Генная инженерия - Биология и естествознание курсовая работа

Генная инженерия - Биология и естествознание курсовая работа



































Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
генный инженерия медицина животноводство
В своей работе я раскрываю тему достижений генной инженерии. Возможности, открываемые генетической инженерией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны.
Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.
Таким образом, генная инженерия, будучи одними из магистральных направлений научно-технического прогресса, активно способствуют ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.
Но особенно большие возможности генная инженерия открывает перед медициной и фармацевтикой, поскольку применение генной инженерии может привести к коренным преобразованиям медицины.
Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечнососудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инженерии и биотехнологии станут доступны и диагностике, и лечению. О перспективе генной инженерии в области излечения рака, я расскажу в разделе «Использование генно-инженерных организмов в медицине»
Под влиянием биотехнологии медицина может превратиться в дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.
Термин «генетическая инженерия» появился в научной литературе в 1970 г., а генетическая инженерия как самостоятельная дисциплина - в декабре 1972 г., когда П. Берг, С. Коэн, Х. Бойер и сотрудники Стенфордского университета (США) получили первую рекомбинантную ДНК, состоящую из ДНК вируса SV40 и бактериофага лdvgal. В нашей стране благодаря развитию молекулярной генетики и молекулярной биологии, а также правильной оценке тенденций развития современной биологии 4 мая 1972 г. в Научном центре биологических исследований Академии наук СССР в г. Пущино (под Москвой) состоялось первое рабочее совещание по генетической инженерии. С этого совещания и ведется отсчет всех этапов развития генетической инженерии в России. При этом генную инженерию можно определить как систему экспериментальных приемов, позволяющих лабораторным путем создать искусственные генетические детерминанты в виде так называемых рекомбинантных (гибридных) молекул ДНК. Введение в клетку новой генетической информации в виде рекомбинантных молекул ДНК изменяет ее генотип и фенотип, благодаря чему экспериментатор получает микроорганизм, измененный соответственно поставленной цели. Здесь прослежена история создания генной инженерии и отмечено, что ее характерной чертой является то, что лабораторное воспроизведение некоторых ключевых генетических процессов осуществлено на молекулярном уровне.
То, что в природе составляет привилегию целого организма, в лаборатории стало операцией, выполняемой на уровне клетки и молекул. Таким образом ученый обращается с геном без мистического благоговения, как с фрагментом ДНК, выделенным из природных источников или синтезированным. Здесь также проанализированы перспективы использования генной инженерии в медицине (многое из намеченного уже реализовано), включая фармацевтическую промышленность. В своей работе я подробно рассматриваю деятельность ряда крупных фирм (в США и других странах), ориентирующихся на использование методов генной инженерии, и указываю на то, что эти методы следует анализировать в контексте развития биотехнологий, некоторые из которых насчитывают тысячи лет. Еще один социальный аспект становления генной инженерии - это вторжение крупного капитала в академическую жизнь США, что обусловлено, с одной стороны, высокой наукоёмкостью новых технологий, а, с другой, - огромной стоимостью научных исследований.( http://afonin-59-bio.narod.ru)
На сегодняшний день существует несколько сотен генетически изменённых продуктов. Уже на протяжении нескольких лет их употребляют миллионы людей в большинстве стран мира. Есть данные, что подобными технологиями пользуются для получения продуктов, реализуемых через сеть McDonalds. Многие крупные концерны, типа Unilever, Nestle, Danon и другие используют для производства своих товаров генно-инженерные продукты и экспортируют их во многие страны мира. Но во многих странах такие продукты обязательно должны содержать на упаковке надпись "Сделано из генетически модифицированного продукта".
Некоторые считают, что, внося изменения в генный код растения или животного, учёные делают то же самое, что и сама природа. Абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора.
Пример. Какое-либо растение выбросило несколько тысяч семян, и они проросли. Среди тысяч появившихся ростков некоторые обязательно будут отличаться от родителя, то есть фактически окажутся мутантами. Если изменения вредны для растения, то оно погибнет или будет угнетать, а если полезны, то оно даст более приспособленное и совершенное потомство, и так может образоваться новый вид растения. Но если природе для образования новых видов требуется много столетий или тысячелетий, то учёные производят этот процесс за несколько лет. Какой-то принципиальной же разницы нет.
Самые распространенные ГМ-растения в мире - соя, кукуруза, масличный рапс и хлопок. В некоторых странах для выращивания одобрены трансгенные помидоры, рис, кабачки. Эксперименты проводятся на подсолнечнике, сахарной свекле, табаке, винограде, деревьях и т. д. В тех странах, где пока нет разрешения на выращивание трансгенов, проводятся полевые испытания.
Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. В результате поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные (терпимые) к гербицидам, выживают. Чаще всего компания, продающая семена подобных растений, предлагает в наборе и соответствующие гербициды. Устойчивая к насекомым флора становится поистине бесстрашной: например, непобедимый колорадский жук, съедая листик картофеля, погибает. Почти все такие растения содержат встроенный ген природного токсина - земляной бактерии Bacillus thuringiensis. Устойчивость к вирусу растение приобретает благодаря встроенному гену, взятому из этого же самого вируса.
Основная масса трансгенов культивируется в США, в Канаде, Аргентине, Китае, меньше - в других странах. Европа же очень озабочена. Под натиском общественности и организаций потребителей, которые хотят знать, что они едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург). В других принято жесткое требование маркировать генетически измененное продовольствие.
Австрия и Люксембург запретили производство генных мутантов, а греческие фермеры под черными знаменами и с плакатами в руках ворвались на поля в Беотии, в Центральной Греции, и уничтожили плантации, на которых британская фирма "Зенека" экспериментировала с помидорами. 1300 английских школ исключили из своих меню пищу, содержащую трансгенные растения, а Франция очень неохотно и медленно дает одобрение на продажу любых новых продуктов с чужими генами. В ЕС разрешены только три вида генетически измененных растений, а если точнее - три сорта кукурузы.
В России разрешено использование только 14 видов ГМО (8 сортов кукурузы, 4 сорта картофеля, 1сорт риса, и 1 сорт сахарной свеклы) для продажи и производства продуктов питания. Пока только в Москве, Нижнем Новгороде и Белгородской области действует закон, который запрещает продажу и производство детского питания с использованием ГМ продуктов. Промышленное производство ГМО не разрешено, а для того, чтобы получить разрешение, каждый сорт должен пройти экологическую экспертизу и получить свидетельство о государственной регистрации.
Сохраняется потенциальная опасность отдаленных последствий употребления такой пищи для здоровья человека. Несмотря на то, что опасность продуктов с ГМО не доказана, и они разрешены к применению Всемирной организацией здравоохранения и в России, некоторые считают, что к ним следует относиться с осторожностью, пока не будут завершены полномасштабные исследования влияния ГМО на организм. С особой тщательностью необходимо подходить к вопросам применения ГМО в детском питании, так как это может привести к непредсказуемым последствиям.
Озабоченность Москвы по поводу ГМО разделяют некоторые города и страны. Достаточно сказать, что более 30 стран и 100 регионов в мире объявили свои территории зонами, свободными от ГМО. Если продукт содержит более 0,9% ГМО, об этом обязательно должно быть сообщено на упаковке. Соответствующие изменения в Закон РФ «О защите прав потребителей» были внесены 12 декабря 2007 года. Однако прямой маркировки «Содержит ГМО» не существует. Наличие ГМО и его процентное содержание должно быть указано в списке ингредиентов продукта.
В странах Евросоюза подсчитали, что содержание компонентов ГМО продукции составляет 0,9% и менее, то можно это считать технической примесью и не маркировать продукцию со словами «Содержит ГМО», в таком случае, компания-производитель может поставить на свой товар значок «Не содержит ГМО». Эта маркировка - добровольная. Ее можно встретить пока только в Москве.
Хотя разрешённых сортов немного, они добавляются во многие продукты. По данным экспертов, наиболее часто ГМО встречаются в птицеводческих продуктах (5,6%), в молочной продукции (5,1%), в изделиях из мяса (3,8%).
Обязательную маркировку генномодифицированных продуктов на законодательном уровне ввели более 50 стран , в том числе и страны Европейского Союза, Япония и Китай. В Италии приняли закон, который запрещает использование трансгенных ингредиентов в детском питании.
В Сербии введена уголовная ответственность за нарушение правил маркировки генномодифицированных продуктов.
Территории, занятые под трансгенные культуры:
Если в 1996 году в мире под трансгенными культурами было занято 1,8 миллионов гектаров, то в 1999 году уже почти 40 миллионов. Это не считая Китая, который не дает официальной информации, но, по оценкам, около миллиона китайских фермеров выращивали трансгенный хлопок примерно на 35 млн. гектаров. Посевные площади под ГМ культурами постоянно растут. В 2008 году под ГМ культурами в мире было занято 125 млн. га. В 2009 более 134млн.га. А в 2010 - уже 148 млн.га. В 2011 году ГИ культуры выращивались в промышленных масштабах в 29 странах уже на 160 млн. га, в том числе в 17 из них (биотехнологические мега-страны по терминологии ISAAA - International Service for the Acquisition of Agri-biotech Applications) трансгенные растения выращиваются на площади более 50 тыс. га. Только за последние несколько лет (2006-2010 гг.) в клуб биотехнологически развитых стран, выращивающих ГИ культуры в промышленных масштабах, вступили 7 государств. Безусловными лидерами среди биотехнологических мега-стран являются США, Бразилия, Аргентина, Индия, Канада и Китай. Предполагается, что в ближайшие 10-20 лет около 80% 29 основных сельскохозяйственных культур будут высеваться ГИ семенами.
Защитники генетически модифицированных организмов утверждают, что ГМО - единственное спасение человечества от голода. По прогнозам ученых население Земли до 2050 года может достигнуть 9-11 млрд. человек, естественно возникает необходимость удвоения, а то и утроение мирового производства сельскохозяйственной продукции.
Для этой цели генетически модифицированные сорта растений отлично подходят - они устойчивы к болезням и погоде, быстрее созревают и дольше хранятся, умеют самостоятельно вырабатывать инсектициды против вредителей. ГМО-растения способны расти и приносить хороший урожай там, где старые сорта просто не могли выжить из-за определенных погодных условий.
Генная инженерия способна оказать реальную помощь в решении продовольственных проблем и вопросов здравоохранения. Грамотное применение её методов станет прочным фундаментом будущего человечества.
Губительного влияния трансгенных продуктов на организм человека пока не выявлено. Медики всерьёз рассматривают генномодифицированные продукты как основу специальных диет. Питание имеет не последнее значение в лечении и профилактике болезней. Учёные уверяют, генномодифицированные продукты дадут возможность людям с сахарным диабетом, остеопорозом, сердечно - сосудистыми и онкологическими заболеваниями, болезнями печени и кишечника расширить рацион питания.
Производство лекарств методами генной инженерии успешно практикуется во всём мире.
Употребление карри не только не повышает выработку инсулина в крови, но и понижает выработку глюкозы в организме. Если использовать ген карри в медицинских целях, то фармакологи получат дополнительное лекарство для лечения сахарного диабета, а больные смогут побаловать себя сладким.
С помощью синтезированных генов получают интерферон и гормоны. Интерферон - белок, вырабатываемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое даёт всего один литр бактериальной культуры. Выигрыш от массового производства этого белка очень велик.
Микробиологическим синтезом получают инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное лекарство редкой детской болезни - гипофизарной карликовости.
Достаточно быстро начала развиваться генная терапия. Для борьбы со злокачественными опухолями в организм вводится сконструированная копия гена, кодирующего мощный противоопухолевый фермент. Планируется лечить наследственные нарушения методами генной терапии.
Важное применение найдёт интересное открытие американских генетиков. В организме мышей был обнаружен ген, активизирующийся только при физической нагрузке. Учёные добились его бесперебойной работы. Теперь грызуны бегают в два раза быстрее и дольше своих сородичей. Исследователи утверждают, что такой процесс возможен и в организме человека. Если они правы, то скоро проблема лишнего веса будет решаться на генетическом уровне.
Одним из самых важных направлений генной инженерии является обеспечение больных органами для пересадки. Трансгенная свинья станет выгодным донором печени, почек, сердца, сосудов и кожи для человека. По размерам органов и физиологии она наиболее близка людям. Раньше операции по трансплантации органов свиньи человеку не удавались - организм отторгал чужеродные сахара, вырабатываемые энзимами. Три года назад в штате Вирджиния на свет появились пятеро поросят, из генетического аппарата которых удалили «лишний» ген. Проблема с пересадкой органов свиньи человеку отныне решена.
Возможно, для защитников животных и растений такой способ донорства покажется бесчеловечным и кощунственным, но также кощунственно звучало заявление Николая Коперника о вращении Земли вокруг Солнца и многих других открытий великих учёных, которые сейчас являются основой нашей жизни. Генная инженерия открывает перед нами огромные возможности. Безусловно, риск существует всегда. Попав в руки алчущего власти фанатика, она может стать грозным орудием против человечества. Но так было всегда: водородная бомба, компьютерные вирусы, конверты со спорами сибирской язвы, радиоактивные отходы космической деятельности. Умело распорядиться знанием - это искусство. Именно им нужно овладеть в совершенстве, чтобы избежать роковой ошибки.( http://www.isaaa.org)
Опасность генетически модифицированных организмов
Специалисты-противники ГМО утверждают, что они несут три основных угрозы:
· Угроза организму человека - аллергические заболевания, нарушения обмена веществ, появление желудочной микрофлоры, стойкой к антибиотикам, канцерогенный и мутагенный эффекты.
· Угроза окружающей среде - появление вегетирующих сорняков, загрязнение исследовательских участков, химическое загрязнение, уменьшение генетической плазмы и др.
· Глобальные риски - активизация критических вирусов, экономическая безопасность.
Некоторые учёные отмечают многочисленные потенциальные опасности, связанные с продуктами генной инженерии.
Ослабление иммунитета, возникновение аллергических реакций в результате непосредственного воздействия трансгенных белков. Влияние новых белков, которые продуцируют встроенные гены, неизвестно. Нарушения здоровья, связанные с накоплением в организме гербицидов, так как ГМ-растения имеют свойство их аккумулировать. Возможность отдалённых канцерогенных эффектов (развитие онкологических заболеваний).
Использование генетически модифицированных растений негативно сказывается на сортовом разнообразии. Для генных модификаций берутся один-два сорта, с которыми и работают. Существует опасность вымирания многих видов растений.
Некоторые радикальные экологи предупреждают, что воздействие биотехнологий может превзойти последствия ядерного взрыва: употребление генномодифицированных продуктов ведёт к расшатыванию генофонда, в результате чего возникнут мутантные гены и их носители-мутанты.
Медики считают, что влияние генномодифицированных продуктов на человека станет явным лишь через полвека, когда сменится как минимум одно поколение людей, вскормленных трансгенной едой.
Некоторые радикальные экологи предупреждают, что многие шаги биотехнологии по своему возможному воздействию могут превзойти последствия ядерного взрыва: якобы употребление генномодифицированных продуктов ведет к расшатыванию генофонда, влекущему к появлению мутантных генов и их носителей-мутантов.
Однако, с точки зрения генетики, мы все являемся мутантами. У любых высокоорганизованных организмов определенный процент генов является мутированным. При этом большинство мутаций носит совершенно безопасный характер и никак не отражается на жизненно важных функциях их носителей.
Что же касается опасных мутаций, вызывающих генетически обусловленные заболевания, то они сравнительно хорошо исследованы. К генномодифицированным продуктам эти заболевания никакого отношения не имеют, и большинство из них сопровождает человечество с зари его появления.
Первым искусственно изменённым продуктом стал помидор. В прочем, выбор мог бы пасть на любое другое растение, но им стал именно помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде при температуре 12 градусов. Но как только такой помидор помещают в тепло, он за несколько часов становится спелым
Первым клонированным млекопитающим официально считается всем нам известная овечка Долли, эксперимент по её клонированию был поставлен Яном Вилмутом ( англ. Ian Wilmut ) и Кейтом Кемпбеллом ( англ. Keith Cempbell ) в Рослинском институте (англ. Roslin Institute), в Шотландии, близ Эдинбурга в 1996 году., однако, с этим нельзя всецело согласиться, так как за 10 лет до клонирования Долли была клонирована мышь Машка в Пущино под Москвой советскими исследователями Чайлахяным Л.М, Вепренцевой Б.Н., Свиридовой Т.А., Никитиной В.А. Подробнее этой темы я коснусь в разделе «Разработки генной инженерии в области животноводства»
Первые трансгенные продукты были разработаны фирмой «Монсанто» (США), должна отметить, что «Монсанто» являлась одной из компаний производящих химическое оружие во время Вьетнамской войны.
Первые посадки трансгенных злаков были сделаны в 1988 г., а в 1993 г. первые продукты с ГМ компонентами появились в продаже. На российском рынке трансгенная продукция появилась в конце 90-х.
Бурное развитие генетической инженерии связано с разработкой новейших методов исследований, среди которых необходимо выделить основные:
Расщепление ДНК (рестрикция) необходимо для выделения генов и манипуляций с ними;
гибридизация нуклеиновых кислот, при которой, благодаря их способности связываться друг с другом по принципу комплементарности, можно выявлять специфические последовательности ДНК и РНК, а также совмещать различные генетические элементы. Используется в полимеразной цепной реакции для амплификации ДНК in vitro;
клонирование ДНК - осуществляется путем введения фрагментов ДНК или их групп в быстро реплицирующиеся генетические элементы (плазмиды или вирусы), что дает возможность размножать гены в клетках бактерий, дрожжей или эукариот;
определение нуклеотидных последовательностей (секвенирование) в клонируемом фрагменте ДНК. Позволяет определить структуру генов и аминокислотную последовательность кодируемых ими белков;
химико-ферментативный синтез полинуклеотидов - часто необходим для целенаправленной модификации генов и облегчения манипуляций с ними. - А.В. Бакай, И.И. Кочиш, Г.Г. Скрипниченко, «Генетика», Москва «КолосС», 2006 год.
Б. Глик и Дж. Пастернак (2002) описали следующие 4 этапа экспериментов с рекомбинантной ДНК:
1. Из организма - донора экстрагируют нативную ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК-мишень, чужеродная ДНК), подвергают ее ферментативному гидролизу (расщепляют, разрезают) и соединяют (лигируют, сшивают) с другой ДНК (вектор для клонирования, клонирующий вектор) с образованием новой рекомбинантной молекулы ( конструкция «клонирующий вектор - встроенная ДНК»).
2. Эту конструкцию вводят в клетку-хозяина (реципиента), где она реплицируется и передается потомкам. Этот процесс называется трансформацией.
3. Идентифицируют и отбирают клетки, несущие рекомбинантную ДНК (трансформированные клетки).
4. Получают специфический белковый продукт, синтезированный клетками-хозяевами, что является подтверждением клонирования искомого гена. - (В.Л.Петухов, О.С.Короткевич, С.Ж. Стамбеков, «Генетика» - Новосибирск, 2007 год.)
Генно-инженерные организмы используются в прикладной медицине с 1982 года, когда был зарегистрирован в качестве лекарства человеческий инсулин, получаемый с помощью генетически модифицированных бактерий.
Ведутся работы по созданию генно-инженерных растений, продуцирующих компоненты вакцин и лекарств, против опасных инфекций. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.
Бурно развивается новая отрасль медицины -- генотерапия. В её основе в качестве объекта генной инженерии выступает геном соматических клеток человека. В настоящее время генотерапия -- один из главных методов лечения некоторых заболеваний: уже в 1999 году каждый четвёртый ребенок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, можно также использовать для. замедления процессов старения.
Учёные из США, Канады и Южной Кореи успешно испытали генномодифицированный вирус для лечения рака. Исследование провела группа специалистов под руководством Джона Белла (John Bell) из Университета Оттавы (University of Ottawa). Отчет об их работе опубликован в журнале Nature.
Группа Белла использовала модифицированный вирус из семейства Poxviridae, который применяется для изготовления вакцин от натуральной оспы. Этот вирус способен избирательно поражать клетки, ставшие злокачественными в результате мутаций рецептора эпидермального фактора роста. В частности, клетки раковых опухолей печени, легких, прямой кишки и кожи.
В исследовании участвовали 23 пациента с различными видами рака в стадии метастазирования. Всем добровольцам ввели экспериментальный препарат JX-594, изготовленный на основе генномодифицированного вируса.
По результатам эксперимента, среди восьми пациентов, получивших наиболее высокие дозы препарата, вирус начал размножаться в злокачественных опухолях семи человек. При этом в здоровых тканях репликации вируса не наблюдалось. Кроме того, у шести больных из указанной группы введение лекарства привело к сокращению размера опухолей или прекращению их роста.
Белл признал, что исследования JX-594 пока еще находятся на ранних этапах. (http://medportal.ru/mednovosti/news/2011/09/01/cancervir/)
Генетически модифицированные Т-лимфоциты уничтожают раковые клетки у больных лейкемией.
Прорыв в области лечения рака спустя 20 лет от начала исследований. В Университете Пенсильвании в Центре по исследованию рака имени Абрамсона
и Медицинской Школе имени Перельмана удалось достичь стойкой ремиссии у пациентов до 1 года у группы добровольцев, получавших генетически модифицированные версии своих Т-клеток. У больных изымались клетки и после их модификации при помощи специальной вакцины Пенна, вводились обратно после курса химиотерапии. Обнадеживающие результаты данного исследования создают алгоритм для разработки схожих методов лечения других видов рака, в том числе легких, яичников, меланомы и миеломы.
В течение 3-х недель удалось достичь практически полной ликвидации опухолевых клеток. Результаты превзошли самые смелые ожидания профессора Карла Джуна, директора трансляционных исследований и лабораторной медицины Центра Амбрамсона. Результаты пилотного исследования трех пациентов резко контрастируют с существующей картиной терапии хронического лимфолейкоза. У участников нового исследования было несколько других вариантов лечения. Наиболее распространенная терапия - это трансплантация костного мозга. Процедура, требующая длительной госпитализации и имеющая риск смертности 20%. Причем шанс на выздоровление имеют только 50% выживших.
Рис. (на фото процес уничтожения раковой клетки т-лимфоцитами)
После извлечения Т-клеток пациента, команда перепрограммировала их атаковать раковые клетки, генетически изменив их с использованием вектора лентивируса. Вектор, кодирует антитело-подобный белок, который экспрессируется на поверхность Т-клетки и предназначен для привязки к белку CD-19, по которому и распознается раковая клетка. Все другие клетки пациента, у которых нет специфического белка С-19, игнорируются измененными Т-клетками. В результате побочные эффекты возникают значительно реже, чем при стандартной терапии. Кроме того, измененные Т-клетки посредством активизации цитокинов стимулируют размножение других Т-клеток.
В дополнение к активной способности к самовоспроизведению, каждая Т-клетка привела к убийству тысяч опухолевых клеток, и в целом, было уничтожено, по крайней мере, два фунта (1 фунт = 454 гр) опухоли у каждого пациента.
На 14-ый день клетки опухоли стали активно разрушаться наряду с огромным ростом Т-клеток в крови. Тогда, как к 28-му дню, у пациента, который ещё не оправился от синдрома лизиса опухоли, не удалось обнаружить раковых клеток ни в крови, ни в костном мозге.
Метод клеточных культур, который используется в данном исследовании, позволяет «пробудить» Т-клетки, подавленные лейкемией и стимулировать поколение новых Т-клеток «с памятью», которые, как надеются ученые, будут способны долгосрочно защищать организм от рецидива рака.
Двигаясь вперед, команда планирует испытать данный подход у других пациентов, страдающих CD-19 позитивными опухолями, в том числе неходжкинской лимфомой и острым лимфобластным лейкозом. Также планируется исследовать детей, больных лейкемией, после неудачи стандартной терапии, а также попытаться разработать лечение других видов рака: мезотелиомы, рака яичников и рака поджелудочной железы.
Адаптировано на основании материалов сайта www.worldpharmanews.com
Генномодифицированный вирус герпеса против рака
Британские врачи провели успешные клинические испытания генетически модифицированного вируса герпеса, который используется при лечении некоторых видов рака.
Испытания нового метода лечение рака головы и шеи, проведенные на 17 пациентах в одной из лондонских больниц, в сочетании с химиотерапией и радиотерапией, привели к уничтожению опухолей у большинства испытуемых. Рак шеи и головы, в том числе рак рта, языка и горла, обнаруживается у примерно 8 тысяч британцев ежегодно.
Пациенты в Королевской больнице Марсден, которым был введен этот вирус, в 93% случаев не имели никаких признаков раковых клеток после хирургического удаления опухолей.
Спустя более двух лет 82% из них не имели рецидива болезни.
Только двое из 13 пациентов, которым был введен вирус в высокой дозировке, заболели раком снова, говорится в сообщении медицинского журнала Clinical Cancer Research.
При этом применение этого вируса оказалось безопасным и исследователи выражают надежду, что в будущем этот метод смогут использовать для лечения других видов рака. До конца года будут проведены новые испытания этого метода лечения.
Он основан на использовании вируса герпеса для проникновение в раковые клетки, а также для стимулирования иммунной системы.
Вирус герпеса, который проходит в настоящее время испытание также в качестве средства борьбы с раком кожи, генетически модифицируется, в результате чего он может расти внутри раковых клеток, но не влияет на обычные здоровые клетки.
Попав в раковую клетку, такой вирус действует трояким образом - он размножается, убивая попутно раковые клетки, он вырабатывает естественно встречающийся в организме человека белок, который стимулирует иммунную систему, и, наконец, он действует в качестве маркера для иммунных клеток.
"От 35% до 55% пациентов, получающих стандартное лечение с использование химио- и радиотерапии, заболевают раком повторно в течение двух лет, и поэтому наши результаты являются весьма обнадеживающими", - заявил доктор Харрингтон.
Одно из достижений генной инженерии в медицине -- это перенос генов, кодирующих синтез инсулина у человека, в клетки бактерий. С тех самых пор, как выяснилось, что причиной сахарного диабета является нехватка гормона инсулина, всем больным дают инсулин, который получали из поджелудочной железы животных. Инсулин -- это белок, и поэтому было много споров о том, можно ли встроить гены этого белка в клетку бактерий и можно ли выращивать такие бактерии в промышленных масштабах, чтобы использовать их как намного более дешевый и более удобный источник гормона. Даже при удачном переносе генов существует одна скрытая трудность, которая связана с возможными различиями в механизмах регуляции синтеза белка у эукариот и прокариот
Генная инженерия курсовая работа. Биология и естествознание.
Курсовая работа по теме Особенности развития машиностроительных предприятий
Реферат по теме Проблемы взаимоотношения поколений
Реферат по теме Обзор философских школ конца 19 - начала 20 века.
Сочинение 2 Абзаца Морская Терраса
Реферат: Computer Crimes Essay Research Paper Computer crime
Топик На Тему Smoking
Реферат: Проблема разоружения после Второй мировой войны
Сочинение На Тему Моральный
Реферат На Тему Аспергиллез
Полицейское Право Предшественник Административного Права Реферат
Курсовая работа: Розробка технічних засобів обміну інформацією для банківської системи з визначенням та виправленням помилок
Реферат: Банковская система в России и пути её дальнейшего развития
Реферат: Stephen Crane Essay Research Paper One of
Культура Речевого Этикета Реферат
Курсовая работа по теме Расчет вала механизма натяжения ремня вентилятора
Исполнительная власть и пресса.
Дипломная работа по теме Исследование позиций родителей в вопросах раннего развития детей с функциональными нарушениями
Контрольная Работа По Алгебре 9 Класс Виленкин
Реферат: Возникновение театра в Древней Греции. Скачать бесплатно и без регистрации
Реферат: Norton Commander Меню и конфигурация
Вклад Г.Менделя в современную генетику - Биология и естествознание реферат
Традиционные и нетрадиционные методы укрепления здоровья - Безопасность жизнедеятельности и охрана труда реферат
Розрахунок економічної ефективності заходів для запобігання нещасного випадку на підприємстві - Безопасность жизнедеятельности и охрана труда методичка


Report Page