Галерея 3181605

Галерея 3181605




⚡ ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ 👈🏻👈🏻👈🏻

































Галерея 3181605
All Books Conferences Courses Journals & Magazines Standards Authors Citations
A systematic review of theory and applications of AI-IoT technologies in COVID-19 pandemic.
Abstract: The origin of the COVID-19 pandemic has given overture to redirection, as well as innovation to many digital technologies. Even after the progression of vaccination effor... View more
The origin of the COVID-19 pandemic has given overture to redirection, as well as innovation to many digital technologies. Even after the progression of vaccination efforts across the globe, total eradication of this pandemic is still a distant future due to the evolution of new variants. To proactively deal with the pandemic, the health care service providers and the caretaker organizations require new technologies, alongside improvements in existing related technologies, Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning in terms of infrastructure, efficiency, privacy, and security. This paper provides an overview of current theoretical and application prospects of IoT, AI, cloud computing, edge computing, deep learning techniques, blockchain technologies, social networks, robots, machines, privacy, and security techniques. In consideration of these prospects in intersection with the COVID-19 pandemic, we reviewed the technologies within the broad umbrella of AI-IoT technologies in the most concise classification scheme. In this review, we illustrated that AI-IoT technological applications and innovations have most impacted the field of healthcare. The essential AI-IoT technologies found for healthcare were fog computing in IoT, deep learning, and blockchain. Furthermore, we highlighted several aspects of these technologies and their future impact with a novel methodology of using techniques from image processing, machine learning, and differential system modeling.
Published in: IEEE Access ( Volume: 10 )
A systematic review of theory and applications of AI-IoT technologies in COVID-19 pandemic.
TABLE 1
Tabulation of Parameters Extracted From Graph Images and Corresponding Feature Extracted for Decision Trees
TABLE 2
Tabulation of Attributes of Three Dimensional Word2Vec Based Representation and Corresponding Description
TABLE 3
Bluetooth Based Contact Tracing Protocols
TABLE 4
Summarization of Applications of Smart Sensing During COVID-19
TABLE 5
Classification of 14 Main Privacy and Security Requirements and Their Comparison Based on Mean of Their Graph Features: Reduced Citations (
c'
), Interest Index (
I
), Research Index (
r
) and Entropy (
S
)
TABLE 6
Categorization of Detected COVID-19 Datasets According to the Fields of AI With References
TABLE 7
Summary of Applications of AI in COVID-19 Era
TABLE 8
Summary of applications of AI in COVID-19 era (continued)
TABLE 9
Configuration of Common Deep Computer Vision Models in Terms of Number of Parameters in Units of Million (M), Input Dimensions (pixelsxpixels), Number of Operations in Units of Giga Operations Per Second (GOPs), Inference Time Per Batch (s) and Accuracy Density Percentage Per Million Parameters (Signifies the Contribution of Parameters Towards Accuracy of Model)
A. L. Phelan, R. Katz and L. O. Gostin, "The novel coronavirus originating in Wuhan China: Challenges for global health governance", J. Amer. Med. Assoc. , vol. 323, no. 8, pp. 709-710, 2020.
G. Stewart, K. Heusden and G. A. Dumont, "How control theory can help us control COVID-19", IEEE Spectr. , vol. 57, no. 6, pp. 22-29, Jun. 2020.
E. Hernandez-Orallo, P. Manzoni, C. T. Calafate and J.-C. Cano, "Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: The case of COVID-19", IEEE Access , vol. 8, pp. 99083-99097, 2020.
O. Park, "Contact transmission of COVID-19 in South Korea: Novel investigation techniques for tracing contacts", Osong Public Health Res. Perspect. , vol. 11, no. 1, pp. 60-63, Feb. 2020.
P. Jendrny, C. Schulz, F. Twele, S. Meller, M. von Köckritz-Blickwede, A. D. M. E. Osterhaus, et al., "Scent dog identification of samples from COVID-19 patients—A pilot study", BMC Infectious Diseases , vol. 20, no. 1, pp. 1-7, Dec. 2020.
K. Farrahi, R. Emonet and M. Cebrian, "Epidemic contact tracing via communication traces", PLoS ONE , vol. 9, no. 5, May 2014.
[COVID-19]Korea Releases COVID-19 Response Strategy With ICT Xn–ok0b03znzcvn|News/NoticeConsulate General of the Republic of Korea in Toronto , Apr. 2020, [online] Available: https :// mex . mofa . go . kr / ca - toronto - en / brd / m _ 5279 / view . do ? seq = 760678 .
D. M. Skowronski, M. Petric, P. Daly, R. A. Parker, E. Bryce, P. W. Doyle, et al., "Coordinated response to SARS Vancouver Canada", Emerg. Infectious Diseases , vol. 12, no. 1, pp. 155-158, 2006.
E. Blozik, C. Grandchamp and J. von Overbeck, "Influenza surveillance using data from a telemedicine centre", Int. J. Public Health , vol. 57, no. 2, pp. 447-452, Apr. 2012.
E. J. Chow, N. G. Schwartz, F. A. Tobolowsky, R. L. Zacks, M. Huntington-Frazier, S. C. Reddy, et al., "Symptom screening at illness onset of health care personnel with SARS-Cov-2 infection in king county Washington", Jama , vol. 323, no. 20, pp. 2087-2089, 2020.
T. Greenhalgh, G. C. H. Koh and J. Car, "COVID-19: A remote assessment in primary care", BMJ , vol. 368, Mar. 2020.
J. Chen, K. Gao, R. Wang and G.-W. Wei, "Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies", Chem. Sci. , vol. 12, no. 20, pp. 6929-6948, 2021.
M. Monajjemi, F. Mollaamin, A. S. Shekarabi and A. Ghadami, "Variety of spike protein in COVID-19 mutation: Stability effectiveness and outbreak rate as a target for vaccine and therapeutic development", Biointerface Res. App. , vol. 11, pp. 26-10016, Jan. 2021.
P. Olliaro, "What does 95% COVID-19 vaccine efficacy really mean?", Lancet Infectious Diseases , vol. 21, no. 6, pp. 769, Jun. 2021.
J. Li and X. Guo, "COVID-19 contact-tracing apps: A survey on the global deployment and challenges", arXiv:2005.03599 , 2020.
Q. Tang, "Privacy-preserving contact tracing: Current solutions and open questions", arXiv:2004.06818 , 2020.
N. Ahmed, R. A. Michelin, W. Xue, S. Ruj, R. Malaney, S. S. Kanhere, et al., "A survey of COVID-19 contact tracing Apps", IEEE Access , vol. 8, pp. 134577-134601, 2020.
V. Chamola, V. Hassija, V. Gupta and M. Guizani, "A comprehensive review of the COVID-19 pandemic and the role of IoT drones AI blockchain and 5G in managing its impact", IEEE Access , vol. 8, pp. 90225-90265, 2020.
L. L. Wang and K. Lo, "Text mining approaches for dealing with the rapidly expanding literature on COVID-19", Briefings Bioinf. , vol. 22, no. 2, pp. 781-799, Mar. 2021.
T. Alamo, D. G. Reina and P. Millán, "Data-driven methods to monitor model forecast and control COVID-19 pandemic: Leveraging data science epidemiology and control theory", arXiv:2006. 01731 , 2020.
R. A. Siemieniuk, J. J. Bartoszko, L. Ge, D. Zeraatkar, A. Izcovich, E. Kum, et al., "Drug treatments for COVID-19: Living systematic review and network meta-analysis", BMJ , vol. 370, Jul. 2020.
C. M. Ramirez, M. A. Abrajano and R. M. Alvarez, "Using machine learning to uncover hidden heterogeneities in survey data", Sci. Rep. , vol. 9, no. 1, pp. 1-11, Dec. 2019.
C. Kern, T. Klausch and F. Kreuter, "Tree-based machine learning methods for survey research" in Survey Research Methods, Bethesda, MD, USA:NIH Public Access, vol. 13, pp. 73, 2019.
Connected Papers | Find and Explore Academic Papers, Sep. 2021, [online] Available: https :// www . connectedpapers . com .
R. C. Gonzalez, Digital image processing, New Delhi, India, 2009.
L. Pan, W.-S. Chu, J. M. Saragih, F. De la Torre and M. Xie, "Fast and robust circular object detection with probabilistic pairwise voting", IEEE Signal Process. Lett. , vol. 18, no. 11, pp. 639-642, Nov. 2011.
E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient alternative to SIFT or SURF", Proc. Int. Conf. Comput. Vis. , pp. 2564-2571, Nov. 2011.
A. Herout, M. Dubská and J. Havel, "Review of Hough transform for line detection" in Real-Time Detection of Lines and Grids, Cham, Switzerland:Springer, pp. 3-16, 2013.
B. Iqbal, W. Iqbal, N. Khan, A. Mahmood and A. Erradi, "Canny edge detection and Hough transform for high resolution video streams using Hadoop and spark", Cluster Comput. , vol. 23, no. 1, pp. 397-408, Mar. 2020.
L. He, X. Ren, Q. Gao, X. Zhao, B. Yao and Y. Chao, "The connected-component labeling problem: A review of state-of-the-art algorithms", Pattern Recognit. , vol. 70, pp. 25-43, Oct. 2017.
S. Goldstein and J. L. Lebowitz, "On the (Boltzmann) entropy of non-equilibrium systems", Phys. D Nonlinear Phenom. , vol. 193, no. 1, pp. 53-66, Jun. 2004.
J. Tolles and T. Luong, "Modeling epidemics with compartmental models", JAMA , vol. 323, no. 24, pp. 2515-2516, 2020.
A. Malik, N. Kumar and K. Alam, "Estimation of parameter of fractional order COVID-19 SIQR epidemic model", Mater. Today Proc. , vol. 49, pp. 3265-3269, Jan. 2022.
Y. Goldberg and O. Levy, "Word2vec explained: Deriving Mikolov et al.’s negative-sampling word-embedding method", arXiv:1402.3722 , 2014.
Google Code Archive Long-Term Storage for Google Code Project Hosting , Sep. 2021, [online] Available: https :// code . google . com / archive / p / word2vec .
S. Das, S. Ghosh, S. Bhattacharya, R. Varma and D. Bhandari, "Critical dimension of Word2 Vec", Proc. 2nd Int. Conf. Innov. Electron. Signal Process. Commun. (IESC) , pp. 202-206, Mar. 2019.
P. Pierleoni, R. Concetti, A. Belli and L. Palma, "Amazon Google and Microsoft solutions for IoT: Architectures and a performance comparison", IEEE Access , vol. 8, pp. 5455-5470, 2020.
M. A. Iqbal, S. Hussain, H. Xing and M. A. Imran, Enabling the Internet of Things: Fundamentals Design and Applications, Hoboken, NJ, USA:Wiley, 2020.
Internet of Things (IoT) Market Growth Trends COVID-19 Impact and Forecasts (2021–2026) , Sep. 2021, [online] Available: https :// www . researchandmarkets . com / reports / 4591261 / internet - of - things - iot - market - growth - trends .
A. Làpez-Vargas, M. Fuentes and M. Vivar, "Challenges and opportunities of the Internet of Things for global development to achieve the united nations sustainable development goals", IEEE Access , vol. 8, pp. 37202-37213, 2020.
S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim and S. R. Chaudhry, "IoT architecture challenges and issues: Lack of standardization", Proc. Future Technol. Conf. (FTC) , pp. 731-738, Dec. 2016.
D. Miorandi, S. Sicari, F. De Pellegrini and I. Chlamtac, "Internet of Things: Vision applications and research challenges", Ad Hoc Netw. , vol. 10, no. 7, pp. 1497-1516, 2012.
A. Singh, A. Kaur, A. Dhillon, S. Ahuja and H. Vohra, "Software system to predict the infection in COVID-19 patients using deep learning and web of things", Softw. Pract. Exper. , vol. 52, no. 4, pp. 868-886, May 2021.
Z. Aarab, A. El Ghazi, S. El Fellah, S. Lagdali, M. Lafkih and A. Lyazidi, "COVID-19 context-aware WSN approach", ARPN J. Eng. Appl. Sci. , vol. 16, no. 7, pp. 810-816, Apr. 2021.
L.-P. Beland, A. Brodeur and T. Wright, "COVID-19 stay-at-home orders and employment: Evidence from CPS data", 2020.
H. Jaya, I. Thaief, I. Suhardi and S. Gunawan, "The role of less contact technology in the COVID-19 pandemic", Int. Conf. Sci. Adv. Technol. (ICSAT) , pp. 1266-1274, 2020.
H. Adardour, M. Hadjila, S. Irid, M. Hachemi, M. Benikhlef and I. Benotmane, "Embedded system prototype to fight COVID-19 pandemic contamination with less cost", Wireless Pers. Commun. , vol. 119, no. 4, pp. 3735-3762, Apr. 2021.
A. Florea and V. Fleaca, "Implementing an embedded system to identify possible COVID-19 suspects using thermovision cameras", Proc. 24th Int. Conf. Syst. Theory Control Comput. (ICSTCC) , pp. 322-327, Oct. 2020.
B. Udugama, P. Kadhiresan, H. N. Kozlowski, A. Malekjahani, M. Osborne, V. Y. C. Li, et al., "Diagnosing COVID-19: The disease and tools for detection", ACS Nano , vol. 14, no. 4, pp. 3822-3835, Apr. 2020.
C. S. Wood, M. R. Thomas, J. Budd, T. P. Mashamba-Thompson, K. Herbst, D. Pillay, et al., "Taking connected mobile-health diagnostics of infectious diseases to the field", Nature , vol. 566, no. 7745, pp. 467-474, 2019.
S. J. Iribarren, R. Schnall, P. W. Stone and A. Carballo-Diéguez, "Smartphone applications to support tuberculosis prevention and treatment: Review and evaluation", JMIR mHealth uHealth , vol. 4, no. 2, pp. 1-12, 2016.
A. Malekjahani, S. Sindhwani, A. M. Syed and W. C. W. Chan, "Engineering steps for mobile point-of-care diagnostic devices", Accounts Chem. Res. , vol. 52, no. 9, pp. 2406-2414, 2019.
L. O. Danquah, N. Hasham, M. MacFarlane, F. E. Conteh, F. Momoh, A. A. Tedesco, et al., "Use of a mobile application for ebola contact tracing and monitoring in northern Sierra leone: A proof-of-concept study", BMC Infectious Diseases , vol. 19, no. 1, pp. 810, Dec. 2019.
P. Brangel, A. Sobarzo, C. Parolo, B. S. Miller, P. D. Howes, S. Gelkop, et al., "A serological point-of-care test for the detection of IgG antibodies against ebola virus in human survivors", ACS Nano , vol. 12, no. 1, pp. 63-73, Jan. 2018.
T. Kanazawa, G. Nakagami, T. Goto, H. Noguchi, M. Oe, T. Miyagaki, et al., "Use of smartphone attached mobile thermography assessing subclinical inflammation: A pilot study", J. Wound Care , vol. 25, no. 4, pp. 177-182, Apr. 2016.
L. G. Glynn, P. S. Hayes, M. Casey, F. Glynn, A. Alvarez-Iglesias, J. Newell, et al., "Effectiveness of a smartphone application to promote physical activity in primary care: The SMART MOVE randomised controlled trial", Brit. J. Gen. Pract. , vol. 64, no. 624, pp. e384-e391, Jul. 2014.
T. K. Yoo, J. Y. Choi, Y. Jang, E. Oh and I. H. Ryu, "Toward automated severe pharyngitis detection with smartphone camera using deep learning networks", Comput. Biol. Med. , vol. 125, Oct. 2020.
J. C. L. Himmelreich, E. P. M. Karregat, W. A. M. Lucassen, H. C. P. M. van Weert, J. R. de Groot, M. L. Handoko, et al., "Diagnostic accuracy of a smartphone-operated single-lead electrocardiography device for detection of rhythm and conduction abnormalities in primary care", Ann. Family Med. , vol. 17, no. 5, pp. 403-411, Sep. 2019.
B. Stasak, Z. Huang, S. Razavi, D. Joachim and J. Epps, "Automatic detection of COVID-19 based on short-duration acoustic smartphone speech analysis", J. Healthcare Informat. Res. , vol. 5, no. 2, pp. 201-217, Jun. 2021.
M. D. Kachare, A. J. Rossi, K. D. Donohue and T. Davidov, "Telesurgical assessment: Using smartphone messaging to efficiently manage postoperative wounds", Telemedicine e-Health , vol. 26, no. 12, pp. 1540-1542, Dec. 2020.
M. Kapıcıoğlu, T. Erden, M. Ağır and F. Küçükdurmaz, "The reliability of use of whatsapp in type 1 and type 2 pediatric supracondylar fractures", 2019.
I. Stahl, A. Katsman, M. Zaidman, D. Keshet, A. Sigal and M. Eidelman, "Reliability of smartphone-based instant messaging application for diagnosis classification and decision-making in pediatric orthopedic trauma", Pediatric Emergency Care , vol. 35, no. 6, pp. 403-406, Jul. 2017.
I. Stahl, D. Dreyfuss, D. Ofir, L. Merom, M. Raichel, N. Hous, et al., "Reliability of smartphone-based teleradiology for evaluating thoracolumbar spine fractures", Spine J. , vol. 17, no. 2, pp. 161-167, 2017.
H.-C. Kim and M. Y. Hyun, "Predicting the use of smartphone-based augmented reality (AR): Does telepresence really help?", Comput. Hum. Behav. , vol. 59, pp. 28-38, Jun. 2016.
M. J. Greenfield, J. Luck, M. L. Billingsley, R. Heyes, O. J. Smith, A. Mosahebi, et al., "Demonstration of the effectiveness of augmented reality telesurgery in complex hand reconstruction in Gaza", Plastic Reconstructive Surg. Global Open , vol. 6, no. 3, Mar. 2018.
A. R. Dores, A. Geraldo, I. P. Carvalho and F. Barbosa, "The use of new digital information and communication technologies in psychological counseling during the COVID-19 pandemic", Int. J. Environ. Res. Public Health , vol. 17, no. 20, pp. 7663, Oct. 2020.
How Korea is Using ICT to Fight the Pandemic , Sep. 2021, [online] Available: https :// blog . asiance . com / 2020 / 06 / 09 / 3995 .
I. Braithwaite, T. Callender, M. Bullock and R. W. Aldridge, "Automated and partly automated contact tracing: A systematic review to inform the control of COVID-19", Lancet Digit. Health , vol. 2, no. 11, pp. e607-e621, Nov. 2020.
Y. Xiao and M. E. Torok, "Taking the right measures to control COVID-19", Lancet Infectious Diseases , vol. 20, no. 5, pp. 523-524, May 2020.
S. Jeong, S. Kuk and H. Kim, "A smartphone magnetometer-based diagnostic test for automatic contact tracing in infectious disease epidemics", IEEE Access , vol. 7, pp. 20734-20747, 2019.
A. K. Bali and R. Dwivedi, "Survey of smartphone contact-tracing apps architectures", SSRN Electron. J. .
T. Li, C. Cobb, J. Yang, S. Baviskar, Y. Agarwal, B. Li, et al., "What makes people install a COVID-19 contact-tracing app? Understanding the influence of app design and individual difference on contact-tracing app adoption intention", Pervas. Mobile Comput. , vol. 75, Aug. 2021.
D. Esposito, G. Dipierro, A. Sonnessa, S. Santoro, S. Pascazio and I. Pluchinotta, "Data-driven epidemic intelligence strategies based on digital proximity tracing technologies in the fight against COVID-19 in cities", Sustainability , vol. 13, no. 2, pp. 644, Jan. 2021.
S. Banskota, M. Healy and E. Goldberg, "15 smartphone apps for older adults to use while in isolation during the COVID-19 pandemic", WestJEM May Issue , vol. 21, no. 3, pp. 514, Apr. 2020.
S. Garg and N. Baliyan, "Comparative analysis of Android and iOS from security viewpoint", Comput. Sci. Rev. , vol. 40, May 2021.
Requirements for Coronavirus Disease 2019 (COVID-19) Apps Play Console Help , Sep. 2021, [online] Available: https :// support . google . com / googleplay / android - developer / answer / 9889712 ? hl = en .
T. Martin, G. Karopoulos, J. L. Hernández-Ramos, G. Kambourakis and I. N. Fovino, "Demystifying COVID-19 digital contact tracing: A survey on frameworks and mobile apps", Wireless Commun. Mobile Comput. , vol. 2020, pp. 1-29, Oct. 2020.
F. Legendre, M. Humbert, A. Mermoud and V. Lenders, "Contact tracing: An overview of technologies and cyber risks", arXiv:2007.02806 , 2020.
Y. Ding, Y. Yang, W. Jiang, Y. Liu, T. He and D. Zhang, "Nationwide deployment and operation of a virtual arrival detection system in the wild", Proc. ACM SIGCOMM Conf. , pp. 705-717, Aug. 2021.
H. Wen, Q. Zhao, Z. Lin, D. Xuan and N. Shroff, "A study of the privacy of COVID-19 contact tracing apps", Proc. Int. Conf. Secur. Privacy Commun. Syst. , pp. 297-317, 2020.
Viratrace , Sep. 2020, [online] Available: https :// www . viratrace . org /# .
PEPP-PT , Sep. 2021, [online] Available: https :// github . com / pepp - pt .
Exposure Notification Apple Developer , Sep. 2021, [online] Available: https :// developer . apple . com / exposure - notification .
DocSend Simple Intelligent Modern Content Sending , Sep. 2021, [online] Available: https :// nodle . docsend . com / view / nis3dac .
Documents , Sep. 2021, [online] Available: https :// github . com / DP - 3T / documents .
The OpenTracing Project , Sep. 2021, [online] Available: https :// opentracing . io .
PACT: Private Automated Contact Tracing , Sep. 2021, [online] Available: https :// pact . mit . edu .
Herald Protocol Design , Aug. 2021, [online] Available: https :// heraldprox . io / protocol .
Fully Private Open Source Contact Tracing Technology | COVID-19 Tracking Technology , Dec. 2020, [online] Available: https :// opencovidtrace . org .
ROBERT ROBust and Privacy-presERving Proximity Tracing Protocol , Sep. 2021, [online] Available: https :// github . com / ROBERT - proximity - tracing .
C. Caste
Сексуальная блондинка средних лет очень красиво и эротично позирует сначала на полу а потом в бассейне
Негритянки хотят ебаться и ждут тебя на готове
Соло жопастой негритянки Кали Дримс

Report Page