Галерея 2749602

Галерея 2749602




🔞 ПОДРОБНЕЕ ЖМИТЕ ТУТ 👈🏻👈🏻👈🏻

































Галерея 2749602
25.02 — 25.06.2022 Зона Машин персональная выставка Мэт Коллишоу
18.06 — 27.11.2021 Infinite персональная выставка Чак Клоуз
23.04 — 08.06.2021 Альберт Олен. Онлайн Выставка. персональная выставка
12.02 — 22.04.2021 Малкольм Морли. Онлайн Выставка персональная выставка
26.11.2020 — 26.01.2021 Хельмар Лерский Онлайн Выставка персональная выставка
08.09 — 25.11.2020 Line Matters. Онлайн Выставка. персональная выставка Евгений Чубаров
15.08 — 28.12.2019 Naturally Naked групповая выставка Джордж Кондо
Джон Керрин
Кэрролл Данэм
Тони Мателли
Бьярне Мелгаард
Ясумаса Моримура
Питер Соул
09.11.2018 — 09.02.2019 персональная выставка Вим Дельвуа
08.06 — 10.10.2018 персональная выставка Вик Мюнис
02.02 — 02.06.2018 Альбион персональная выставка Мэт Коллишоу
28.09 — 16.12.2017 Land Of Mirrors персональная выставка Кейичи Танаами
23.06 — 10.09.2017 персональная выставка Питер Хелли
31.03 — 01.06.2017 персональная выставка Дэмиен Хёрст
18.11.2016 — 11.03.2017 персональная выставка Рон Арад
22.04 — 27.09.2016 You Better Call Saul персональная выставка Питер Соул
27.11.2015 — 02.03.2016 Mutated Reality групповая выставка Фрэнсис Бэкон
Чак Клоуз
Джордж Кондо
Вим Дельвуа
Кэррол Данэм
Kaws
Майк Келли
Тони Мателли
Малкольм Морли
Питер Соул
03.04 — 10.11.2015 персональная выставка Евгений Чубаров
14.11.2014 — 23.03.2015 персональная выставка Ли Уфан
26.06 — 01.11.2014 персональная выставка Вим Дельвуа
21.03 — 15.06.2014 групповая выставка Олаф Брёнинг
Тони Мателли
Джон Миллер
13.09.2013 — 28.02.2014 Electric Spirit персональная выставка Ансельм Рейле
21.09 — 30.12.2010 персональная выставка Питер Хелли
28.04 — 08.08.2010 персональная выставка Стефан Балкенхол
01.03 — 21.04.2010 Persona Grata групповая выставка Джордж Кондо
Роберт Лукандер
Стефан Балкенхол
Мартин Малони
Вик Мюнис
Джоэл-Питер Уиткин
23.09 — 28.12.2009 The Idiot персональная выставка Тони Мателли
20.01 — 10.04.2009 Price of Oil групповая выставка Кристин Калабриз
Вик Мюнис
Тал Р
Евгений Чубаров
Мартин Малони
Роберт Лукандер
Лиза Райтер
18.09 — 30.12.2008 Survival персональная выставка Тони Мателли
15.05 — 14.08.2008 Artificial Realism персональная выставка Джордж Кондо
15.04 — 14.05.2008 Bad planet групповая выставка Джордж Кондо
Антон Хеннинг
Дэвид Лашапель
Тони Мателли
Райан Макгиннесс
Джонатан Мезе
Джон Миллер
Сара Моррис
Рокси Пейн
Андреас Сломинский
07.02 — 10.03.2008 персональная выставка Хельмар Лерский
01.11.2007 — 30.01.2008 Russian Project персональная выставка Вик Мюнис
25.09 — 30.10.2007 Up Close and Personal персональная выставка Мартин Малони
22.06 — 06.08.2007 персональная выставка Андре Бутцер
17.05 — 20.06.2007 персональная выставка Евгений Чубаров
02.03 — 20.04.2007 Hunky Dory групповая выставка Джонатан Мезе
Питер Доиг
Кристофер Вул
Крис Офили
Сесили Браун
Даниэль Рихтер
Тал Р
Дэш Сноу
Джордж Базелиц
Норберт Швонтковски
24.01 — 01.03.2007 Create Your Own Museum групповая выставка Айкон
Казимир Малевич
Александр Родченко
Евгений Чубаров
Реми Цаугг
Джейк и Динос Чэпман
Даниэль Рихтер
Стефан Балкенхол
Ласло Мохой-Наги
Дирк Скребер
Питер Хелли
Сара Моррис
Вик Мюнис
Джордж Кондо
Антон Хеннинг
18.10 — 30.11.2006 One Artist's Theater персональная выставка Ясумаса Моримура
17.05 — 05.08.2006 персональная выставка Питер Хелли
12.04 — 15.05.2006 The Art Of Chess групповая выставка Маурицио Каттелан
Дэмьен Хёрст
Пол Маккарти
Джейк и Динос Чапмэн
Яное Кусама
Мэтью Роней
Том Фридман
Тунга
Рэйчел Уайтрид
Барбара Крюгер
03.02 — 10.04.2006 House Of Prince персональная выставка Тал Р
28.10.2005 — 30.01.2006 персональная выставка Джоэл-Питер Уиткин
21.09 — 15.11.2005 персональная выставка Виджи
25.05 — 31.08.2005 Fresh Kills персональная выставка Алексис Рокман
10.02 — 15.05.2005 We can do it групповая выставка Кристин Калабрезе
Вик Мюнис
Торбин Гилер
Энтони Гормли
Питер Хелли
Стефан Балкенхол
Тони Мателли
Тони Оуслер




The site is temporarily unavailable. Please contact your local branch for immediate assistance...

本网站暂时不可用。如需即时帮助,请联系您当地的分支机构。

本網站暫時無法使用,請與當地分公司聯絡尋求即時支援。

Tato stránka je dočasně nedostupná. Pro okamžitou pomoc se prosím obraťte na svou místní pobočku.

Le site est temporairement indisponible. Veuillez contacter votre agence locale pour une assistance immédiate.

Die Seite ist momentan nicht verfügbar. Bitte wenden Sie sich für sofortige Unterstützung an Ihre regionale Niederlassung.

Momentaneamente il sito non è disponibile. Contatta la sede locale per ottenere assistenza immediata.

El sitio está temporalmente no disponible. Póngase en contacto con la oficina local para recibir ayuda inmediata.

Este sitio está temporalmente fuera de servicio. Póngase en contacto con su concesionario local para recibir asistencia inmediata.


Mouser Electronics� | 1000 North Main Street | Mansfield, TX 76063-1514

Provided are a polyurethane polyurea resin composition that has high storage stability without a decrease in viscosity or turbidity over time and a printing ink that has high storage stability without a decrease in viscosity or coloration over time. The resin composition contains, as essential components, a polyurethane polyurea resin (A), a polyhydroxymonocarboxylic acid (B) having an acid value of 340 to 500 mg KOH/g and a hydroxyl value of 680 to 1,300 mg KOH/g, and at least one solvent selected from the group consisting of an ester solvent (C1) and an alcohol solvent (C2).
The present invention relates to polyurethane polyurea resin compositions that have high storage stability without changes over time such as turbidity, coloration, and a decrease in viscosity.
Polyurethane polyurea resins are frequently used as binder resins for printing inks and coatings. For example, gravure printing inks containing polyurethane polyurea resins are frequently used for printing on plastic films for packaging various products such as confectionery and food. Polyurethane polyurea resins often contain solvents such as toluene and ketones, in which these resins are highly soluble. Recently, these solvents have increasingly been replaced by alcohol solvents and ester solvents with the revision of the Industrial Safety and Health Law and the increasing awareness of work environments. Polyurethane polyurea resins containing alcohol and ester solvents, however, have a problem in that they have low storage stability because their viscosity tends to decrease over time. The decrease in viscosity is attributed to the fact that water contained in the ester and alcohol solvents reacts with amino groups in the polyurethane polyurea resins to produce hydroxide ions, which cleave ester bonds in the polyurethane polyurea resins.
As a method for preventing the decrease in viscosity over time, a technique is known in which malic acid is added to a resin composition containing a polyurethane polyurea resin and a mixture of ethyl acetate of isopropyl alcohol to inhibit the activity of amino groups, thereby reducing the decrease in viscosity (see PTL 1). However, although this reduces the decrease in viscosity over time, the resin composition becomes turbid over time and also has an odor. In addition, an ink prepared from the resin composition colors over time.
PTL 1: Japanese Unexamined Patent Application Publication No. 2003-221539 (Japanese Patent No. 3972666 )
Accordingly, an object of the present invention is to provide a polyurethane polyurea resin composition that has high storage stability without a decrease in viscosity or turbidity over time and a printing ink that has high storage stability without a decrease in viscosity or coloration over time.
After conducting intensive research to achieve the above object, the inventors have found that the addition of a polyhydroxymonocarboxylic acid having an acid value of 340 to 500 mg KOH/g and a hydroxyl value of 680 to 1,300 mg KOH/g to a resin composition containing a polyurethane polyurea resin and ester and alcohol solvents provides a resin composition that has high storage stability without changes over time such as a decrease in viscosity and turbidity. The inventors have also found that a printing ink prepared using the polyurethane polyurea resin composition as a binder has high storage stability without a decrease in viscosity or coloration over time. These and other findings have led to the present invention.
Specifically, the present invention relates to a resin composition containing, as essential components, a polyurethane polyurea resin (A), a polyhydroxymonocarboxylic acid (B) having an acid value of 340 to 500 mg KOH/g and a hydroxyl value of 680 to 1,300 mg KOH/g, and at least one solvent selected from the group consisting of an ester solvent (C1) and an alcohol solvent (C2).
The present invention also relates to a printing ink binder containing the resin composition.
The present invention also relates to a printing ink containing the printing ink binder.
The present invention can provide a resin composition that has high storage stability without changes over time such as a decrease in viscosity and turbidity as compared to known polyurethane polyurea resin compositions. The present invention can also provide a printing ink that has high storage stability without changes over time such as a decrease in viscosity and coloration.
According to the present invention, a polyhydroxymonocarboxylic acid (B) is added to a resin composition containing a polyurethane polyurea resin (A) and at least one solvent selected from the group consisting of an ester solvent (C1) and an alcohol solvent (C2) to prevent a decrease in the viscosity of the resin composition over time. Generally, a polyurethane polyurea resin composition containing these solvents exhibits a decrease in viscosity as water contained in the ester and alcohol solvents reacts with amino groups in the polyurethane polyurea resin to produce hydroxide ions, which cleave ester bonds in the polyurethane polyurea resin. The addition of the dihydroxymonocarboxylic acid, however, causes the amino groups to form a salt with the polyhydroxymonocarboxylic acid. This inhibits the reaction of the amino groups with water and thus prevents a decrease in viscosity.
The polyurethane polyurea resin (A) used in the present invention will be described first.
The polyurethane polyurea resin (A) can be prepared, for example, by reacting a polyl compound (a1) with a polyisocyanate compound (a2) such that the number of moles of isocyanate groups in the polyisocyanate compound exceeds the number of moles of hydroxyl groups in the polyol compound to prepare an isocyanate-containing prepolymer and then reacting the isocyanate groups in the prepolymer with a polyamine compound (a3).
The polyol compound (a1) used as a reactant material for the polyurethane polyurea resin (A) may be a diol compound (a1-1), which has two hydroxyl groups in the molecular structure thereof, or a polyol compound (a1-2), which has three or more hydroxyl groups in the molecular structure thereof.
Examples of diol compounds (a1-1) include aliphatic diols such as ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-propanediol, 2,2-dimethyl-3-isopropyl-1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, 3-methyll,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and 2,2,4-trimethyl-1,3-pentanediol;
polyether diols such as polyoxyethylene glycol and polyoxypropylene glycol;
alicyclic diols such as 1,4-cyclohexanedimethanol and hydrogenated bisphenol A;
modified polyether diols prepared by ring-opening polymerization of the aliphatic diols with various cyclic-ether-bond containing compounds such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether;
lactone polyester polyols prepared by polycondensation reactions of the aliphatic diols with various lactones such as ε-caprolactone; and
polyester diols prepared by co-condensation of the aliphatic diols with aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, and sebacic acid; aromatic dicarboxylic acids such as phthalic acid (anhydride), terephthalic acid, isophthalic acid, and orthophthalic acid; alicyclic dicarboxylic acids such as hexahydrophthalic acid and 1,4-cyclohexanedicarboxylic acid; or aliphatic unsaturated dicarboxylic acids such as tetrahydrophthalic acid, maleic acid (anhydride), fumaric acid, citraconic acid, itaconic acid, and glutaconic acid.
Examples of polyol compounds (a1-2) include aliphatic polyols such as trimethylolethane, trimethylolpropane, glycerol, hexanetriol, and pentaerythritol;
modified polyether polyols prepared by ring-opening polymerization of the aliphatic polyols with various cyclic-ether-bond containing compounds such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether;
lactone polyester polyols prepared by polycondensation reactions of the aliphatic polyols with various lactones such as ε-caprolactone;
polyester polyols prepared by co-condensation of the aliphatic polyols with aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, and sebacic acid; aromatic dicarboxylic acids such as phthalic acid (anhydride), terephthalic acid, isophthalic acid, and orthophthalic acid; alicyclic dicarboxylic acids such as hexahydrophthalic acid and 1,4-cyclohexanedicarboxylic acid; or aliphatic unsaturated dicarboxylic acids such as tetrahydrophthalic acid, maleic acid (anhydride), fumaric acid, citraconic acid, itaconic acid, and glutaconic acid; and
polyester polyols prepared by co-condensation of the aliphatic diols or the aliphatic polyols with various tricarboxylic acids such as 1,2,5-hexanetricarboxylic acid, trimellitic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, and 2,5,7-naphthalenetricarboxylic acid.
The above polyol compounds (a1) may be used alone or in a combination of two or more. In particular, the diol compounds (a1-1) are preferred because the resulting polyurethane polyurea resin (A) is highly soluble in the ester solvent (C1) and the alcohol solvent (C2), and the polyester diols, the polyether diols, and the modified polyether diols are more preferred.
The polyisocyanate compound (a2) used as a reactant material for the polyurethane polyurea resin (A) may be a diisocyanate compound (a2-1), which has two isocyanate groups in the molecular structure thereof, or a polyisocyanate compound (a2-2), which has three or more isocyanate groups in the molecular structure thereof.
Examples of diisocyanate compounds (a2-1) include aliphatic diisocyanates such as butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, and m-tetramethylxylylene diisocyanate;
alicyclic diisocyanates such as cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, methylcyclohexane diisocyanate, isopropylidenedicyclohexyl-4,4'-diisocyanate, and norbornane diisocyanate; and
aromatic diisocyanates such as 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate.
Examples of polyisocyanate compounds (a2-2) include adduct-type polyisocyanate compounds, which have a urethane bond site in the molecule thereof, and nurate-type polyisocyanate compounds, which have an isocyanurate ring structure in the molecule thereof.
Adduct-type polyisocyanate compounds, which have a urethane bond site in the molecule thereof, are prepared, for example, by reacting a diisocyanate compound with a polyol compound. Examples of diisocyanate compounds used for the reaction include the various diisocyanate compounds illustrated as the diisocyanate compound (a2-1), which may be used alone or in a combination of two or more. Examples of polyol compounds used for the reaction include the various polyol compounds illustrated as the polyol compound (a1), which may be used alone or in a combination of two or more.
Nurate-type polyisocyanate compounds, which have an isocyanurate ring structure in the molecule thereof in the molecule thereof, are prepared, for example, by reacting a diisocyanate compound with a monoalcohol and/or a diol. Examples of diisocyanate compounds used for the reaction include the various diisocyanate compounds illustrated as the diisocyanate compound, which may be used alone or in a combination of two or more. Examples of monoalcohols used for the reaction include hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n-heptadecanol, n-octadecanol, n-nonadecanol, eicosanol, 5-ethyl-2-nonanol, trimethylnonyl alcohol, 2-hexyldecanol, 3,9-diethyl-6-tridecanol, 2-isoheptylisoundecanol, 2-octyldodecanol, and 2-decyltetradecanol. Examples of diols include the various diols illustrated as the diol compound (a1-1). These monoalcohols and diols may be used alone or in a combination of two or more.
The above polyisocyanate compounds (a2) may be used alone or in a combination of two or more. In particular, the diisocyanate compounds (a2-1) are preferred because the resulting polyurethane polyurea resin (A) is highly soluble in the ester solvent (C1) and the alcohol solvent (C2), and hexamethylene diisocyanate and isophorone diisocyanate are more preferred.
To prepare the isocyanate-containing prepolymer by reacting a diol compound (a1) with a diisocyanate compound (a2), they may be reacted, for example, such that the ratio [(OH)/(NCO)] of the number of moles (OH) of hydroxyl groups in the diol compound (a1) to the number of moles (NCO) of isocyanate groups in the diisocyanate compound (a2) is 1.0/1.1 to 1.0/5.0. The reaction may be effected in the temperature range of 60°C to 130°C, optionally in the presence of an urethanization catalyst such as tin(II) octanoate.
Examples of polyamine compounds (a3) used as a reactant material for the polyurethane polyurea resin (A) include diamine compounds such as ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, 2-hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, and di-2-hydroxypropylethylenediamine; triamine compounds such as diethylenetriamine and pentane-1,2,5-triamine; and tetramine compounds such as triethylenetetramine. These may be used alone or in a combination of two or more. In particular, diamine compounds are preferred because the resulting polyurethane polyurea resin (A) is highly soluble in the ester solvent (C1) and the alcohol solvent (C2), and ethylenediamine and isophoronediamine are more preferred.
To prepare the polyurethane polyurea resin (A) by reacting the isocyanate-containing prepolymer with a diamine compound (a3), they may be reacted, for example, by preparing a solutio
Траху мулатки в большую жопу
Весьма сексуальная зрелая блондинка
Ана Фокс позирует без одежды и подставляет свою черную пизденку для секса возбужденному мужчине

Report Page