Галерея 6758482

Галерея 6758482




🔞 ПОДРОБНЕЕ ЖМИТЕ ТУТ 👈🏻👈🏻👈🏻

































Галерея 6758482

関連出願との相互引用
本出願は、2016年12月9日付けの韓国特許出願第10−2016−0167800号に基づく優先権の利益を主張し、当該韓国特許出願の文献に開示されたすべての内容は、本明細書の一部として含まれる。


技術分野
本出願は、密封材組成物、その製造方法、これを含む有機電子装置および前記有機電子装置の製造方法に関する。


有機電子装置(OED;organic electronic device)は、正孔および電子を利用して電荷の交流を発生する有機材料層を含む装置を意味し、その例としては、光電池装置(photovoltaic device)、整流器(rectifier)、トランスミッタ(transmitter)および有機発光ダイオード(OLED;organic light emitting diode)等が挙げられる。


前記有機電子装置のうち有機発光ダイオード(OLED:Organic Light Emitting Diode)は、既存の光源に比べて、電力消費量が少なくて、応答速度が速くて、表示装置または照明の薄型化に有利である。また、OLEDは、空間活用性に優れていて、各種携帯用機器、モニター、ノートパソコンおよびテレビにわたる多様な分野において適用されるものと期待されている。


OLEDの商用化および用途拡大に伴い、最も主要な問題点は、耐久性の問題である。OLEDに含まれた有機材料および金属電極などは、水分などの外部的要因により非常に容易に酸化される。したがって、OLEDを含む製品は、環境的要因に大きく敏感である。これに伴って、OLEDなどのような有機電子装置に対する外部からの酸素または水分などの浸透を効果的に遮断するために多様な方法が提案されている。


本出願は、外部から有機電子装置に流入する水分または酸素を効果的に遮断して有機電子装置の寿命を確保することができ、前面発光型有機電子装置の具現が可能であり、インクジェット方式で適用可能な密封材組成物、その製造方法およびこれを含む有機電子装置を提供する。


本出願は、密封材組成物に関する。前記密封材組成物は、例えば、OLEDなどのような有機電子装置を封止またはカプセル化することに適用される封止材であってもよい。一例において、本出願の密封材組成物は、有機電子素子の前面を封止またはカプセル化することに適用され得る。したがって、前記密封材組成物がカプセル化に適用された後には、有機電子装置の前面を密封する有機層の形態で存在し得る。また、前記有機層は、後述する保護膜および/または無機層と共に有機電子素子上に積層されて、封止構造を形成することができる。


本出願の具体例で、本出願は、インクジェット工程に適用可能な有機電子素子封止用密封材組成物に関し、前記組成物は、非接触式でパターニングが可能なインクジェット プリンティングを利用して基板に吐出されるとき、適切な物性を有するように設計され得る。


本明細書で、用語「有機電子装置」は、互いに対向する一対の電極の間に正孔および電子を利用して電荷の交流を発生する有機材料層を含む構造を有する物品または装置を意味し、その例としては、光電池装置、整流器、トランスミッタおよび有機発光ダイオード(OLED)等が挙げられるが、これに制限されるものではない。本出願の一例において、前記有機電子装置は、OLEDであってもよい。


例示的な密封材組成物は、エポキシ化合物を含むことができる。前記密封材組成物は、無溶剤形態であってもよい。無溶剤形態は、有機溶剤が含まれていない形態の組成物を意味する。前記密封材組成物は、前記組成物100mgに対するカール・フィッシャー電量滴定法による水分含量が1000ppm以下、600ppm以下、500ppm以下または100ppm以下であってもよい。下限は、特に限定されず、0ppmまたは10ppmであってもよい。前記水分測定は、実行温度25℃で進め、密閉容器内で進行され、0.3〜2240μg/minの適正速度の範囲内で当量点50mVに調整され得る。前記で、Coulometric方式では、発生電極(generating electrode)から電気的にヨウ素(Iodine)が生成されて水と反応する。この際、試料中の水分量は、ヨウ素を生成するのに用いられる電子のモル(mole)数から計算される。前記測定は、Metrohm社のKarl fischer titrators−831 KF Coulometer−coulometricを利用して測定され得る。本出願は、上記のように密封材組成物の硬化前における水分の含量を制御することにより、有機電子素子に直接適用されても、素子に化学的損傷が加えられるのを防止して、有機電子装置のダークスポット(dark spot)の生成および成長を抑制させることができる。


一例において、本出願の密封材組成物は、硬化後に測定される揮発性有機化合物の量が100ppm未満であってもよい。下限は、特に限定されず、0ppmまたは10ppmであってもよい。本明細書で前記揮発性有機化合物をアウトガスと表現することができる。前記揮発性有機化合物は、前記密封材組成物を硬化させた後、硬化物サンプルをパージトラップ(Purge & Trap)−気体クロマトグラフィー/質量分析法を利用して110℃で30分間維持した後、測定することができる。前記測定は、Purge&Trap sampler(JAI JTD−505III)−GC/MS(Agilent 7890b/5977a)機器を使用して測定したものであってもよい。本出願は、上記のように密封材組成物の揮発性有機化合物を発生量を制御することにより、有機電子素子に直接適用されても、素子に化学的損傷が加えられることを防止することができる。


本出願の具体例で、密封材組成物は、エポキシ化合物100重量部に対して45重量部〜145重量部の範囲内で、オキセタン基を有する化合物を含むことができる。前記エポキシ化合物は、光硬化性または熱硬化性化合物であってもよく、本出願の具体例で光硬化性化合物であってもよい。前記オキセタン基を有する化合物は、前記エポキシ化合物100重量部に対して45重量部〜145重量部、48重量部〜144重量部、63重量部〜143重量部または68重量部〜142重量部の範囲内で含まれ得る。本明細書で用語「重量部」は、各成分間の重量比を意味する。本出願は、前記組成の含量比率を制御することにより、有機電子素子にインクジェット方式で有機層を形成することができ、塗布された密封材組成物は、短い時間内に優れた広がり性を有し、硬化した後に優れた硬化強度を有する有機層を提供することができる。一例において、本出願の密封材組成物は、ガラスに対する接触角が30°以下、25°以下、20°以下または12°以下であってもよい。下限は、特に制限されないが、1°または3°以上であってもよい。本出願は、前記接触角を30°以下に調節することにより、インクジェットコートでの短い時間内に広がり性を確保することができ、これに伴って、薄い膜の有機層を形成することができる。本出願で前記接触角は、Sessile Drop測定方法(液滴法)を使用して、ガラス上に前記密封材組成物を一滴塗布して測定したものであってもよく、5回塗布後に平均値を測定したものであってもよい。


一例において、前記エポキシ化合物は、少なくとも二官能以上であってもよい。すなわち、エポキシ官能基が前記化合物に1以上または2以上存在し得、上限は、特に限定されないが、10以下であってもよい。前記エポキシ化合物は、接着剤に適切な架橋度を具現して、高温高湿での優れた耐熱耐久性を具現する。


本出願の具体例で、エポキシ化合物は、分子構造内に環形構造を有する化合物および/または直鎖または分岐鎖の脂肪族化合物を含むことができる。すなわち、本出願の密封材組成物は、エポキシ化合物として分子構造内に環形構造を有する化合物および直鎖または分岐鎖の脂肪族化合物のうち少なくとも一つを含むことができ、共に含むこともできる。一例において、前記分子構造内に環形構造を有する化合物は、分子構造内に環構成原子が3〜10、4〜8または5〜7の範囲内であってもよく、前記化合物内に環形構造が1以上または2以上、10以下存在し得る。前記環形構造を有する化合物および直鎖または分岐鎖の脂肪族化合物が共に含まれる場合、前記直鎖または分岐鎖の脂肪族化合物は、環形構造を有する化合物100重量部に対して、20重量部以上、205重量部未満、23重量部〜204重量部、30重量部〜203重量部、34重量部〜202重量部、40重量部〜201重量部、60重量部〜200重量部または100重量部〜173重量部の範囲内で密封材組成物に含まれ得る。本出願は、前記含量の範囲を制御することにより、密封材組成物が有機電子素子を前面密封するに際して、素子の損傷を防止することができるようにし、インクジェット可能な適正物性を有するようにし、硬化後に優れた硬化強度を有するようにし、また、優れた水分遮断性を共に具現することができるようにする。


一例において、エポキシ化合物は、50〜350g/eq、73〜332g/eq、94〜318g/eqまたは123〜298g/eqの範囲のエポキシ当量を有し得る。また、オキセタン基を有する化合物は、重量平均分子量が150〜1,000g/mol、173〜980g/mol、188〜860g/mol、210〜823g/molまたは330〜780g/molの範囲内にありえる。本出願は、前記エポキシ化合物のエポキシ当量を低く制御したり、前記オキセタン基を有する化合物の重量平均分子量を低く調節することにより、密封材の硬化後に硬化完了度を向上させながら、組成物の粘度が過度に高くなってインクジェット工程が不可能にすることを防止することができ、同時に水分遮断性および優れた硬化感度を提供することができる。本明細書で重量平均分子量は、GPC(Gel Permeation Chromatograph)で測定した標準ポリスチレンに対する換算数値を意味する。一例において、250〜300mmの長さ、4.5〜7.5mmの内径を有する金属管からなるカラムに3〜20mmのポリスチレンビーズで充填する。測定しようとする物質をTHF溶媒に溶かした希釈された溶液をカラムに通過させると、流出する時間によって重量平均分子量を間接的に測定可能である。カラムからサイズ別に分離して出る量を時間別にプロット(Plot)して検出することができる。また、本明細書でエポキシ当量は、1グラム当量のエポキシ基を含有する樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法によって測定され得る。


また、オキセタン基を有する化合物は、沸点が90〜300℃、98〜270℃、110〜258℃または138〜237℃の範囲内にありえる。本出願は、前記化合物の沸点を前記範囲に制御することにより、インクジェット工程で高温でも優れた印刷性を具現しながら、外部から水分遮断性に優れていて、アウトガスが抑制されて、素子に加えられる損傷を防止できる密封材の提供が可能である。本明細書で沸点は、特に別途規定しない限り、1気圧で測定したものであってもよい。


一例において、分子構造内に環形構造を有する化合物は、3,4−エポキシシクロヘキシルメチル3’,4’−エポキシシクロヘキサンカルボキシレート(EEC)および誘導体、ジシクロペンタジエンジオキシドおよび誘導体、ビニルシクロヘキセンジオキシドおよび誘導体、1,4−シクロヘキサンジメタノールビス(3,4−エポキシシクロヘキサンカルボキシレート)および誘導体が例示できるが、これに限定されるものではない。


一例において、前記オキセタン基を含む化合物は、前記官能基を有する限り、その構造は制限されず、例えば、TOAGOSEI社のOXT−221、CHOX、OX−SC、OXT101、OXT121、またはOXT212、またはETERNACOLL社のEHO、OXBP、OXTPまたはOXMAが例示できる。また、直鎖または分岐鎖の脂肪族エポキシ化合物は、アリファティックグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテルまたはネオペンチルグリコールジグリシジルエーテルを含むことができるが、これに制限されない。


本出願の具体例で、前記密封材組成物は、界面活性剤をさらに含むことができる。一例において、前記界面活性剤は、極性官能基を含むことができ、前記極性官能基は、界面活性剤の化合物構造の末端に存在し得る。前記極性官能基は、例えば、カルボキシル基、ヒドロキシ基、リン酸塩、アンモニウム塩、カルボキシレート基、硫酸塩またはスルホン酸塩を含むことができる。また、本出願の具体例で、前記界面活性剤は、非シリコン系界面活性剤またはフッ素系界面活性剤であってもよい。前記非シリコン系界面活性剤またはフッ素系界面活性剤は、前述したエポキシ化合物と共に適用されて、有機電子素子上に優れたコーティング性を提供する。一方、極性反応基を含む界面活性剤の場合、前述した密封材組成物の他の成分との親和性が高いので、付着力の側面から、優れた効果を具現することができる。本出願の具体例で、基材に対するインクジェットコート性を向上させるために、親水性(hydrophilic)フッ素系界面活性剤または非シリコン系界面活性剤が使用できる。


具体的に、前記界面活性剤は、高分子型またはオリゴマー型フッ素系界面活性剤であってもよい。前記界面活性剤は、市販品が使用でき、例えばTEGO社のGlide 100、Glide110、Glide 130、Glide 460、Glide 440、Glide450またはRAD2500、DIC(DaiNippon Ink & Chemicals)社のMegaface F−251、F−281、F−552、F554、F−560、F−561、F−562、F−563、F−565、F−568、F−570およびF−571または旭硝子社のSurflon S−111、S−112、S−113、S−121、S−131、S−132、S−141およびS−145または住友スリーエム社のFluorad FC−93、FC−95、FC−98、FC−129、FC−135、FC−170C、FC−430およびFC−4430またはデュポン社のZonyl FS−300、FSN、FSN−100およびFSOおよびBYK社のBYK−350、BYK−354、BYK−355、BYK−356、BYK−358N、BYK−359、BYK−361N、BYK−381、BYK−388、BYK−392、BYK−394、BYK−399、BYK−3440、BYK−3441、BYKETOL−AQ、BYK−DYNWET 800等よりなる群から選択されるものが使用できる。


前記界面活性剤は、エポキシ化合物100重量部に対して0.01〜10重量部、0.05〜10重量部、0.1重量部〜10重量部、0.5重量部〜8重量部または1重量部〜4重量部で含まれ得る。前記含量の範囲内で、本出願は、密封材組成物がインクジェット方式に適用されて、薄膜の有機層を形成することができるようにする。


本出願の具体例で、前記密封材組成物は、300nm以上の長波長の活性エネルギー線での硬化性を補完するために、光増感剤をさらに含むことができる。前記光増感剤は、200nm〜400nm範囲の波長を吸収する化合物であってもよい。


前記光増感剤は、アントラセン、9,10−ジブトキシアントラセン、9,10−ジメトキシアントラセン、9,10−ジエトキシアントラセン、2−エチル−9,10−ジメトキシアントラセンなどのアントラセン系化合物;ベンゾフェノン、4,4−ビス(ジメチルアミノ)ベンゾフェノン、4,4−ビス(ジエチルアミノ)ベンゾフェノン、2,4,6−トリメチルアミノベンゾフェノン、メチル−o−ベンゾイルベンゾエート、3,3−ジメチル−4−メトキシベンゾフェノン、3,3,4,4−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノンなどのベンゾフェノン系化合物;アセトフェノン;ジメトキシアセトフェノン、ジエトキシアラトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、プロパノンなどのケトン系化合物;ペリレン;9−フルオレノン、2−クロロ−9−フルオレノン、2−メチル−9−フルオレノンなどのフルオレノン系化合物;チオキサントン、2,4−ジエチルチオキサントン、2−クロロチオキサントン、1−クロロ−4−プロピルオキシチオキサントン、イソプロピルチオキサントン(ITX)、ジイソプロピルチオキサントンなどのチオキサントン系化合物;キサントン、2−メチルキサントンなどのキサントン系化合物;アントラキノン、2−メチルアントラキノン、2−エチルアントラキノン、t−ブチルアントラキノン、2,6−ジクロロ−9,10−アントラキノンなどのアントラキノン系化合物;9−フェニルアクリジン、1,7−ビス(9−アクリジニル)ヘプタン、1,5−ビス(9−アクリジニルペンタン)、1,3−ビス(9−アクリジニル)プロパンなどのアクリジン系化合物;ベンジル、1,7,7−トリメチル−ビシクロ[2,2,1]ヘプタン−2,3−ジオン、9,10−フェナントレンキノンなどのジカルボニル化合物;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシドなどのホスフィンオキシド系化合物;メチル−4−(ジメチルアミノ)ベンゾエート、エチル−4−(ジメチルアミノ)ベンゾエート、2−n−ブトキシエチル−4−(ジメチルアミノ)ベンゾエートなどのベンゾエート系化合物;2,5−ビス(4−ジエチルアミノベンザル)シクロペンタノン、2,6−ビス(4−ジエチルアミノベンザル)シクロヘキサノン、2,6−ビス(4−ジエチルアミノベンザル)−4−メチル−シクロペンタノンなどのアミノシナジスト;3,3−カルボニルビニル−7−(ジエチルアミノ)クマリン、3−(2−ベンゾチアゾイル)−7−(ジエチルアミノ)クマリン、3−ベンゾイル−7−(ジエチルアミノ)クマリン、3−ベンゾイル−7−メトキシ−クマリン、10,10−カルボニルビス[1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H、5H、11H−C1]−ベンゾピラノ[6,7,8−ij]−キノルリジン−11−オンなどのクマリン系化合物;4−ジエチルアミノ カルコン、4−アジドベンザルアセトフェノンなどのカルコン化合物;2−ベンゾイルメチレン;および3−メチル−b−ナフトチアゾリンよりなる群から選択される1種以上であってもよい。


前記光増感剤は、後述する光開始剤100重量部に対して、28重量部〜40重量部、31重量部〜38重量部または32重量部〜36重量部の範囲内で含まれ得る。本出願は、前記光増感剤の含量を調節することにより、所望の波長での硬化感度の上昇作用を具現しながらも、光増感剤がインクジェットコートで溶解されず、接着力を低下させることを防止することができる。


本出願の具体例で、密封材組成物は、光開始剤をさらに含むことができる。前記光開始剤は、イオン性光開始剤であってもよい。また、前記光開始剤は、200nm〜400nm範囲の波長を吸収する化合物であってもよい。本出願は、前記光開始剤を使用することにより、本出願の特定の組成において優れた硬化物性を具現することができる。


一例において、前記光開始剤は、カチオン光重合開始剤であってもよい。カチオン光重合開始剤の場合、当業界において公知の素材が使用でき、例えば、芳香族スルホニウム、芳香族ヨードニウム、芳香族ジアゾニウムまたは芳香族アンモニウムを含むカチオン部と、AsF 6 − 、SbF 6 − 、PF 6 − 、またはテトラキス(ペンタフルオルフェニル)ボレートを含むアニオン部を有する化合物を含むことができる。また、カチオン光重合開始剤としては、オニウム塩(onium salt)または有機金属塩(organometallic salt)系のイオン化カチオン開始剤または有機シランまたは潜在性スルホン酸(latent sulfonic acid)系や非イオン化カチオン光重合開始剤が例示できる。オニウム塩系の開始剤としては、ジアリールヨードニウム塩(diaryliodonium salt)、トリアリールスルホニウム塩(triarylsulfonium salt)またはアリールジアゾニウム塩(aryldiazonium salt)等が例示でき、有機金属塩系の開始剤としては、鉄アレーン(iron arene)等が例示でき、有機シラン系の開始剤としては、o−ニトリルベンジルトリアリールシリルエーテル(o−nitrobenzyl triaryl silyl ether)、トリアリールシリルペルオキシド(triaryl silyl peroxide)またはアシルシラン(acyl silane)等が例示でき、潜在性スルホン酸系の開始剤としては、α−スルホニルオキシケトンまたはα−ヒドロキシメチルベンゾインスルホネートなどが例示できるが、これに制限されるものではない。


一例において、本出願の密封材組成物は、インクジェット方式で有機電子素子を密封する用途に適合するように、前述した特定の組成に光開始剤としてスルホニウム塩を含む光開始剤を含むことができる。前記組成による密封材組成物は、有機電子素子上に直接密封されても、アウトガスの発生量が少ないため、素子に化学的損傷が加えられることを防止することができる。また、スルホニウム塩を含む光開始剤は、溶解度にも優れていて、インクジェット工程に適合するように適用され得る。


本出願の具体例で、前記光開始剤は、エポキシ化合物100重量部に対して1〜15重量部、3〜14重量部、または7〜13.5重量部で含まれ得る。本出願は、前記光開始剤の含量範囲を調節することにより、有機電子素子上に直接適用される本出願の密封材組成物の特性上、前記素子に物理的化学的損傷を最小化することができる。


本出願の密封材組成物は、カップリング剤をさらに含むことができる。本出願は、密封材組成物の硬化物の被着体との密着性や硬化物の耐透湿性を向上させることができる。前記カップリング剤は、例えば、チタニウム系カップリング剤、アルミニウム系カップリング剤、またはシランカップリング剤を含むことができる。


本出願の具体例で、前記シランカップリング剤としては、具体的には、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリエトキシシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシランおよび11−メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルジメトキシメチルシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−メチルアミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシランおよびN−(2−アミノエチル)−3−アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3−ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p−スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3−アクリルオキシプロピルトリメトキシシランおよび3−メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3−イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリルオキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシランなどが挙げられる。


本出願で、カップリング剤は、エポキシ化合物100重量部に対して、0.1重量部〜10重量部または0.5重量部〜5重量部で含まれ得る。本出願は、前記範囲内で、カップリング剤の添加による密着性の改善効果を具現することができる。


本出願の密封材組成物は、必要に応じて、水分吸着剤を含むことができる。用語「水分吸着剤」は、物理的または化学的反応等を通じて、外部から流入する水分または湿気を吸着または除去できる成分を総称する意味で使用され得る。すなわち、水分反応性吸着剤または物理的吸着剤を意味し、その混合物も使用可能である。


本出願で使用できる水分吸着剤の具体的な種類は、特に制限されず、例えば、水分反応性吸着剤の場合、金属酸化物、金属塩または五酸化リン(P 2 O 5 )等の一種または二種以上の混合物が挙げられ、物理的吸着剤の場合、ゼオライト、ジルコニアまたはモンモリロナイトなどが挙げられる。


本出願の密封材組成物は、水分吸着剤を、エポキシ化合物100重量部に対して、5重量部〜100重量部、5〜80重量部、5重量部〜70重量部または10〜30重量部の量で含むことができる。本出願の密封材組成物は、好ましくは、水分吸着剤の含量を5重量部以上に制御することにより、密封材組成物またはその硬化物が優れた水分および湿気遮断性を示すようにすることができる。また、本出願は、水分吸着剤の含量を100重量部以下に制御して、薄膜の封止構造を提供することができる。


一例において、密封材組成物は、必要に応じて、無機フィラーをさらに含むことができる。本出願で使用できるフィラーの具体的な種類は、特に制限されず、例えば、クレー、タルク、アルミナ、炭酸カルシウムまたはシリカなどの一種または二種以上の混合が使用できる。


本出願の密封材組成物は、エポキシ化合物100重量部に対して0重量部〜50重量部、1重量部〜40重量部、1重量部〜20重量部、または1〜10重量部の無機フィラーを含むことができる。本出願は、無機フィラーを、好ましくは1重量部以上に制御して、優れた水分または湿気遮断性および機械的物性を有する封止構造を提供することができる。また、本発明は、無機フィラーの含量を50重量部以下に制御することにより、薄膜で形成された場合にも、優れた水分遮断特性を示す硬化物を提供することができる。


本出願による密封材組成物には、前述した構成の他にも、前述した発明の効果に影響を及ぼさない範囲で、多様な添加剤が含まれ得る。例えば、密封材組成物は、消泡剤、粘着付与剤、紫外線安定剤または酸化防止剤などを目的とする物性に応じて適正範囲の含量で含むことができる。


一例において、前記密封材組成物は、常温、例えば、約25℃で液状であってもよい。本出願の具体例で、密封材組成物は、無溶剤形態の液状であってもよい。前記密封材組成物は、有機電子素子を封止することに適用されることができ、具体的に、有機電子素子の前面を封止することに適用され得る。本出願の密封材組成物は、インクジェッティング可能になり得るように特定組成および物性を有し得る。また、本出願は、無溶剤形態を有することにより、揮発性有機化合物および/または水分含量を前述した範囲に調節することができる。


また、本出願の密封材組成物は、インク組成物であってもよい。本出願の密封材組成物は、インクジェッティング工程が可能なインク組成物であってもよい。本出願の密封材組成物は、インクジェッティング可能になり得るように特定の組成および物性を有し得る。


また、本出願の具体例で、密封材組成物は、25℃の温度、90%のトルクおよび100rpmのせん断速度で、ブルックフィールド社のDV−3で測定した粘度が50cPs以下、1〜46cPs、または5〜44cPsの範囲内であってもよい。本出願は、組成物の粘度を前記範囲に制御することにより、有機電子素子に適用される時点でのインクジェッティング可能な物性を具現することができ、また、コーティング性を優秀にして、薄膜の封止材を提供することができる。


一例において、密封材組成物は、硬化後、硬化物の表面エネルギーが5mN/m〜45mN/m、10mN/m〜40mN/m、15mN/m〜35mN/mまたは20mN/m〜30mN/mの範囲内であってもよい。前記表面エネルギーの測定は、当業界において公知の方法で測定され得、例えば、リング法(Ring Method)の方法で測定され得る。本出願は、前記表面エネルギーの範囲内で、優れたコーティング性を具現することができる。


本出願の具体例で、表面エネルギー(γ surface 、mN/m)は、γ surface =γ dispersion +γ polar で計算され得る。一例において、表面エネルギーは、水滴型分析器(Drop Shape Analyzer、KRUSS社のDSA100製品)を使用して測定することができる。例えば、表面エネルギーは、測定しようとする密封材組成物をSiNx基板に約50μmの厚さと4cm 2 のコーティング面積(横:2cm、縦:2cm)で塗布して、封止膜の形成後(スピンコーター)、窒素の雰囲気下で常温で約10分程度乾燥させた後、1000mW/cm 2 の強度で4000mJ/cm 2 の光量を通じてUV硬化させる。硬化後、前記膜に表面張力(surface tension)が公知となっている脱イオン化水を落とし、その接触角を求める過程を5回繰り返して、得られた5個の接触角数値の平均値を求め、同一に、表面張力が公知となっているジヨードメタンを落とし、その接触角を求める過程を5回繰り返して、得られた5個の接触角数値の平均値を求める。その後、求められた脱イオン化水とジヨードメタンに対する接触角の平均値を利用してOwens−Wendt−Rabel−Kaelble方法により溶媒の表面張力に関する数値(Strom値)を代入して表面エネルギーを求めることができる。


また、本出願の具体例で、前記密封材組成物は、硬化後、可視光線領域での光透過度が90%以上、92%以上または95%以上であってもよい。前記範囲内で、本出願は、密封材組成物を前面発光型有機電子装置に適用して、高解像度、低消費電力および長寿名の有機電子装置を提供する。また、本出願の密封材組成物は、硬化後、JIS K7105標準試験によるヘイズが3%以下、2%以下または1%以下であってもよく、下限は、特に限定されないが、0%であってもよい。前記ヘイズの範囲内で、密封材組成物は、硬化後、優れた光学特性を有し得る。本明細書で、前述した光透過度またはヘイズは、前記密封材組成物を有機層で硬化した状態で測定したものであってもよく、前記有機層の厚さを2μm〜50μmのうちいずれか一つの厚さであるときに測定した光学特性であってもよい。本出願の具体例で、前記光学特性を具現するために、前述した水分吸着剤または無機フィラーは含まなくてもよい。


また、本出願は、密封材組成物の製造方法に関する。前記製造方法は、水分除去段階を含むことができる。例示的な製造方法は、光開始剤を含まない無溶剤の密封材組成物に対して水分を除去する段階と;前記密封材組成物に対して光開始剤を混合する段階とを含むことができる。本出願は、水分除去工程で光開始剤を混合せず、水分除去工程以後に光開始剤を混合することにより、光開始剤の一部の反応を防止し、水分除去効果をより効率的に良好に具現することができる。


一例において、前記水分除去段階は、密封材組成物をサーキュレーターを利用して昇温と冷却を繰り返すことを含むことができる。また、前記に制限されず、水分除去段階は、不活性気体を前記密封材組成物と混合することを含むことができる。本出願の具体例で、前記水分除去段階は、前記密封材組成物に対して窒素散布(sparging)を開始し、サーキュレーターを用いて50℃〜100℃または73℃〜88℃のうちいずれか一つの温度まで昇温して1時間〜5時間または90分〜5時間持続させる。その後、サーキュレーターを20℃〜50℃または23℃〜33℃の温度に冷却させる。本出願は、前記段階を1回以上進行することができ、10回以下で繰り返すことができるが、これに限定されるものではない。


また、水分除去段階は、前記に限定されるものではなく、密封材組成物に対して水分吸着剤を通過させる方法で進行されることもできる。通過させる方法は、特に制限されず、前記密封材組成物が前記水分吸着剤に接触させることを含むことができる。


一例において、前記水分除去段階は、圧力が維持された状態で進行され得る。すなわち、前記水分除去段階は、一定の圧力で進行され得、前記圧力を維持すること(一定圧力)は、−0.5〜0.5気圧または−0.3〜0.3気圧の誤差範囲を有し得る。前記水分除去段階は、0.5〜2気圧、0.8〜1.8、0.9〜1.5または1.0〜1.3気圧のうちいずれか一つの気圧で一定に維持された状態で進行され得る。また、前記水分除去段階は、蒸留精製工程を含まなくてもよい。本出願は、前記水分除去段階のうち条件を制御することにより、インク組成物として有機電子素子に適用される密封材組成物の特性上、一部の硬化が進行されて信頼性が低下することを防止し、最終硬化後に有機層で発生するアウトガスを防止し、これにより、有機電子素子の耐久信頼性を具現する。


また、本出願は、有機電子装置に関する。例示的な有機電子装置3は、図1に示されたように、基板31と;前記基板31上に形成された有機電子素子32と;前記有機電子素子32の前面を密封し、前述した密封材組成物を含む有機層33とを含むことができる。


本出願の具体例で、有機電子素子は、第1電極層と、前記第1電極層上に形成されて少なくとも発光層を含む有機層と、前記有機層上に形成される第2電極層とを含むことができる。前記第1電極層は、透明電極層または反射電極層であってもよく、第2電極層も、透明電極層または反射電極層であってもよい。より具体的に、前記有機電子素子は、基板上に形成された反射電極層と、前記反射電極層上に形成されて少なくとも発光層を含む有機層と、前記有機層上に形成される透明電極層とを含むことができる。


一例において、本出願による有機電子装置は、前面発光(top emission)型であってもよいが、これに限定されるものではなく、背面発光(bottom emission)型に適用され得る。


前記有機電子装置は、前記素子の電極および発光層を保護する保護膜35をさらに含むことができる。前記保護膜35は、無機保護膜であってもよい。前記保護膜は化学気相蒸着(CVD,chemical vapor deposition)による保護層であってもよく、その素材は、公知の無機物素材が使用でき、例えば、シリコンナイトライド(SiNx)が使用できる。一例において、前記保護膜に使用されるシリコンナイトライド(SiNx)を0.01μm〜50μmの厚さで蒸着することができる。


本出願の具体例で、有機電子装置3は、前記有機層33上に形成された無機層34をさらに含むことができる。無機層34はその素材は制限されず、前述した保護膜と同一であるか、異なっていてもよい。一例において、無機層は、Al、Zr、Ti、Hf、Ta、In、Sn、ZnおよびSiよりなる群から選択された一つ以上の金属酸化物または窒化物であってもよい。前記無機層の厚さは、0.01μm〜50μmまたは0.1μm〜20μmまたは1μm〜10μmであってもよい。一例において、本出願の無機層は、ドーパントが含まれていない無機物であるか、またはドーパントが含まれた無機物であってもよい。ドーピングされ得る前記ドーパントは、Ga、Si、Ge、Al、Sn、Ge、B、In、Tl、Sc、V、Cr、Mn、Fe、CoおよびNiよりなる群で選択された1種以上の元素または前記元素の酸化物であってもよいが、これに限定されない。


一例において、前記有機層の厚さは、2μm〜20μm、2.5μm〜15μm、2.8μm〜9μmの範囲内であってもよい。本出願は、有機層の厚さを薄く提供して、薄膜の有機電子装置を提供することができる。


本出願の有機電子装置3は、前述した有機層33および無機層34を含む封止構造を含むことができ、前記封止構造は、少なくとも一つ以上の有機層および少なくとも一つ以上の無機層を含み、有機層および無機層が繰り返して積層され得る。例えば、前記有機電子装置は基板/有機電子素子/保護膜/(有機層/無機層)nの構造を有することができ、前記nは、1〜100の範囲内の数であってもよい。図1は、nが1であるときを例示的に示す断面図である。


一例において、本出願の有機電子装置3は、前記有機層33上に存在するカバー基板をさらに含むことができる。前記基板および/またはカバー基板の素材は、特に制限されず、当業界において公知の素材が使用できる。例えば、前記基板またはカバー基板は、ガラス、金属基材または高分子フィルムであってもよい。高分子フィルムは、例えば、ポリエチレンテレフタレートフィルム、ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、塩化ビニル共重合体フィルム、ポリウレタンフィルム、エチレン−ビニルアセテートフィルム、エチレン−プロピレン共重合体フィルム、エチレン−アクリル酸エチル共重合体フィルム、エチレン−アクリル酸メチル共重合体フィルムまたはポリイミドフィルムなどが使用できる。


また、本出願の有機電子装置3は、図2に示されたように、前記カバー基板38と前記有機電子素子32が形成された基板31との間に存在する封止フィルム37をさらに含むことができる。前記封止フィルム37は、有機電子素子32が形成された基板31と前記カバー基板38を付着する用途に適用され得、例えば、粘着フィルムまたは接着フィルムであってもよいが、これに限定されるものではない。前記封止フィルム37は、有機電子素子32上に積層された前述した有機層および無機層の封止構造36の前面を密封することができる。


一例において、前記製造方法は、上部に有機電子素子32が形成された基板31上に前述した密封材組成物が前記有機電子素子32の前面を密封するように有機層33を形成する段階を含むことができる。


前記で、有機電子素子32は、基板31として、例えば、ガラスまたは高分子フィルムのような基板31上に真空蒸着またはスパッタリングなどの方法で反射電極または透明電極を形成し、前記反射電極上に有機材料層を形成して製造され得る。前記有機材料層は、正孔注入層、正孔輸送層、発光層、電子注入層および/または電子輸送層を含むことができる。次いで、前記有機材料層上に第2電極をさらに形成する。第2電極は、透明電極または反射電極であってもよい。


本出願の製造方法は、前記基板31上に形成された第1電極、有機材料層および第2電極上に保護膜35を形成する段階をさらに含むことができる。その後、前記基板31上に前記有機電子素子32を前面カバーするように、前述した有機層33を適用する。この際、前記有機層33を形成する段階は、特に限定されず、前記基板31の前面に前述した密封材組成物をインクジェット印刷(Inkjet)、グラビアコート(Gravure)、スピンコート、スクリーンプリントまたはリバースオフセットコート(Reverse Offset)等の工程を利用することができる。


また、前記製造方法は、前記有機層に光を照射する段階をさらに含むことができる。本発明では、有機電子装置を封止する有機層について硬化工程を行うこともできるので、このような硬化工程は、例えば、加熱チャンバーまたはUVチャンバーで進行され得、好ましくは、UVチャンバーで進行され得る。


一例において、前述した密封材組成物を塗布して、前面有機層を形成した後に、前記組成物に光を照射して架橋を誘導することができる。前記光を照射することは、250nm〜450nmまたは300nm〜450nm領域帯の波長範囲を有する光を0.3〜6J/cm 2 の光量または0.5〜5J/cm 2 の光量で照射することを含むことができる。


また、本出願の製造方法は、前記有機層33上に無機層34を形成する段階をさらに含むことができる。前記無機層を形成する段階は、当業界において公知の方法が使用でき、前述した保護膜形成方法と同一であるか、異なっていてもよい。


本出願は、外部から有機電子装置に流入する水分または酸素を効果的に遮断して有機電子装置の寿命を確保することができ、前面発光型有機電子装置の具現が可能であり、インクジェット方式で適用可能であり、薄型のディスプレイを提供することができ、水分含量が制御されて素子に損傷を防止できる密封材組成物、その製造方法およびこれを含む有機電子装置を提供する。


本発明の一例による有機電子装置を示す断面図である。
本発明の一例による有機電子装置を示す断面図である。


以下、本発明による実施例および本発明によらない比較例を通じて本発明をより詳細に説明するが、本発明の範囲が下記提示された実施例によって制限されるものではない。


〔実施例1〕
常温でエポキシ化合物として脂環族エポキシ化合物(Daicel社Celloxide 2021P)および脂肪族エポキシ化合物(HAJIN CHEM TECH社、DE203)、オキセタン基含有化合物(TOAGOSEI社のOXT−221)、およびフッ素系界面活性剤(DIC社のF552)をそれぞれ23.8:28.7:37.5:1.0(Celloxide2021P:DE203:OXT−221:F552)の重量比率で混合容器に投入した。


前記混合容器としてプラネタリーミキサー(クラボウ、KK−250s)を利用して均一な密封材組成物インクを製造した。


前記組成物インクについて水分除去段階を進める。前記混合容器で製造された密封材組成物に対して窒素散布(sparging)を開始し、サーキュレーターを用いて85℃まで昇温して、3時間前記散布を持続させる。その後、サーキュレーターを常温に冷却させる。


前記密封材組成物について、光開始剤(I290)を5重量部の割合で混合し、均一な密封材組成物インクを製造した。


〔実施例2〕
混合容器で製造された密封材組成物について窒素散布(sparging)を開始し、サーキュレーターを用いて85℃まで昇温して、1時間前記散布を持続したことを除いて、実施例1と同じ方法で密封材組成物を製造した。


〔実施例3〕
常温でエポキシ化合物として脂環族エポキシ化合物(Daicel社Celloxide 2021P)および脂肪族エポキシ化合物(HAJIN CHEM TECH社、DE203)、オキセタン基含有化合物(TOAGOSEI社のOXT−221)、およびフッ素系界面活性剤(DIC社のF552)をそれぞれ23.8:28.7:37.5:1.0(Celloxide2021P:DE203:OXT−221:F552)の重量比率で混合容器に投入した。


前記混合容器としてプラネタリーミキサー(クラボウ、KK−250s)を利用して均一な密封材組成物インクを製造した。


前記組成物インクについて水分除去段階を進める。前記混合容器で製造された密封材組成物について減圧条件下で加熱乾燥する。


その後、前記密封材組成物に対して、光開始剤(I290)を5重量部の割合で混合し、均一な密封材組成物インクを製造した。


〔実施例4〕
水分除去段階で減圧条件下で蒸留精製することを除いて、実施例3と同じ方法で密封材組成物を製造した。


〔比較例1〕
水分除去段階を進めないことを除いて、実施例1と同じ方法で密封材組成物を製造した。


〔比較例2〕
常温でエポキシ化合物として脂環族エポキシ化合物(Daicel社Celloxide 2021P)および脂肪族エポキシ化合物(HAJIN CHEM TECH社、DE203)、オキセタン基含有化合物(TOAGOSEI社のOXT−221)、光開始剤(I290)およびフッ素系界面活性剤(DIC社のF552)をそれぞれ23.8:28.7:37.5:5.0:1.0(Celloxide2021P:DE203:OXT−221:I290:F552)の重量比率で混合容器に投入した。


前記混合容器としてプラネタリーミキサー(クラボウ、KK−250s)を利用して均一な密封材組成物インクを製造した。


前記組成物インクについて水分除去段階を進める。前記混合容器で製造された密封材組成物について窒素散布(sparging)を開始し、サーキュレーターを用いて85℃まで昇温して、3時間前記散布を持続させる。その後、サーキュレーターを常温で冷却させる。


〔比較例3〕
常温でエポキシ化合物として脂環族エポキシ化合物(Daicel社Celloxide 2021P)および脂肪族エポキシ化合物(HAJIN CHEM TECH社、DE203)、オキセタン基含有化合物(TOAGOSEI社のOXT−221)、およびフッ素系界面活性剤(DIC社のF552)をそれぞれ23.8:28.7:37.5:1.0(Celloxide2021P:DE203:OXT−221:F552)の重量比率で混合容器に投入し、溶剤として2−ブトキシエタノールにてエポキシ化合物が90重量
У рыжей телки очень интересные сиськи особенно соски
Хизер Такер раздевается у воды
Хорошее порево худой русской девушки с косой

Report Page