподготовки как этапов химического анализа. Методы концентрирования микроэлементов. Осаждение и флотация. Образование летучих соединений.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
по курсу «Аналитический контроль качества и безопасности объектов окружающей среды»:
«Природные воды. Классификация примесей»
Автор: студент 4 курса Поликарчук В.А.
Природная вода представляет собой многокомпонентную динамичную систему, в состав которой входят газы, соли, минеральные и органические вещества, находящиеся в растворенном или взвешенном состоянии, а также различные микроорганизмы. Из растворенных газов в воде в основном присутствуют кислород, углекислый газ, азот, реже - метан, сероводород.
Количество и содержание газов в природной воде зависит от многих факторов, таких как природа, температура, давление, состав водной среды и т.д.
Находящийся в воде растворенный кислород, поступает из атмосферного воздуха, а также образуется в результате фотосинтеза органических веществ из неорганических. Содержание кислорода в воде может уменьшаться из-за процессов окисления органических веществ, а также в результате потребления кислорода при дыхании живыми организмами.
Сероводород в воде может встречаться в основном в подземных источниках. Он образуется в результате процессов разложения и восстановления различных минеральных солей. В поверхностных водах сероводород почти не встречается, так как он легко окисляется. Наличие сероводорода в воде придает ей неприятный запах, а также способствует коррозии трубопроводов и развитию серобактерий. Присутствие в воде углекислого газа обусловлено процессом окисления органических веществ в водоемах, а также дыханием водных организмов.
Различные взвешенные вещества попадают в воду в результате смыва частиц c покрова земли талыми водами или дождями, а также во время паводков. Метан, в основном, встречается в подземных водах. Его появление связано с процессом разложения микробами клетчатки растительных остатков. В поверхностные воды метан чаще всего попадает в результате сброса неочищенных сточных вод.
Сточные воды представляют особую опасность для водоемов, поскольку в их состав входят жиры, углеводы, эфиры, органические кислоты, спирты, фенолы, нефть и т.п. В зимний период количество органических веществ в сточных водах минимально, оно повышается весной - в период половодья и паводков, а также летом - в период цветения. Наличие в воде органических веществ резко ухудшает ее показатели и отрицательно действует на организм животных и человека.
2. Классификация природных вод и их примесей
Природные воды классифицируют по ряду признаков, простейший из них - солесодержание воды: пресная вода - солесодержание до 1 г/кг; солоноватая - солесодержание 1-10г/кг; соленая - солесодержание более 10 г/кг.
Большое распространение получила классификация природных вод предложенная О.А. Алекиным, которая основана на различии преобладающего аниона на три класса, а последние по соотношению катионов на группы и типы. В соответствии с ней все воды делятся на: карбонатные; сульфатные; хлоридные (рис. 1.).
Рис.1. Классификация природных вод по Алекину.
Класс гидрокарбонатных вод объединяет пресные и ультрапресные воды рек, озер и включает значительное количество подземных вод. Класс хлоридных вод объединяет воды морей, лиманов и подземные воды солончаковых районов. Сульфатные воды по распространению и минерализации занимают промежуточное положение между хлоридными и карбонатными водами.
Каждый класс подразделяют на три группы по преобладающему катиону (кальциевая, магниевая и натриевая группы).
Группы в свою очередь делятся на типы в соответствии с количественными характеристиками ионов и катионов. Так, к первому типу относятся воды, в которых концентрация гидрокарбонат-ионов, выраженная в ммоль/л, больше, чем суммарная концентрация катионов кальция и магния:
Воды этого типа слабо минерализованы, для них характерен избыток гидрокарбонат-ионов.
Воды второго типа характеризуются более высокой суммарной концентрацией гидрокарбонат- и сульфат-ионов, превышающей суммарную концентрацию катионов кальция и магния, которая в то же время является более высокой, чем концентрация одного гидрокарбонат-иона:
[НСО 3 - ] + [SO 4 2- ] > [Ca 2+ ] + [Mg 2+ ] > [НСО 3 - ].
К этому типу вод относятся подземные воды, а также воды рек и озер малой и средней минерализации.
Для воды третьего типа характерна более высокая концентрация ионов хлора по сравнению с ионами натрия и, следовательно, суммарная концентрация катионов кальция и магния, превышающая суммарную концентрацию гидрокарбонат- и сульфат-ионов:
[С1 - ] > [Nа + ] или [Ca 2+ ] + [Mg 2+ ] > [НСО 3 - ] + [SO 4 2- ].
Воды этого типа обычно сильно минерализованы.
Четвертый тип вод характеризуется отсутствием гидрокарбонат-ионов. Воды этого типа являются кислыми и имеются только в классах хлоридных и сульфатных вод.
Многообразие примесей и признаков для их классификации затрудняют целостное восприятие и выбор способов для удаления загрязнений изводы. Практический интерес представляет фазово-дисперсная классификация примесей воды, разработанная Л.А. Кульским (табл. 1). Для задач, связанных с очисткой воды, эта классификация полезна тем, что, определив фазоводисперсное состояние примесей в воде и установив ее принадлежность к какой-то группе, можно предварительно выбрать комплекс методов и стадий очистки воды. При этом фазово-дисперсное состояние примесей должно устанавливаться после каждой стадии обработки воды и учитываться при проектировании всей схемы водоподготовки.
Таблица 1. Классификация примесей по Л.А. Кульскому.
Л.А. Кульский разделил все примеси воды на два класса: гетерогенные и гомогенные, каждый из которых подразделяется на две группы в зависимости от крупности частиц.
В І группу включены взвеси. К ним относятся: мелкий песок, ил, зола, окалина, пищевые остатки, гидроксиды металлов и другие, т.е. такие примеси, которые удерживаются во взвешенном состоянии динамическими силами потоков воды; в состоянии покоя они оседают или всплывают. К I группе примесей относятся также планктон и бактерии. Бактерии могут быть безвредными для организма человека и болезнетворными. Они не выпадают в осадок и не всплывают вне подвижной воде, а находятся либо в свободном состоянии, либо на поверхности взвешенных веществ.
Более общее название II группы примесей (коллоидов)-- золи. Поскольку частицы коллоидов всего на порядок больше молекул, золи называют еще микрогетерогенными системами; они занимают промежуточное положение между суспензиями и истинными растворами.
Коллоидные примеси природных вод представляют собой минеральные и органоминеральные частицы почв и грунтов, недиссоциированные и нерастворимые формы гумуса. Гумус вымывается из лесных, болотистых и торфяных почв или образуется в водоемах в результате жизнедеятельности растений и водорослей. Коллоиды содержатся также в большинстве сточных вод, особенно в стоках нефтехимических и целлюлозно-бумажных производств. Ко II группе примесей Кульский относит и вирусы. Они неспособны существовать на питательных средах и размножаются только в клетках организма-хозяина.
III группу примесей представляют органические соединения биологического и антропогенного происхождения-- жиры, белки, углеводы, сахара, продукты жизнедеятельности бактерий, водорослей, человека и животных, фенолы, спирты, альдегиды и тому подобное, стоки химической промышленности, растворимые формы гумуса (фульво кислоты).
К этой группе относятся также минеральные соединения-- растворенные газы. В природных водах, как правило, присутствуют кислород, азот, углекислый газ. Подземные воды могут содержать также сероводород. Эти газы также присутствуют вводах, где идут процессы гниения (хозяйственно-фекальные, болотные воды).
Примеси IV группы представляют собой растворы солей, кислот и щелочей и являются электролитами. Они образуются в результате диссоциации молекул веществ с ионными или сильно полярными связями под влиянием полярной структуры молекул воды.
В подавляющем количестве природных и сточных вод содержатся катионы кальция, магния, железа, натрия, калия, марганца, водородные ионы, а также анионы: гидрокарбонаты, карбонаты, сульфаты, хлориды, фтор, фосфаты, нитраты, нитриты, гидросиликаты, гидроксильные группы. Специфичные ионы содержатся в стоках гальванических производств, кожевенной и радиоэлектронной промышленности.
В результате взаимодействия ионы могут образовывать мало- или недиссоциированные соединения (например, газ СО2, осадок Fe(OH)3) и переходить таким образом в примеси других групп.
3. Пробоотбор и пробоподготовка как важнейший этап анализа
Отбор пробы воды следует рассматривать как стадию, в значительной степени определяющую правильность последующего анализа, причем ошибки, допущенные в процессе пробоотбора, в дальнейшем не могут быть исправлены даже самым квалифицированным аналитиком. Место и условия отбора пробы воды в каждом случае определяют конкретными задача- ми исследований, однако основные правила отбора проб носят общий характер: - проба воды, взятая для анализа, должна отражать условия и место отбора; - отбор пробы, ее хранение и транспортировка должны исключать возможность измене- ния ее первоначального состава (содержаний определяемых компонентов или свойств воды); - объем пробы должен быть достаточным для проведения аналитической процедуры в соответствии с методикой.
Отбор проб воды может быть разовым и серийным. Разовый отбор обычно применяют для получения первоначальной информации о качестве анализируемой воды. Принимая во внимание изменяющийся во времени и пространстве состав анализируемых вод, более оправдан серийный отбор, который проводят либо с разных глубин источника, либо в различные моменты времени. При таком отборе можно судить об изменении качества воды во времени или в зависимости от ее расхода.
По своему виду пробы бывают простыми и смешанными. Простая проба обеспечивается путем однократного отбора всего требуемого для анализа количества воды, при этом полученная информация отвечает составу в данной точке в данный момент времени. Смешанную пробу получают путем сливания простых проб, отобранных в разные промежутки времени или в различных точках, характеризуя таким образом усредненный состав воды. Если пробу отбирают из открытого водотока, необходимо соблюдать условия, при которых она будет типичной: лучшие места для пробоотбора - бурные участки, где происходит более полное смешение. При отборе пробы сточной воды нужно соблюдать следующие условия:
- скорость отбора не менее 0,5 м/с;
- диаметр отверстия пробоотборника не менее 9 - 12 мм;
- высокая турбулентность (в случае отсутствия создают искусственно).
При отборе пробы питьевой воды необходимо предварительно спустить воду в течение 15 мин при полностью открытом кране. Перед закрытием сосуда пробкой верхний слой воды сливают так, чтобы под пробкой оставался слой воздуха объемом 5 - 10 см 3 .
Количество пробы, которое необходимо отобрать для анализа, зависит от числа определяемых компонентов. Для неполного анализа, при котором определяют только несколько компонентов (или отдельные показатели: соответствие гигиеническим нормам, некоторые контрольные определения и т. д.), достаточно отобрать 1 л воды. Для более подробного анализа следует брать 2 л; для полного анализа или для определения компонентов, которых очень мало в воде, требуется еще больший объем пробы (до 10 л).
В качестве пробоотборных сосудов используют химически стойкие к исследуемой воде стеклянные, фарфоровые и пластмассовые сосуды (бутыли различных форм) с притертыми или завинчивающимися пробками (герметичная укупорка). Выбор материала сосуда зависит от природы определяемых примесей. Так, например, питьевую воду можно отбирать как в стеклянные, так и в полиэтиленовые сосуды, если они разрешены для контакта с водой; пробы, предназначенные для анализа на содержание органических веществ, отбирают только в стеклянные сосуды с притертыми пробками. Вместимость сосудов должна обеспечивать определение всех запланированных компонентов.
Основным правилом при взятии проб воды является чистота сосуда и пробки. Стеклянную посуду моют и обезжиривают хромовой смесью, тщательно отмывают от кислоты и пропаривают водяным паром. Полиэтиленовую посуду ополаскивают ацетоном, соляной кислотой (1:1), несколько раз водопроводной, а затем дистиллированной водой. Вымытую посуду высушивают, а перед взятием пробы несколько раз ополаскивают водой, подлежащей отбору. Пробки, в зависимости от природы материала, очищают различными способами: корковые пробки кипятят в дистиллированной воде, резиновые -- в 5%-ном растворе соляной кислоты (20- 30 мин), а затем в 20%-ном растворе едкого натра, после чего их тщательно промывают дистиллированной водой и хранят в стеклянных банках с крышками.
Посуда, в которую производят отбор проб, должна быть пронумерована способом, исключающим возможность нарушения маркировки. К каждой пробе составляется сопроводительный документ, в котором должно быть указано: а) номер бутыли (тары); б) наименование вида вод; в) место отбора пробы; г) дата и время отбора пробы; д) способ отбора пробы (тип пробоотборника, приспособления); е) вид пробы (простая, смешанная); ж) периодичность отбора пробы; з) сведения о консервировании пробы и обеспечения ее сохранности; и) должность, фамилия и подпись ответственного лица и специально уполномоченного представителя водопользователя, участвующих в отборе проб и их подготовке.
Для доставки проб в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры.
Вода должна быть подвергнута анализу в день отбора. Принципиально следует избегать какого бы то ни было хранения проб воды. Поскольку для большей части типов вод характерен непостоянный состав, то в период времени между отбором пробы и анализом определяемые вещества могут измениться в различной степени. Очень быстро изменяются температура воды и рН. Газы, содержащиеся в воде, например кислород, диоксид углерода, сероводород или хлор, могут улетучиться из пробы (или появиться в ней: О 2 , СО 2 ). Эти и подобные им вещества надо определять на месте отбора проб. Изменение величины рН, содержания карбонатов, свободного СО 2 и т. п. может вызвать изменение свойств других компонентов, содержащихся в пробе. Некоторые из них могут выделиться в виде осадка или, наоборот, из нерастворимой формы перейти в раствор. Особенно это относится к солям железа, марганца, кальция.
В пробе могут протекать различные биохимические процессы, вызванные деятельностью микроорганизмов или планктона. Эти процессы протекают в отобранной пробе иначе, чем в первоначальной среде, и ведут к окислению или восстановлению некоторых компонентов пробы: нитраты восстанавливаются до нитритов или, наоборот, происходит окисление сульфидов, сульфитов, железа (II), цианидов и т. д. Изменяются органолептические свойства воды (запах, вкус, цвет, мутность). Некоторые растворенные металлы (Fe, Cu, Cd, Al, Mn, Cr, Zn), фосфаты, ряд органических соединений и другие компоненты могут адсорбироваться на стенках бутыли или выщелачиваться из стекла или пластмассы бутыли (В, Si, Na, К, различные ионы, адсорбированные полиэтиленом при предшествующем использовании бутыли).
Полимеризованные вещества могут деполимеризовываться и, наоборот, простые соединения могут полимеризовываться. Продолжительность рассмотренных процессов зависит от химической и биологической природы пробы, температуры, времени нахождения пробы на свету, материала посуды, промежутка времени между отбором проб и их анализом, условий транспортирования и приводит к несоответствию результатов анализа с реальными концентрациями компонентов в свежеотобранной пробе. Поэтому следует принимать все меры для того, чтобы сократить время между отбором пробы и анализом.
Последний должен быть проведен не позднее, чем через 12 ч после отбора пробы. Если же по каким-либо причинам сделать это невозможно, то для продления срока сохранности воды в том состоянии, в котором она находилась в момент взятия пробы, пробу консервируют. Консервация пробы заключается в добавлении консервирующих веществ в отобранную пробу.
Задача консервации и хранения проб очень сложна. Не все компоненты вод могут быть законсервированы: нельзя консервировать остаточные озон и хлор, рН, вкус, запах, цветность, мутность, общую жесткость, сухой остаток, фтор, хлориды, сульфаты, бораты, нитраты, фториды, ксантогенаты, взвешенные вещества, грубодисперсные примеси, жирные кислоты, сахара и т. д. Поскольку универсального консервирующего вещества не существует, то определяемые в пробе вещества не могут быть законсервированы одним и тем же способом: в этом случае пробы отбирают в отдельные бутыли и проводят соответствующую для каждого из определений консервацию.
Так, например, для определения сульфидов, сульфитов, диоксида углерода пробы отбирают в отдельные бутыли для каждого из этих определений. Консервирующее вещество может оказать мешающее действие, особенно при наличии в пробе нерастворимых веществ, что особенно характерно для сточных вод.
В качестве консервантов применяют широкий круг различных веществ, выбор которых определяется природой определяемых компонентов. Так, например, Al, As, Сu и Sb консервируют добавлением концентрированной соляной кислоты; Fe (общее содержание), Be, Mo, Se, U, Cd, Co, Sr, Mn, Ni, Hg, Pb, Ag, Cr (общий) -- добавлением концентрированной азотной кислоты; аммиак и ионы аммония -- добавлением серной кислоты; цианиды и фенолы -- добавлением NaOH или КОН; сульфаты -- добавлением NaOH и глицерина; нефтепродукты, нитриты, фосфаты -- добавлением хлороформа. Количество консерванта составляет 3 мл/л пробы.
Хранить пробы лучше всего в сосудах из боросиликатного стекла, полиэтилена высокой плотности или полипропилена при рН = 2. В этих условиях уменьшается хемосорбция ионов следов металлов на поверхностях, предотвращается гидролиз и осаждение катионов.
Однако применение консервирующих средств не предохраняет полностью определяемое вещество от изменения. Целью консервации является лишь сохранение соответствующего компонента без изменений на период между отбором пробы и анализом. Поэтому и консервированные пробы следует анализировать на следующий день, но не позднее чем через 3 сут с момента отбора. Хранение проб в течение длительного времени возможно только для определения ограниченного числа параметров. О длительности хранения воды делается отметка в протоколе анализа.
Вообще установить единые требования к хранению проб невозможно. Сроки хранения, материал сосуда и другие условия зависят не только от определяемых компонентов, но также от природы пробы и аналитических методов, которые будут применяться. Обычно пробы поверхностных и подземных вод более стабильны при хранении, чем сточные воды.
В качестве метода консервирования вод широко используются глубокое охлаждение или замораживание на неопределенный период. Этот метод особенно эффективен, если его применять сразу же после отбора проб. Но долго хранить охлажденные пробы нельзя. В стеклянных сосудах пробы не замораживают.
3.2 Концентрирование микроэлементов
При выборе методов анализа вод различного состава необходимо принимать во внимание приведенные выше данные об элементном составе природных, питьевых и сточных вод, а также возможности инструментальных аналитических методов. При определении микроэлементов для большинства методов возможности прямого инструментального анализа на уровне 1 мкг/л ограничены недостаточной чувствительностью. Поэтому при определении низких содержаний элементов на уровне 1 ppb и ниже широко применяют различные приемы концентрирования.
Выбор способа концентрирования определяется условиями инструментального окончания. В практике анализа вод распространено абсолютное концентрирование путем упаривания. Однако следует учитывать, что в процессе выпаривания происходит одновременное концентрирование макрокомпонентов, нередко мешающее последующему определению микроэлементов.
Кроме того, не исключена потеря определяемого элемента за счет улетучивания или соосаждения, если в процессе упаривания выпадает осадок, что наиболее вероятно для сточных вод. Для концентрирования микроэлементов широко применяют экстракцию, сорбцию, осаждение, флотацию, электрохимическое выделение, генерацию летучих соединений (гидридов, алкилов, карбонилов и холодного пара). Нередко используют сочетание перечисленных методов.
Экстракционное концентрирование. В основе процесса экстракции лежит распределение вещества между двумя несмешивающимися фазами (вода и органический растворитель), в качестве органической фазы чаще всего применяют диэтиловый эфир, хлороформ, четыреххлористый углерод, амины, четвертичные аммониевые основания, непредельные углеводороды и их смеси. Вопросам экстракционного концентрирования микроэлементов посвящены монографии и обзоры.
В зависимости от природы определяемого элемента возможны различные типы экстрагентов: анионо- и катионообменные (органические кислоты, четвертичные -ониевые основания: аммониевые, сульфониевые и фосфониевые), координационные (органические сульфиды, амины, комплексоны), размерно-селективные (краун-эфиры). В анализе вод широко распространено групповое экстракционное концентрирование элементов в виде хелатов с 8- оксихинолином, дитизоном, тиооксином, диэтилдитиокарбаминатом и их производными.
Избирательность экстракционного извлечения определяется pH водной фазы, природой растворителя и реэкстрагента, благодаря чему может варьироваться в широких пределах. Экстракционное концентрирование снижает пределы обнаружения элементов в соответствии с коэффициентом относительного концентрирования при использовании стадии реэкстракции либо в соответствии с коэффициентом абсолютного концентрирования при извлечении в малый объем (каплю), если инструментальное определение производится из органической фазы.
Одним из новых вариантов экстракционного концентрирования является использование жидкой эмульсионной мембраны, состоящей из смеси эфиров фосфорной кислоты и этилового спирта, масла, керосина и минеральных кислот (HCl и H2SO4). Ее применяли для концентрирования Cd, Co, Cu, Fe, Mn, Ni, Pb и Zn в водах.
Сорбционное концентрирование. В современной практике анализа вод, особенно природных для определения следовых и ультраследовых концентраций элементов отдают предпочтение сорбционному концентрированию как процедуре, в большей степени поддающейся автоматизации, чем экстракция. Кроме того, сорбционное концентрирование обеспечивает большую эффективность благодаря высокой концентрации активных групп в фазе сорбента.
Методы сорбционного концентрирования основаны на извлечении микроэлементов в твердую фазу, в качестве которой используют активированные угли, синтетические и при- родные иониты, модифицированные волокна, комплексообразующие смолы. Широкими возможностями при анализе природных и сточных вод обладают хелатные сорбенты, позволяющие реализовать коэффициенты концентрирования на уровне 10 4 . Сорбционное концентрирование можно осуществлять как в динамическом (колоночном), так и в статическом режимах, распространены методики, основанные на поглощении хелатов металлов сорбентами, например, 8-оксихиналинатов активированным углем.
Последующий анализ можно производить как из водной фазы после десорбции, так и непосредственно из фазы сорбента. Широко применяют сорбенты на основе целлюлозы, полистирола и полиакриламида, химически модифицированные различными хелатообразующими группами. Более современным вариантом сорбции хелатов являются on-line колонки, заполненные различными материалами (пористым стеклом, силикагелем, целлюлозой), иммобилизованные 8-оксихинолином, пирроли- диндитио-карбаминатом и другими селективными к металлам комплексообразующими реагентами. Представляют интерес фильтры на основе гетероцепных сорбентов, отличающиеся более высокой концентрацией активных групп и, соответственно, сорбционной емкостью, они применялись для концентрирования Au и Hg из природных вод.
Осаждение и флотация - классические методы концентрирования микроэлементов в водах, которые с успехом применяют в настоящее время, хотя и гораздо реже, чем сорбцию и экстракцию. В современном варианте соосаждения определяемые элементы осаждают в виде комплексных соединений (дитиокарбаминатов, дитизонатов, бетадикетонатов и др.) на коллекторах, в качестве которых применяют неорганические вещества (гидроксиды, сульфиды, фосфаты). Сочетание соосаждения и флотации использовали для выделения Bi, Sn и As из морской воды.
Электрохимическое концентрирование отличается высокой эффективностью, обеспечивает гибкое регулирование условий электровыделения (контролируемый потенциал) и высокие коэффициенты концентрирования.
Образование летучих соединений. В литературе имеются данные по использованию различных классов летучих соединений для концентрирования микроэлементов в водах. Образование летучих соединений определяемых элементов обеспечивает высокие коэффициенты концентрирования, устранение матричных и межэлементных эффектов благодаря выделению аналита, а также позволяет организовать процедуру пробоподготовки в автоматическом режиме на потоке (on-line). Среди различных классов летучих соединений явное предпочтение отдают гидридам, что обусловлено достаточно широким кругом гидридообразующих элементов. Чаще применяют гидриды As, Se, Te, Sn, Sb, Ge, Bi, S.
Условия образования гидридов - химическое восстановление в растворе - позволяют проводить эту реакцию в относительно мягких условиях, обеспечивая селективность и возможность регулирования скорости процесса. В качестве восстанавливающего агента чаще всего применяют борогидрид натрия (NaBH 4 ), аппаратурное решение метода может быть разнообразным. Важным фрагментом конструкции гидридного генератора является ловушка для улавливания капель жидкости на пути из реакционного сосуда к кварцевому атомизатору. Параметры самого атомизатора должны исключать возможность воспламенения водорода, выделяющегося в качестве побочного продукта реакции образования гидрида, оказывающего депрессирующее влияние на величину полезного аналитического сигнала.
Кроме гидридов применяют летучие карбонилы металлов. Предложен метод определения Ni в водных растворах на уровне 1 мкг/л с применением двух стадийной реакции в потоке, включающей предварительное восстановление никеля до элементарного состояния, а затем окисление оксидом углерода до летучего тетракарбонила. Имеются также данные по использованию реакций алкилирования (этилирования, бутилирования, метилирования и т.п.) с образованием и последующим детектированием летучих алкилов элементов.
1. Золотов Ю.А. Аналитическая химия: проблемы и достижения. - М.: Наука, 1992. - 285 с.
2. Золотов Ю.А., Кузьмин Н.М. Концентрирование микроэлементов. - М.: Химия, 1982. - 288 с.
3. Выбор способа пробоподготовки для анализа природных вод на содержание Zn, Cd, Pb и Cu методом инверсионной вольтамперометрии / Л.А. Хустенко, В.Н. Волкова, Э.А. Захарова, В.Е. Катюхин: Деп. рукопись / Том. гос. ун-т. - 1984. - 6 с.
4. Карпов Ю.А. Савостин А.П. Методы пробоотбора и пробоподготовки. - М.: БИНОМ. Лаборатория знаний, 2003. - 143 с., ил. - (Методы в химии)
5. Кульский Л.А. Очистка воды на основе классификации её примесей. Киев.: Украинский НИИ НТИиТЭИ. 1967, 14 с.
Интенсификация процесса конвективной коагуляции примесей воды. Определение оптимальных доз реагентов. Подвижность примесей воды в процессе коагуляции. Предварительная обработка воды окислителями. Физические методы интенсификации процесса коагуляции. реферат [36,1 K], добавлен 09.03.2011
Подземные и поверхностные воды, атмосферные осадки - источник водообеспечения централизованных систем водоснабжения. Свойства подземных вод. Состав природных вод. Влияние примесей воды на ее качество. Процессы формирования качества воды и ее самоочищения. реферат [71,2 K], добавлен 09.03.2011
Характеристика сернистых примесей. Классификация основых способов очистки от примесей сероводорода и других сернистых соединений. Сорбционные методы очистки газов от сероводорода растворами алканоламинов. Адсорбционные и окислительные методы очистки. реферат [448,4 K], добавлен 15.05.2015
Предел допустимых содержаний примесей в нейтральном растворе. Классификация примесей, содержащихся в цинковом электролите. Влияние органических соединений на протекание электролиза. Плотность тока и ее критический показатель, циркуляция электролита. реферат [12,0 K], добавлен 07.04.2011
Ознакомление с операцией гидролитического осаждения примесей железа, алюминия, кобальта и кадмия. Рассмотрение процесса получения медно-кадмиевого кека в результате одностадийной цементации. Особенности проведения химической очистки цинковых растворов. презентация [76,0 K], добавлен 16.02.2012
Сущность методов осаждения, соосаждения и адсорбции, их сходные и отличительные черты, применение в ходе химического анализа. Ионные радиусы катионов по Аренсу. Электролитическое осаждение. Свойства металлоорганических соединений и этапы их анализа. курсовая работа [416,1 K], добавлен 27.07.2009
Количественный и качественный состав воды. Изучение физических, химических и бактериологических показателей. Содержание нерастворенных примесей, их влияние на прозрачность воды, запах, привкус и цветность. Содержание органических веществ и минерализация. презентация [939,6 K], добавлен 14.07.2014
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2020, ООО «Олбест»
Все права защищены


Природные воды . Классификация примесей
Реферат : Природные воды - BestReferat.ru
Характеристика примесей природных вод
Характеристика и примеси природных вод .
реферат - Основные причины загрязнения природных вод и методы защиты...
Примеры Тем Сочинений Егэ По Литературе
Сочинение На Тему Мировой Язык
Примеры Предательства В Литературе Для Сочинения
Сочинение Интересы Современной Молодежи
Сочинение Рассуждение Огэ 9.3

Report Page