Галерея 3113299

Галерея 3113299




🛑 ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ 👈🏻👈🏻👈🏻

































Галерея 3113299


Dashboard
Publications
Account settings
Log out







Journal List



Mol Neurodegener



v.6; 2011



PMC3113299










Create a new collection



Add to an existing collection




Unable to load your collection due to an error
Please try again

Published online 2011 May 9. doi: 10.1186/1750-1326-6-30
1 Department of Biology; Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
2 Department of Neuroscience; Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20007, USA
3 Department of Molecular Pharmacology & Physiology; University of South Florida, 4001 E. Fletcher Ave., Tampa, FL, 33612-4742, USA
Received 2011 Jan 19; Accepted 2011 May 9.
Copyright ©2011 Reddy et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Beffert U, Stolt PC, Herz J. Functions of lipoprotein receptors in neurons. J Lipid Res. 2004; 45 :403–409. [ PubMed ] [ Google Scholar ] Kim DH, Iijima H, Goto K, Sakai J, Ishii H, Kim HJ, Suzuki H, Kondo H, Saeki S, Yamamoto T. Human apolipoprotein E receptor 2. A novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. J Biol Chem. 1996; 271 :8373–8380. doi: 10.1074/jbc.271.14.8373. [ PubMed ] [ CrossRef ] [ Google Scholar ] Tissir F, Goffinet AM. Reelin and brain development. Nat Rev Neurosci. 2003; 4 :496–505. doi: 10.1038/nrn1113. [ PubMed ] [ CrossRef ] [ Google Scholar ] D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995; 374 :719–723. doi: 10.1038/374719a0. [ PubMed ] [ CrossRef ] [ Google Scholar ] Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell. 1999; 97 :689–701. doi: 10.1016/S0092-8674(00)80782-5. [ PubMed ] [ CrossRef ] [ Google Scholar ] D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. Reelin is a ligand for lipoprotein receptors. Neuron. 1999; 24 :471–479. doi: 10.1016/S0896-6273(00)80860-0. [ PubMed ] [ CrossRef ] [ Google Scholar ] Howell BW, Hawkes R, Soriano P, Cooper JA. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature. 1997; 389 :733–737. doi: 10.1038/39607. [ PubMed ] [ CrossRef ] [ Google Scholar ] Morimura T, Ogawa M. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Brain Res. 2009; 1304 :26–37. [ PubMed ] [ Google Scholar ] Strasser V, Fasching D, Hauser C, Mayer H, Bock HH, Hiesberger T, Herz J, Weeber EJ, Sweatt JD, Pramatarova A. et al. Receptor clustering is involved in Reelin signaling. Mol Cell Biol. 2004; 24 :1378–1386. doi: 10.1128/MCB.24.3.1378-1386.2004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Benhayon D, Magdaleno S, Curran T. Binding of purified Reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of Disabled-1. Brain Res Mol Brain Res. 2003; 112 :33–45. [ PubMed ] [ Google Scholar ] Rakic P, Caviness VS Jr. Cortical development: view from neurological mutants two decades later. Neuron. 1995; 14 :1101–1104. doi: 10.1016/0896-6273(95)90258-9. [ PubMed ] [ CrossRef ] [ Google Scholar ] Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature. 1997; 389 :730–733. doi: 10.1038/39601. [ PubMed ] [ CrossRef ] [ Google Scholar ] Kubo K, Mikoshiba K, Nakajima K. Secreted Reelin molecules form homodimers. Neurosci Res. 2002; 43 :381–388. doi: 10.1016/S0168-0102(02)00068-8. [ PubMed ] [ CrossRef ] [ Google Scholar ] Duit S, Mayer H, Blake SM, Schneider WJ, Nimpf J. Differential functions of ApoER2 and very low density lipoprotein receptor in Reelin signaling depend on differential sorting of the receptors. J Biol Chem. 2010; 285 :4896–4908. doi: 10.1074/jbc.M109.025973. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Bock HH, Jossin Y, May P, Bergner O, Herz J. Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adaptor protein Disabled-1. J Biol Chem. 2004; 279 :33471–33479. doi: 10.1074/jbc.M401770200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer's disease. Annu Rev Neurosci. 1996; 19 :53–77. doi: 10.1146/annurev.ne.19.030196.000413. [ PubMed ] [ CrossRef ] [ Google Scholar ] Oka K, Tzung KW, Sullivan M, Lindsay E, Baldini A, Chan L. Human very-low-density lipoprotein receptor complementary DNA and deduced amino acid sequence and localization of its gene (VLDLR) to chromosome band 9p24 by fluorescence in situ hybridization. Genomics. 1994; 20 :298–300. doi: 10.1006/geno.1994.1171. [ PubMed ] [ CrossRef ] [ Google Scholar ] Oka K, Ishimura-Oka K, Chu MJ, Sullivan M, Krushkal J, Li WH, Chan L. Mouse very-low-density-lipoprotein receptor (VLDLR) cDNA cloning, tissue-specific expression and evolutionary relationship with the low-density-lipoprotein receptor. Eur J Biochem. 1994; 224 :975–982. doi: 10.1111/j.1432-1033.1994.00975.x. [ PubMed ] [ CrossRef ] [ Google Scholar ] Christie RH, Chung H, Rebeck GW, Strickland D, Hyman BT. Expression of the very low-density lipoprotein receptor (VLDL-r), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer's disease. J Neuropathol Exp Neurol. 1996; 55 :491–498. doi: 10.1097/00005072-199604000-00012. [ PubMed ] [ CrossRef ] [ Google Scholar ] Sakai K, Tiebel O, Ljungberg MC, Sullivan M, Lee HJ, Terashima T, Li R, Kobayashi K, Lu HC, Chan L, Oka K. A neuronal VLDLR variant lacking the third complement-type repeat exhibits high capacity binding of apoE containing lipoproteins. Brain Res. 2009; 1276 :11–21. [ PMC free article ] [ PubMed ] [ Google Scholar ] Clatworthy AE, Stockinger W, Christie RH, Schneider WJ, Nimpf J, Hyman BT, Rebeck GW. Expression and alternate splicing of apolipoprotein E receptor 2 in brain. Neuroscience. 1999; 90 :903–911. doi: 10.1016/S0306-4522(98)00489-8. [ PubMed ] [ CrossRef ] [ Google Scholar ] Perez-Garcia CG, Tissir F, Goffinet AM, Meyer G. Reelin receptors in developing laminated brain structures of mouse and human. Eur J Neurosci. 2004; 20 :2827–2832. doi: 10.1111/j.1460-9568.2004.03733.x. [ PubMed ] [ CrossRef ] [ Google Scholar ] Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M. Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development. 2007; 134 :3883–3891. doi: 10.1242/dev.005447. [ PubMed ] [ CrossRef ] [ Google Scholar ] Nakamura Y, Yamamoto M, Kumamaru E. Significance of the variant and full-length forms of the very low density lipoprotein receptor in brain. Brain Res. 2001; 922 :209–215. doi: 10.1016/S0006-8993(01)03170-5. [ PubMed ] [ CrossRef ] [ Google Scholar ] Brandes C, Kahr L, Stockinger W, Hiesberger T, Schneider WJ, Nimpf J. Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not alpha 2-macroglobulin. J Biol Chem. 2001; 276 :22160–22169. doi: 10.1074/jbc.M102662200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Mayer H, Duit S, Hauser C, Schneider WJ, Nimpf J. Reconstitution of the Reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol Cell Biol. 2006; 26 :19–27. doi: 10.1128/MCB.26.1.19-27.2006. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Hibi T, Mizutani M, Baba A, Hattori M. Splicing variations in the ligand-binding domain of ApoER2 results in functional differences in the binding properties to Reelin. Neurosci Res. 2009; 63 :251–258. doi: 10.1016/j.neures.2008.12.009. [ PubMed ] [ CrossRef ] [ Google Scholar ] Stockinger W, Brandes C, Fasching D, Hermann M, Gotthardt M, Herz J, Schneider WJ, Nimpf J. The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J Biol Chem. 2000; 275 :25625–25632. doi: 10.1074/jbc.M004119200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron. 2005; 47 :567–579. doi: 10.1016/j.neuron.2005.07.007. [ PubMed ] [ CrossRef ] [ Google Scholar ] Hoe HS, Rebeck GW. Functional interactions of APP with the apoE receptor family. J Neurochem. 2008; 106 :2263–2271. doi: 10.1111/j.1471-4159.2008.05517.x. [ PubMed ] [ CrossRef ] [ Google Scholar ] Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem. 2000; 275 :25616–25624. doi: 10.1074/jbc.M000955200. [ PubMed ] [ CrossRef ] [ Google Scholar ] May P, Bock HH, Nimpf J, Herz J. Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J Biol Chem. 2003; 278 :37386–37392. doi: 10.1074/jbc.M305858200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Hoe HS, Rebeck GW. Regulation of ApoE receptor proteolysis by ligand binding. Brain Res Mol Brain Res. 2005; 137 :31–39. [ PubMed ] [ Google Scholar ] Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron. 1999; 24 :481–489. doi: 10.1016/S0896-6273(00)80861-2. [ PubMed ] [ CrossRef ] [ Google Scholar ] Nakano Y, Kohno T, Hibi T, Kohno S, Baba A, Mikoshiba K, Nakajima K, Hattori M. The extremely conserved C-terminal region of Reelin is not necessary for secretion but is required for efficient activation of downstream signaling. J Biol Chem. 2007; 282 :20544–20552. doi: 10.1074/jbc.M702300200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Yasui N, Nogi T, Takagi J. Structural basis for specific recognition of reelin by its receptors. Structure. 2010; 18 :320–331. doi: 10.1016/j.str.2010.01.010. [ PubMed ] [ CrossRef ] [ Google Scholar ] Lambert de Rouvroit C, Bernier B, Royaux I, de Bergeyck V, Goffinet AM. Evolutionarily conserved, alternative splicing of reelin during brain development. Exp Neurol. 1999; 156 :229–238. doi: 10.1006/exnr.1999.7019. [ PubMed ] [ CrossRef ] [ Google Scholar ] Jossin Y, Ignatova N, Hiesberger T, Herz J, Lambert de Rouvroit C, Goffinet AM. The central fragment of Reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J Neurosci. 2004; 24 :514–521. doi: 10.1523/JNEUROSCI.3408-03.2004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Ruiz J, Kouiavskaia D, Migliorini M, Robinson S, Saenko EL, Gorlatova N, Li D, Lawrence D, Hyman BT, Weisgraber KH, Strickland DK. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res. 2005; 46 :1721–1731. doi: 10.1194/jlr.M500114-JLR200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Chen Y, Durakoglugil MS, Xian X, Herz J. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci USA. 2010; 107 :12011–12016. doi: 10.1073/pnas.0914984107. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol. 2001; 17 :25–51. doi: 10.1146/annurev.cellbio.17.1.25. [ PubMed ] [ CrossRef ] [ Google Scholar ] Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005; 120 :421–433. doi: 10.1016/j.cell.2004.12.020. [ PubMed ] [ CrossRef ] [ Google Scholar ] Blake SM, Strasser V, Andrade N, Duit S, Hofbauer R, Schneider WJ, Nimpf J. Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. Embo J. 2008; 27 :3069–3080. doi: 10.1038/emboj.2008.223. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Klar A, Baldassare M, Jessell TM. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell. 1992; 69 :95–110. doi: 10.1016/0092-8674(92)90121-R. [ PubMed ] [ CrossRef ] [ Google Scholar ] Hoe HS, Wessner D, Beffert U, Becker AG, Matsuoka Y, Rebeck GW. F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol Cell Biol. 2005; 25 :9259–9268. doi: 10.1128/MCB.25.21.9259-9268.2005. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Andrade N, Komnenovic V, Blake SM, Jossin Y, Howell B, Goffinet A, Schneider WJ, Nimpf J. ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc Natl Acad Sci USA. 2007; 104 :8508–8513. doi: 10.1073/pnas.0611391104. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Peterziel H, Sackmann T, Strelau J, Kuhn PH, Lichtenthaler SF, Marom K, Klar A, Unsicker K. F-spondin regulates neuronal survival through activation of disabled-1 in the chicken ciliary ganglion. Mol Cell Neurosci. 2011; 46 :483–497. doi: 10.1016/j.mcn.2010.12.001. [ PubMed ] [ CrossRef ] [ Google Scholar ] Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem. 2007; 282 :12290–12297. [ PubMed ] [ Google Scholar ] Burk RF, Hill KE, Olson GE, Weeber EJ, Motley AK, Winfrey VP, Austin LM. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J Neurosci. 2007; 27 :6207–6211. doi: 10.1523/JNEUROSCI.1153-07.2007. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Valentine WM, Abel TW, Hill KE, Austin LM, Burk RF. Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2. J Neuropathol Exp Neurol. 2008; 67 :68–77. doi: 10.1097/NEN.0b013e318160f347. [ PubMed ] [ CrossRef ] [ Google Scholar ] Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, Mayer H, Nimpf J, Prat A, Seidah NG. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008; 283 :2363–2372. [ PubMed ] [ Google Scholar ] Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci USA. 2004; 101 :7100–7105. doi: 10.1073/pnas.0402133101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem. 2004; 279 :50630–50638. doi: 10.1074/jbc.M410077200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Hong C, Duit S, Jalonen P, Out R, Scheer L, Sorrentino V, Boyadjian R, Rodenburg KW, Foley E, Korhonen L. et al. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. J Biol Chem. 2010; 285 :19720–19726. doi: 10.1074/jbc.M110.123729. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Stolt PC, Jeon H, Song HK, Herz J, Eck MJ, Blacklow SC. Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure. 2003; 11 :569–579. doi: 10.1016/S0969-2126(03)00068-6. [ PubMed ] [ CrossRef ] [ Google Scholar ] Howell BW, Gertler FB, Cooper JA. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. Embo J. 1997; 16 :121–132. doi: 10.1093/emboj/16.1.121. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Morimura T, Hattori M, Ogawa M, Mikoshiba K. Disabled1 regulates the intracellular trafficking of reelin receptors. J Biol Chem. 2005; 280 :16901–16908. doi: 10.1074/jbc.M409048200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW. DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem. 2006; 281 :35176–35185. doi: 10.1074/jbc.M602162200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Cheung KK, Mok SC, Rezaie P, Chan WY. Dynamic expression of Dab2 in the mouse embryonic central nervous system. BMC Dev Biol. 2008; 8 :76. doi: 10.1186/1471-213X-8-76. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD, Hamilton TC, Lambeth JD, Xu XX. Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol. 2002; 251 :27–44. doi: 10.1006/dbio.2002.0810. [ PubMed ] [ CrossRef ] [ Google Scholar ] Zhou J, Scholes J, Hsieh JT. Characterization of a novel negative regulator (DOC-2/DAB2) of c-Src in normal prostatic epithelium and cancer. J Biol Chem. 2003; 278 :6936–6941. doi: 10.1074/jbc.M210628200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Cuitino L, Matute R, Retamal C, Bu G, Inestrosa NC, Marzolo MP. ApoER2 is endocytosed by a clathrin-mediated process involving the adaptor protein Dab2 independent of its Rafts' association. Traffic. 2005; 6 :820–838. doi: 10.1111/j.1600-0854.2005.00320.x. [ PubMed ] [ CrossRef ] [ Google Scholar ] Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature. 1993; 364 :717–721. doi: 10.1038/364717a0. [ PubMed ] [ CrossRef ] [ Google Scholar ] Assadi AH, Zhang G, Beffert U, McNeil RS, Renfro AL, Niu S, Quattrocchi CC, Antalffy BA, Sheldon M, Armstrong DD. et al. Interaction of reelin signaling and Lis1 in brain development. Nat Genet. 2003; 35 :270–276. doi: 10.1038/ng1257. [ PubMed ] [ CrossRef ] [ Google Scholar ] Zhang G, Assadi AH, McNeil RS, Beffert U, Wynshaw-Boris A, Herz J, Clark GD, D'Arcangelo G. The Pafah1b complex interacts with the reelin receptor VLDLR. PLoS One. 2007; 2 :e252. doi: 10.1371/journal.pone.0000252. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Whitmarsh AJ. The JIP family of MAPK scaffold proteins. Biochem Soc Trans. 2006; 34 :828–832. [ PubMed ] [ Google Scholar ]
Каролина в душе и после
Блондинка мочит большую висячую грудь в душе
Секс с милой подружкой

Report Page