Галерея 3185408

Галерея 3185408




🔞 ПОДРОБНЕЕ ЖМИТЕ ТУТ 👈🏻👈🏻👈🏻

































Галерея 3185408


Dashboard
Publications
Account settings
Log out







Journal List



Nucleic Acids Res



v.39(18); 2011 Oct



PMC3185408










Create a new collection



Add to an existing collection




Unable to load your collection due to an error
Please try again

Nucleic Acids Res. 2011 Oct; 39(18): 8237–8247.
Published online 2011 Jul 1. doi: 10.1093/nar/gkr381
Find articles by Nikolozi Shkriabai
1 Molecular Microbiology and Immunology, University of Missouri, 2 Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India, 3 Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, 4 Department of Biochemistry, University of Missouri, and 5 Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
*To whom correspondence should be addressed. Tel: +1 573 884 1316; Fax: +1 573 884 9676; Email: ude.iruossim@hdekrub
Received 2011 Mar 10; Revised 2011 Apr 27; Accepted 2011 Apr 29.
Copyright © The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0 ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
GUID: A10AF1B2-93D4-44C8-8B00-AB450864D4DB
GUID: B6C7EA52-5363-4E23-A5D0-F99B85ED58DD
1. Jellinek D, Green LS, Bell C, Janjic N. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry. 1994; 33 :10450–10456. [ PubMed ] [ Google Scholar ]
2. Ng EW, Shima DT, Calias P, Cunningham ET, Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 2006; 5 :123–132. [ PubMed ] [ Google Scholar ]
3. Dyke CK, Steinhubl SR, Kleiman NS, Cannon RO, Aberle LG, Lin M, Myles SK, Melloni C, Harrington RA, Alexander JH, et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation. 2006; 114 :2490–2497. [ PubMed ] [ Google Scholar ]
4. Keefe AD, Schaub RG. Aptamers as candidate therapeutics for cardiovascular indications. Curr. Opin. Pharmacol. 2008; 8 :147–152. [ PubMed ] [ Google Scholar ]
5. de Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andreola ML. DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. J. Mol. Biol. 2002; 324 :195–203. [ PubMed ] [ Google Scholar ]
6. Tuerk C, MacDougal S, Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl Acad. Sci. USA. 1992; 89 :6988–6992. [ PMC free article ] [ PubMed ] [ Google Scholar ]
7. Schneider DJ, Feigon J, Hostomsky Z, Gold L. High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry. 1995; 34 :9599–9610. [ PubMed ] [ Google Scholar ]
8. Li N, Wang Y, Pothukuchy A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD. Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res. 2008; 36 :6739–6751. [ PMC free article ] [ PubMed ] [ Google Scholar ]
9. Michalowski D, Chitima-Matsiga R, Held DM, Burke DH. Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases. Nucleic Acids Res. 2008; 36 :7124–7135. [ PMC free article ] [ PubMed ] [ Google Scholar ]
10. Somasunderam A, Ferguson MR, Rojo DR, Thiviyanathan V, Li X, O'Brien WA, Gorenstein DG. Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase. Biochemistry. 2005; 44 :10388–10395. [ PMC free article ] [ PubMed ] [ Google Scholar ]
11. Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 2005; 77 :6107–6112. [ PubMed ] [ Google Scholar ]
12. Hannoush RN, Carriero S, Min KL, Damha MJ. Selective inhibition of HIV-1 reverse transcriptase (HIV-1 RT) RNase H by small RNA hairpins and dumbbells. Chembiochem. 2004; 5 :527–533. [ PubMed ] [ Google Scholar ]
13. Burke DH, Scates L, Andrews K, Gold L. Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J. Mol. Biol. 1996; 264 :650–666. [ PubMed ] [ Google Scholar ]
14. Andreola ML, Pileur F, Calmels C, Ventura M, Tarrago-Litvak L, Toulme JJ, Litvak S. DNA aptamers selected against the HIV-1 RNase H display in vitro antiviral activity. Biochemistry. 2001; 40 :10087–10094. [ PubMed ] [ Google Scholar ]
15. Boomer RM, Lewis SD, Healy JM, Kurz M, Wilson C, McCauley TG. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues. Oligonucleotides. 2005; 15 :183–195. [ PubMed ] [ Google Scholar ]
16. Wilson C, Keefe AD. Building oligonucleotide therapeutics using non-natural chemistries. Curr. Opin. Chem. Biol. 2006; 10 :607–614. [ PubMed ] [ Google Scholar ]
17. McNamara JO, II, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 2006; 24 :1005–1015. [ PubMed ] [ Google Scholar ]
18. Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 2008; 16 :1481–1489. [ PMC free article ] [ PubMed ] [ Google Scholar ]
19. Joshi P, Prasad VR. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment) J. Virol. 2002; 76 :6545–6557. [ PMC free article ] [ PubMed ] [ Google Scholar ]
20. Chen F, Hu Y, Li D, Chen H, Zhang XL. CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One. 2009; 4 :e8142. [ PMC free article ] [ PubMed ] [ Google Scholar ]
21. Bellecave P, Cazenave C, Rumi J, Staedel C, Cosnefroy O, Andreola ML, Ventura M, Tarrago-Litvak L, Astier-Gin T. Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers: mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob. Agents Chemother. 2008; 52 :2097–2110. [ PMC free article ] [ PubMed ] [ Google Scholar ]
22. Pan Q, Zhang XL, Wu HY, He PW, Wang F, Zhang MS, Hu JM, Xia B, Wu J. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrob. Agents Chemother. 2005; 49 :4052–4060. [ PMC free article ] [ PubMed ] [ Google Scholar ]
23. Kissel JD, Held DM, Hardy RW, Burke DH. Single-stranded DNA aptamer RT1t49 inhibits RT polymerase and RNase H functions of HIV type 1, HIV type 2, and SIVCPZ RTs. AIDS Res. Hum. Retroviruses. 2007; 23 :699–708. [ PubMed ] [ Google Scholar ]
24. Fisher TS, Joshi P, Prasad VR. HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Res. Ther. 2005; 2 :8. [ PMC free article ] [ PubMed ] [ Google Scholar ]
25. Held DM, Kissel JD, Thacker SJ, Michalowski D, Saran D, Ji J, Hardy RW, Rossi JJ, Burke DH. Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers. J. Virol. 2007; 81 :5375–5384. [ PMC free article ] [ PubMed ] [ Google Scholar ]
26. Kissel JD, Held DM, Hardy RW, Burke DH. Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Nucleic Acids Res. 2007; 35 :5039–5050. [ PMC free article ] [ PubMed ] [ Google Scholar ]
27. Michailidis E, Marchand B, Kodama EN, Singh K, Matsuoka M, Kirby KA, Ryan EM, Sawani AM, Nagy E, Ashida N, et al. Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-Ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor. J. Biol. Chem. 2009; 284 :35681–35691. [ PMC free article ] [ PubMed ] [ Google Scholar ]
28. Gotte M, Maier G, Gross HJ, Heumann H. Localization of the active site of HIV-1 reverse transcriptase-associated RNase H domain on a DNA template using site-specific generated hydroxyl radicals. J. Biol. Chem. 1998; 273 :10139–10146. [ PubMed ] [ Google Scholar ]
29. Metzger W, Hermann T, Schatz O, Le Grice SF, Heumann H. Hydroxyl radical footprint analysis of human immunodeficiency virus reverse transcriptase-template.primer complexes. Proc. Natl Acad. Sci. USA. 1993; 90 :5909–5913. [ PMC free article ] [ PubMed ] [ Google Scholar ]
30. Kvaratskhelia M, Miller JT, Budihas SR, Pannell LK, Le Grice SF. Identification of specific HIV-1 reverse transcriptase contacts to the viral RNA:tRNA complex by mass spectrometry and a primary amine selective reagent. Proc. Natl Acad. Sci. USA. 2002; 99 :15988–15993. [ PMC free article ] [ PubMed ] [ Google Scholar ]
31. Jaeger J, Restle T, Steitz TA. The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor. EMBO J. 1998; 17 :4535–4542. [ PMC free article ] [ PubMed ] [ Google Scholar ]
32. Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA. 1995; 92 :1222–1226. [ PMC free article ] [ PubMed ] [ Google Scholar ]
33. Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Jr, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P, et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc. Natl Acad. Sci. USA. 1993; 90 :6320–6324. [ PMC free article ] [ PubMed ] [ Google Scholar ]
34. Kensch O, Restle T, Wohrl BM, Goody RS, Steinhoff HJ. Temperature-dependent equilibrium between the open and closed conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling. J. Mol. Biol. 2000; 301 :1029–1039. [ PubMed ] [ Google Scholar ]
35. Seckler JM, Howard KJ, Barkley MD, Wintrode PL. Solution structural dynamics of HIV-1 reverse transcriptase heterodimer. Biochemistry. 2009; 48 :7646–7655. [ PMC free article ] [ PubMed ] [ Google Scholar ]
36. Fisher TS, Joshi P, Prasad VR. Mutations that confer resistance to template-analog inhibitors of human immunodeficiency virus (HIV) type 1 reverse transcriptase lead to severe defects in HIV replication. J. Virol. 2002; 76 :4068–4072. [ PMC free article ] [ PubMed ] [ Google Scholar ]
37. Tullius TD, Dombroski BA. Hydroxyl radical ‘footprinting’: high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc. Natl Acad. Sci. USA. 1986; 83 :5469–5473. [ PMC free article ] [ PubMed ] [ Google Scholar ]
38. Balasubramanian B, Pogozelski WK, Tullius TD. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl Acad. Sci. USA. 1998; 95 :9738–9743. [ PMC free article ] [ PubMed ] [ Google Scholar ]
39. Palaniappan C, Fuentes GM, Rodriguez-Rodriguez L, Fay PJ, Bambara RA. Helix structure and ends of RNA/DNA hybrids direct the cleavage specificity of HIV-1 reverse transcriptase RNase H. J. Biol. Chem. 1996; 271 :2063–2070. [ PubMed ] [ Google Scholar ]
40. Ambrus A, Chen D, Dai J, Jones RA, Yang D. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry. 2005; 44 :2048–2058. [ PubMed ] [ Google Scholar ]
41. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006; 34 :5402–5415. [ PMC free article ] [ PubMed ] [ Google Scholar ]
Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press
1. Jellinek D, Green LS, Bell C, Janjic N. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry. 1994; 33 :10450–10456. [ PubMed ] [ Google Scholar ] [ Ref list ]
2. Ng EW, Shima DT, Calias P, Cunningham ET, Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 2006; 5 :123–132. [ PubMed ] [ Google Scholar ] [ Ref list ]
3. Dyke CK, Steinhubl SR, Kleiman NS, Cannon RO, Aberle LG, Lin M, Myles SK, Melloni C, Harrington RA, Alexander JH, et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation. 2006; 114 :2490–2497. [ PubMed ] [ Google Scholar ] [ Ref list ]
6. Tuerk C, MacDougal S, Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl Acad. Sci. USA. 1992; 89 :6988–6992. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
15. Boomer RM, Lewis SD, Healy JM, Kurz M, Wilson C, McCauley TG. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues. Oligonucleotides. 2005; 15 :183–195. [ PubMed ] [ Google Scholar ] [ Ref list ]
16. Wilson C, Keefe AD. Building oligonucleotide therapeutics using non-natural chemistries. Curr. Opin. Chem. Biol. 2006; 10 :607–614. [ PubMed ] [ Google Scholar ] [ Ref list ]
17. McNamara JO, II, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 2006; 24 :1005–1015. [ PubMed ] [ Google Scholar ] [ Ref list ]
18. Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 2008; 16 :1481–1489. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
19. Joshi P, Prasad VR. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment) J. Virol. 2002; 76 :6545–6557. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
20. Chen F, Hu Y, Li D, Chen H, Zhang XL. CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One. 2009; 4 :e8142. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
21. Bellecave P, Cazenave C, Rumi J, Staedel C, Cosnefroy O, Andreola ML, Ventura M, Tarrago-Litvak L, Astier-Gin T. Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers: mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob. Agents Chemother. 2008; 52 :2097–2110. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
22. Pan Q, Zhang XL, Wu HY, He PW, Wang F, Zhang MS, Hu JM, Xia B, Wu J. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrob. Agents Chemother. 2005; 49 :4052–4060. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
7. Schneider DJ, Feigon J, Hostomsky Z, Gold L. High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry. 1995; 34 :9599–9610. [ PubMed ] [ Google Scholar ] [ Ref list ]
9. Michalowski D, Chitima-Matsiga R, Held DM, Burke DH. Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases. Nucleic Acids Res. 2008; 36 :7124–7135. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
23. Kissel JD, Held DM, Hardy RW, Burke DH. Single-stranded DNA aptamer RT1t49 inhibits RT polymerase and RNase H functions of HIV type 1, HIV type 2, and SIVCPZ RTs. AIDS Res. Hum. Retroviruses. 2007; 23 :699–708. [ PubMed ] [ Google Scholar ] [ Ref list ]
24. Fisher TS, Joshi P, Prasad VR. HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Res. Ther. 2005; 2 :8. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
8. Li N, Wang Y, Pothukuchy A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD. Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res. 2008; 36 :6739–6751. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
13. Burke DH, Scates L, Andrews K, Gold L. Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J. Mol. Biol. 1996; 264 :650–666. [ PubMed ] [ Google Scholar ] [ Ref list ]
25. Held DM, Kissel JD, Thacker SJ, Michalowski D, Saran D, Ji J, Hardy RW, Rossi JJ, Burke DH. Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers. J. Virol. 2007; 81 :5375–5384. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
26. Kissel JD, Held DM, Hardy RW, Burke DH. Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Nucleic Acids Res. 2007; 35 :5039–5050. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
27. Michailidis E, Marchand B, Kodama EN, Singh K, Matsuoka M, Kirby KA, Ryan EM, Sawani AM, Nagy E, Ashida N, et al. Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-Ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor. J. Biol. Chem. 2009; 284 :35681–35691. [ PMC free article ] [ PubMed ] [ Google Scholar ] [ Ref list ]
11. Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 2005; 77 :6107–6112. [ PubMed ] [ Google Scholar ] [ Ref list ]
28. Gotte M, Maier G, Gross HJ, Heumann H. Localization of the active site of HIV-1 reverse transcriptase-associated RNase H domain on a DNA template using site-specific generated hydroxyl radicals. J. Biol. Chem. 1998; 273 :10139–10146. [ PubMed ] [ Google Scholar ] [ Ref list ]
29. Metzger W, Hermann T, Schatz O, Le Grice SF, Heumann H. Hydroxyl radical footprint analysis of human immunodeficiency virus reverse transcriptase-template.primer complexes. Proc. Natl Acad. Sc
Модель слегка оголяется в пруду
Слизал сперму негра с жопы Abbey Brooks
Могучие сиськи русской женщины

Report Page