Галерея 3383695

Галерея 3383695




⚡ ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ 👈🏻👈🏻👈🏻

































Галерея 3383695



Dashboard
Publications
Account settings
Log out







Journal List



PLoS One



PMC3383695










Create a new collection



Add to an existing collection




Unable to load your collection due to an error
Please try again

Published online 2012 Jun 26. doi: 10.1371/journal.pone.0038590

1
Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America


2
Department of Bioengineering, University of California, Berkeley, California, United States of America


3
Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America

University of Arizona, United States of America
Received 2011 Dec 15; Accepted 2012 May 10.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
GUID: 846297DC-EAEA-40AB-9613-0F501732C052
GUID: C20B5B59-05BC-4155-BE25-09DEE77E764F
GUID: 7CC12147-662C-4375-ABCF-8E864F8ACF66
GUID: 4FC0F009-907B-4603-AB03-4356D10E3018
GUID: 4BE349E6-7EE7-4DD8-B714-CD716F9942E3
GUID: 767BA511-0B8A-4B7C-9B2D-B5A510D73DAC
GUID: E84ED514-C66A-4ADB-949D-E623B70DC11A
GUID: ABEF8C48-9F4C-42A4-8FB9-4F304C6EA24E
1. Carmeliet P. Angiogenesis in health and disease. Nature Med. 2003; 9 :653–660. [ PubMed ] [ Google Scholar ]
2. Jain RK. Molecular regulation of vessel maturation. Nature Med. 2003; 9 :685–693. [ PubMed ] [ Google Scholar ]
3. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev Mol Cell Biol. 2007; 8 :464–478. [ PubMed ] [ Google Scholar ]
4. Murray CD. The Physiological Principle of Minimum Work Applied to the Angle of Branching of Arteries. J Gen Physiol. 1926; 9 :835–841. [ PMC free article ] [ PubMed ] [ Google Scholar ]
5. Murray CD. The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc Natl Acad of Sci U S A. 1926; 12 :207–214. [ PMC free article ] [ PubMed ] [ Google Scholar ]
6. Kurz H. Physiology of angiogenesis. J Neurooncol. 2000; 50 :17–35. [ PubMed ] [ Google Scholar ]
7. le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004; 131 :361–375. [ PubMed ] [ Google Scholar ]
8. Conway SJ, Kruzynska-Frejtag A, Kneer PL, Machnicki M, Koushik SV. What cardiovascular defect does my prenatal mouse mutant have, and why? Genesis. 2003; 35 :1–21. [ PubMed ] [ Google Scholar ]
9. Huang C, Sheikh F, Hollander M, Cai C, Becker D, et al. Embryonic atrial function is essential for mouse embryogenesis, cardiac morphogenesis and angiogenesis. Development. 2003; 130 :6111–6119. [ PubMed ] [ Google Scholar ]
10. Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007; 134 :3317–3326. [ PMC free article ] [ PubMed ] [ Google Scholar ]
11. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science. 2009; 326 :294–298. [ PMC free article ] [ PubMed ] [ Google Scholar ]
12. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998; 93 :741–753. [ PubMed ] [ Google Scholar ]
13. Morgan M, Winder M. Haemodynamics of arteriovenous malformations of the brain and consequences of resection: a review. Journal Clin Neurosci. 2001; 8 :216–224. [ PubMed ] [ Google Scholar ]
14. Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development. 2011; 138 :1573–1582. [ PMC free article ] [ PubMed ] [ Google Scholar ]
15. Rosenblum WI, El-Sabban F. Measurement of red cell velocity with a two-slit technique and cross-correlation: use of reflected light, and either regulated dc or unregulated ac power supplies. Microvasc Res. 1981; 22 :225–227. [ PubMed ] [ Google Scholar ]
16. Wayland H, Johnson PC. Erythrocyte velocity measurement in microvessels by a two-slit photometric method. J Appl Physiol. 1967; 22 :333–337. [ PubMed ] [ Google Scholar ]
17. Tyml K, Sherebrin MH. A method for on-line measurements of red cell velocity in microvessels using computerized frame-by-frame analysis of television images. Microvasc Res. 1980; 20 :1–8. [ PubMed ] [ Google Scholar ]
18. Gulati S, Muller SJ, Liepmann D. Direct measurements of viscoelastic flows of DNA in a 2:1 abrupt planar micro-contraction. J Non-Newtonian Fluid Mech. 2008; 155 :51–66. [ Google Scholar ]
19. Willert CE, Gharib M. Digital particle image velocimetry. Exp Fluids. 1991; 10 :181–193. [ Google Scholar ]
20. Kleinfeld D, Mitra PP, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad of Sci U S A. 1998; 95 :15741–15746. [ PMC free article ] [ PubMed ] [ Google Scholar ]
21. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab [epub ahead of print, DOI: 10.1038/jcbfm.2011.196] 2012. [ PMC free article ] [ PubMed ]
22. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005; 2 :932–940. [ PubMed ] [ Google Scholar ]
23. Rubart M. Two-photon microscopy of cells and tissue. Circ Res. 2004; 95 :1154–1166. [ PubMed ] [ Google Scholar ]
24. Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003; 21 :1369–1377. [ PubMed ] [ Google Scholar ]
25. Shih AY, Friedman B, Drew PJ, Tsai PS, Lyden PD, et al. Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. J Cereb Blood Flow Metab. 2009; 29 :738–751. [ PMC free article ] [ PubMed ] [ Google Scholar ]
26. Parzy E, Miraux S, Franconi JM, Thiaudiere E. In vivo quantification of blood velocity in mouse carotid and pulmonary arteries by ECG-triggered 3D time-resolved magnetic resonance angiography. NMR Biomed. 2009; 22 :532–537. [ PubMed ] [ Google Scholar ]
27. Amirbekian S, Long RC, Jr, Consolini MA, Suo J, Willett NJ, et al. In vivo assessment of blood flow patterns in abdominal aorta of mice with MRI: implications for AAA localization. Am J Physiol Heart Circ Physiol. 2009; 297 :H1290–1295. [ PMC free article ] [ PubMed ] [ Google Scholar ]
28. Huo Y, Guo X, Kassab GS. The flow field along the entire length of mouse aorta and primary branches. Ann Biomed Eng. 2008; 36 :685–699. [ PubMed ] [ Google Scholar ]
29. Drew PJ, Blinder P, Cauwenberghs G, Shih AY, Kleinfeld D. Rapid determination of particle velocity from space-time images using the Radon transform. J Comput Neurosci. 2010; 29 :5–11. [ PMC free article ] [ PubMed ] [ Google Scholar ]
30. Jones EA, Baron MH, Fraser SE, Dickinson ME. Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol. 2004; 287 :H1561–1569. [ PubMed ] [ Google Scholar ]
31. Nishimura N, Schaffer CB, Friedman B, Tsai PS, Lyden PD, et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods. 2006; 3 :99–108. [ PubMed ] [ Google Scholar ]
32. Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Bio. 2006; 4 :e22. [ PMC free article ] [ PubMed ] [ Google Scholar ]
33. Kamoun WS, Chae SS, Lacorre DA, Tyrrell JA, Mitre M, et al. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nature Methods. 2010; 7 :655–660. [ PMC free article ] [ PubMed ] [ Google Scholar ]
34. Ellis CG, Ellsworth ML, Pittman RN, Burgess WL. Application of image analysis for evaluation of red blood cell dynamics in capillaries. Microvasc Res. 1992; 44 :214–225. [ PubMed ] [ Google Scholar ]
35. Japee SA, Pittman RN, Ellis CG. Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation. Microcirculation. 2005; 12 :507–515. [ PubMed ] [ Google Scholar ]
36. Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, et al. Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci U S A. 2005; 102 :9884–9889. [ PMC free article ] [ PubMed ] [ Google Scholar ]
37. Murphy PA, Lam MT, Wu X, Kim TN, Vartanian SM, et al. Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc Natl Acad Sci U S A. 2008; 105 :10901–10906. [ PMC free article ] [ PubMed ] [ Google Scholar ]
38. Davy A, Bush JO, Soriano P. Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol. 2006; 4 :e315. [ PMC free article ] [ PubMed ] [ Google Scholar ]
39. Kleinfeld D, Denk W. Two-photon imaging of neocortical micro-circulation. In: Yuste R, Lanni F, Konnerth A, eds Imaging neurons: A laboratory manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press 231–2315. 2000.
40. Hornig S, Christoph B, Gafe A, Wotschadlo J, Liebert T, et al. Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter. 2008; 4 :1169–1172. [ Google Scholar ]
41. Nguyen QT, Tsai PS, Kleinfeld D. MPScope: a versatile software suite for multiphoton microscopy. J of Neurosci Methods. 2006; 156 :351–359. [ PubMed ] [ Google Scholar ]
42. Nishimura N, Rosidi NL, Iadecola C, Schaffer CB. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J Cereb Blood Flow Metab. 2010; 30 :1914–1927. [ PMC free article ] [ PubMed ] [ Google Scholar ]
43. Oppenheim AV, Lim JS. The importance of phase in signals. Proc IEEE. 1981. pp. 529–541.
44. Wernet MP. Symmetric phase only filtering: a new paradigm for DPIV data processing. Meas Sci and Technol. 2005; 16 :601–618. [ Google Scholar ]
45. Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods. 2001; 111 :29–37. [ PubMed ] [ Google Scholar ]
46. Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett. 2003; 28 :1022–1024. [ PubMed ] [ Google Scholar ]
47. Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express. 2009; 17 :13354–13364. [ PubMed ] [ Google Scholar ]
48. Santisakultarm TP, Cornelius NR, Nishimura N, Schafer AI, Silver RT, et al. In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice. Am J Physiol Heart Circ Physiol. 2012; 302 :H1367–1377. [ PMC free article ] [ PubMed ] [ Google Scholar ]
49. Kang JJ, Toma I, Sipos A, McCulloch F, Peti-Peterdi J. Quantitative imaging of basic functions in renal (patho)physiology. Am Journal Physiol Renal Physiol. 2006; 291 :F495–502. [ PubMed ] [ Google Scholar ]
50. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Medicine. 2001; 7 :864–868. [ PubMed ] [ Google Scholar ]
51. Kashiwagi S, Tsukada K, Xu L, Miyazaki J, Kozin SV, et al. Perivascular nitric oxide gradients normalize tumor vasculature. Nat Medicine. 2008; 14 :255–257. [ PubMed ] [ Google Scholar ]
52. Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007; 292 :H1209–1224. [ PubMed ] [ Google Scholar ]
53. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005; 437 :426–431. [ PubMed ] [ Google Scholar ]
54. Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005; 38 :1949–1971. [ PubMed ] [ Google Scholar ]
55. del Alamo JC, Norwich GN, Li YS, Lasheras JC, Chien S. Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc Natl Acad Sci U S A. 2008; 105 :15411–15416. [ PMC free article ] [ PubMed ] [ Google Scholar ]
56. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004; 101 :14871–14876. [ PMC free article ] [ PubMed ] [ Google Scholar ]
57. Buschmann I, Pries A, Styp-Rekowska B, Hillmeister P, Loufrani L, et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development. 2010; 137 :2187–2196. [ PubMed ] [ Google Scholar ]
58. Srinivasan VJ, Atochin DN, Radhakrishnan H, Jiang JY, Ruvinskaya S, et al. Optical coherence tomography for the quantitative study of cerebrovascular physiology. J Cereb Blood Flow Metab. 2011; 31 :1339–1345. [ PMC free article ] [ PubMed ] [ Google Scholar ]
59. Santisakultarm TP, Schaffer CB. Optically quantified cerebral blood flow. J Cereb Blood Flow Metab. 2011; 31 :1337–1338. [ PMC free article ] [ PubMed ] [ Google Scholar ]
60. Duemani Reddy G, Kelleher K, Fink R, Saggau P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci. 2008; 11 :713–720. [ PMC free article ] [ PubMed ] [ Google Scholar ]
61. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, et al. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods. 2011; 8 :91–96. [ PMC free article ] [ PubMed ] [ Google Scholar ]
62. Farrar MJ, Bernstein IM, Schlafer DH, Cleland TA, Fetcho JR, et al. Chronic in vivo imaging in the mouse spinal cord using an implanted chamber. Nat Methods. 2012; 9 :297–302. [ PMC free article ] [ PubMed ] [ Google Scholar ]
63. Williams RM, Flesken-Nikitin A, Ellenson LH, Connolly DC, Hamilton TC, et al. Strategies for high-resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy. Transl Oncol. 2010; 3 :181–194. [ PMC free article ] [ PubMed ] [ Google Scholar ]
64. Megens RT, Reitsma S, Prinzen L, oude Egbrink MG, Engels W, et al. In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy. J Biomed Opt. 2010; 15 :011108. [ PubMed ] [ Google Scholar ]
Articles from PLOS ONE are provided here courtesy of PLOS
1. Carmeliet P. Angiogenesis in health and disease. Nature Med. 2003; 9 :653–660. [ PubMed ] [ Google Scholar ] [ Ref list ]
2. Jain RK. Molecular regulation of vessel maturation. Nature Med. 2003; 9 :685–693. [ PubMed ] [ Google Scholar ] [ Ref list ]
3. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev Mol Cell Biol. 2007; 8 :464–478. [ PubMed ] [ Google Scholar ] [ Ref list ]
4. Murray CD. The Physiological Principle of Minimum Work Applied to the Angle of Branching of Arteries. J Gen Physiol. 1926; 9 :835–841. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
5. Murray CD. The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc Natl Acad of Sci U S A. 1926; 12 :207–214. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
6. Kurz H. Physiology of angiogenesis. J Neurooncol. 2000; 50 :17–35. [ PubMed ] [ Google Scholar ] [ Ref list ]
7. le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004; 131 :361–375. [ PubMed ] [ Google Scholar ] [ Ref list ]
8. Conway SJ, Kruzynska-Frejtag A, Kneer PL, Machnicki M, Koushik SV. What cardiovascular defect does my prenatal mouse mutant have, and why? Genesis. 2003; 35 :1–21. [ PubMed ] [ Google Scholar ] [ Ref list ]
9. Huang C, Sheikh F, Hollander M, Cai C, Becker D, et al. Embryonic atrial function is essential for mouse embryogenesis, cardiac morphogenesis and angiogenesis. Development. 2003; 130 :6111–6119. [ PubMed ] [ Google Scholar ] [ Ref list ]
10. Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007; 134 :3317–3326. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
11. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science. 2009; 326 :294–298. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
12. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998; 93 :741–753. [ PubMed ] [ Google Scholar ] [ Ref list ]
13. Morgan M, Winder M. Haemodynamics of arteriovenous malformations of the brain and consequences of resection: a review. Journal Clin Neurosci. 2001; 8 :216–224. [ PubMed ] [ Google Scholar ] [ Ref list ]
14. Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development. 2011; 138 :1573–1582. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
15. Rosenblum WI, El-Sabban F. Measurement of red cell velocity with a two-slit technique and cross-correlation: use of reflected light, and either regulated dc or unregulated ac power supplies. Microvasc Res. 1981; 22 :225–227. [ PubMed ] [ Google Scholar ] [ Ref list ]
16. Wayland H, Johnson PC. Erythrocyte velocity measurement in microvessels by a two-slit photometric method. J Appl Physiol. 1967; 22 :333–337. [ PubMed ] [ Google Scholar ] [ Ref list ]
17. Tyml K, Sherebrin MH. A method for on-line measurements of red cell velocity in microvessels using computerized frame-by-frame analysis of television images. Microvasc Res. 1980; 20 :1–8. [ PubMed ] [ Google Scholar ] [ Ref list ]
18. Gulati S, Muller SJ, Liepmann D. Direct measurements of viscoelastic flows of DNA in a 2:1 abrupt planar micro-contraction. J Non-Newtonian Fluid Mech. 2008; 155 :51–66. [ Google Scholar ] [ Ref list ]
19. Willert CE, Gharib M. Digital particle image velocimetry. Exp Fluids. 1991; 10 :181–193. [ Google Scholar ] [ Ref list ]
20. Kleinfeld D, Mitra PP, Helmchen F, Denk W.
Женщина из Австрии хочет встретить Новый Год как и прошлый
Рита ла Белль – смелая иностранка которая показывает некоторые части тела в разных ситуациях
Галерея 428958

Report Page