Галерея 2644690

Галерея 2644690




⚡ ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ 👈🏻👈🏻👈🏻

































Галерея 2644690











Корзина




Вход




Регистрация




Восстановить пароль










г.Шымкент, ул.Турара Рыскулова д.30, Магазин «Галерея», напротив рынка «Евразия»

Мастера 

Дизайнеры
Строители



Пресс-центр 

Новости
Вакансии
Обзоры и советы



О компании 

Наши магазины
Адреса магазинов
Публичная Оферта
Производители
Опт Казахстан
Опт Кыргызстан
Скидки на товары
Новинки


Прием заказов с сайта осуществляется круглосуточно
Обработка заказов - ежедневно с 9:00 до 18:00
© 2010-2023 Торговый дом Галерея. Все права защищены. При использовании материалов сайта активная ссылка на источник обязательна.



Dashboard
Publications
Account settings
Log out







Journal List



Mol Brain



v.2; 2009



PMC2644690










Create a new collection



Add to an existing collection




Unable to load your collection due to an error
Please try again

Published online 2009 Feb 9. doi: 10.1186/1756-6606-2-5
1 Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
2 Institute of Biomedicine/Biochemistry, Helsinki University, Helsinki, Finland
3 Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
4 Department of Pathology, Haartman Institute, Helsinki University, Helsinki, Finland
5 Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
6 Biochemical Institute, University of Kiel, Kiel, Germany
7 Division of Neuroscience, Ottawa Health Research Institute, Ottawa, Canada
8 Department of Pathology, University of Ottawa, Ottawa, Canada
9 Current affiliation : Link Medicine Corp., Cambridge, Massachusetts, USA
Received 2008 Dec 21; Accepted 2009 Feb 9.
Copyright © 2009 Cullen et al; licensee BioMed Central Ltd.
Additional file 1 Supplementary Figure 1 – Expression and quantification of α-synuclein in MES23.5 cells . Recombinant, human α-synuclein (aSyn) (A) and lysates of MES23.5 cells expressing αS (B-C) were analyzed by ELISA [hSA2/Biotinylated Syn-1]. (A) A typical standard curve of serial dilutions of recombinant αS (mean of triplicate wells). (B) Following generation of MES-aSyn cells with three different concentrations of human SNCA cDNA (μg/10 cm dish; total DNA transfected per dish, 5.5 μg), lysates were analyzed in 4 different dilutions, as indicated. Results show the mean absorbance signals of triplicates from a representative experiment. (C) Linear relationship between amount of SNCA -encoding cDNA transfected into MES23.5 cells and αS protein expression, as monitored by ELISA. Each lysate was analyzed in 4 different dilutions in triplicate. Linear regression of cDNA-to-protein was performed; results represent the mean aSyn values (μg) expressed from a representative experiment.
GUID: 07E04E21-AD95-4E63-A597-0C6B458AE04A
Additional file 2 Supplementary Figure 2 – Characterization of affinity-purified antibodies to α-synuclein using genotyped mouse brain . Whole brain extracts of genotyped mice were generated by lysis buffer that contained NP-40 and protease inhibitors [ 37 ]; increasing amounts of the NP-40 extract (μg/lane) were loaded onto SDS/PAGE gels under reducing conditions. Immunoblots were probed with polyclonal, affinity-purified anti-aSyn, hSA-2 (top panel) and mSA-1 (third panel). Loading controls showing IgG heavy chains are shown for both blots. Lysates were prepared from from snca knock-out mice without a transgene (no transgene; left half) and mice that carry a human, wild-type SNCA transgene ( SNCA transgene; right half; brains kindly provided by Dr. Bob Nussbaum, UCSF). Note the specific detection of full-length aSyn (16 kDa), and of 12.5 kDa and ~10 kDa truncated species of aSyn in SNCA -expressing mice.
GUID: A1360FE7-4B9D-4B94-8B8E-4ABA37F11C6C
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997; 276 :2045–2047. doi: 10.1126/science.276.5321.2045. [ PubMed ] [ CrossRef ] [ Google Scholar ] Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet. 1998; 18 :106–108. doi: 10.1038/ng0298-106. [ PubMed ] [ CrossRef ] [ Google Scholar ] Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science. 2003; 302 :841. doi: 10.1126/science.1090278. [ PubMed ] [ CrossRef ] [ Google Scholar ] Trojanowski JQ, Lee VM. Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch Neurol. 1998; 55 :151–152. doi: 10.1001/archneur.55.2.151. [ PubMed ] [ CrossRef ] [ Google Scholar ] Goedert M. Parkinson's disease and other alpha-synucleinopathies. Clin Chem Lab Med. 2001; 39 :308–312. doi: 10.1515/CCLM.2001.047. [ PubMed ] [ CrossRef ] [ Google Scholar ] Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997; 388 :839–840. doi: 10.1038/42166. [ PubMed ] [ CrossRef ] [ Google Scholar ] Klein C, Schlossmacher MG. Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology. 2007; 69 :2093–2104. doi: 10.1212/01.wnl.0000271880.27321.a7. [ PubMed ] [ CrossRef ] [ Google Scholar ] Chesselet MF. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's disease? Exp Neurol. 2008; 209 :22–27. doi: 10.1016/j.expneurol.2007.08.006. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature. 2000; 404 :394–398. doi: 10.1038/35006074. [ PubMed ] [ CrossRef ] [ Google Scholar ] Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000; 287 :1265–1269. doi: 10.1126/science.287.5456.1265. [ PubMed ] [ CrossRef ] [ Google Scholar ] Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL. Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA. 2002; 99 :8968–8973. doi: 10.1073/pnas.132197599. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 2002; 34 :521–533. doi: 10.1016/S0896-6273(02)00682-7. [ PubMed ] [ CrossRef ] [ Google Scholar ] Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S, Okamoto N, Jacobsen H, Iwatsubo T, Trojanowski JQ, Takahashi H, et al. Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol. 2001; 159 :2215–2225. [ PMC free article ] [ PubMed ] [ Google Scholar ] Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006; 281 :29739–29752. doi: 10.1074/jbc.M600933200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Leroy E, Anastasopoulos D, Konitsiotis S, Lavedan C, Polymeropoulos MH. Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease. Hum Genet. 1998; 103 :424–427. doi: 10.1007/s004390050845. [ PubMed ] [ CrossRef ] [ Google Scholar ] Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998; 392 :605–608. doi: 10.1038/33416. [ PubMed ] [ CrossRef ] [ Google Scholar ] Carmine Belin A, Westerlund M, Bergman O, Nissbrandt H, Lind C, Sydow O, Galter D. S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism Relat Disord. 2007; 13 :295–298. doi: 10.1016/j.parkreldis.2006.12.002. [ PubMed ] [ CrossRef ] [ Google Scholar ] Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Kruger R, Hattori N, Mellick GD, Quattrone A, Satoh J, et al. UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol. 2004; 55 :512–521. doi: 10.1002/ana.20017. [ PubMed ] [ CrossRef ] [ Google Scholar ] Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science. 2001; 293 :263–269. doi: 10.1126/science.1060627. [ PubMed ] [ CrossRef ] [ Google Scholar ] Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT., Jr The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. 2002; 111 :209–218. doi: 10.1016/S0092-8674(02)01012-7. [ PubMed ] [ CrossRef ] [ Google Scholar ] Lo Bianco C, Deglon N, Pralong W, Aebischer P. Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson's disease. Neurobiol Dis. 2004; 17 :283–289. doi: 10.1016/j.nbd.2004.06.008. [ PubMed ] [ CrossRef ] [ Google Scholar ] Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003; 278 :25009–25013. doi: 10.1074/jbc.M300227200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem. 2005; 280 :23727–23734. doi: 10.1074/jbc.M503326200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Ventruti A, Cuervo AM. Autophagy and neurodegeneration. Curr Neurol Neurosci Rep. 2007; 7 :443–451. doi: 10.1007/s11910-007-0068-5. [ PubMed ] [ CrossRef ] [ Google Scholar ] Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem. 2007; 282 :5641–5652. doi: 10.1074/jbc.M609532200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008; 283 :23542–23556. doi: 10.1074/jbc.M801992200. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Lee HJ, Khoshaghideh F, Patel S, Lee SJ. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci. 2004; 24 :1888–1896. doi: 10.1523/JNEUROSCI.3809-03.2004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004; 305 :1292–1295. doi: 10.1126/science.1101738. [ PubMed ] [ CrossRef ] [ Google Scholar ] Hasilik A, Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980; 255 :4937–4945. [ PubMed ] [ Google Scholar ] Siintola E, Partanen S, Stromme P, Haapanen A, Haltia M, Maehlen J, Lehesjoki AE, Tyynela J. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006; 129 :1438–1445. doi: 10.1093/brain/awl107. [ PubMed ] [ CrossRef ] [ Google Scholar ] Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, Haltia M, Lobel P. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 2000; 19 :2786–2792. doi: 10.1093/emboj/19.12.2786. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Awano T, Katz ML, O'Brien DP, Taylor JF, Evans J, Khan S, Sohar I, Lobel P, Johnson GS. A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis. Mol Genet Metab. 2006; 87 :341–348. doi: 10.1016/j.ymgme.2005.11.005. [ PubMed ] [ CrossRef ] [ Google Scholar ] Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, Schulz-Schaeffer W, Watanabe T, Waguri S, Kametaka S, et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci. 2000; 20 :6898–6906. [ PMC free article ] [ PubMed ] [ Google Scholar ] Partanen S, Haapanen A, Kielar C, Pontikis C, Alexander N, Inkinen T, Saftig P, Gillingwater TH, Cooper JD, Tyynela J. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis. J Neuropathol Exp Neurol. 2008; 67 :16–29. [ PubMed ] [ Google Scholar ] Hossain S, Alim A, Takeda K, Kaji H, Shinoda T, Ueda K. Limited proteolysis of NACP/alpha-synuclein. J Alzheimers Dis. 2001; 3 :577–584. [ PubMed ] [ Google Scholar ] Sevlever D, Jiang P, Yen SH. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry. 2008; 47 :9678–9687. doi: 10.1021/bi800699v. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Schlossmacher MG, Shimura H. Parkinson's disease: assays for the ubiquitin ligase activity of neural Parkin. Methods Mol Biol. 2005; 301 :351–369. [ PubMed ] [ Google Scholar ] LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005; 11 :1214–1221. doi: 10.1038/nm1314. [ PubMed ] [ CrossRef ] [ Google Scholar ] Mollenhauer B, Cullen V, Kahn I, Krastins B, Outeiro TF, Pepivani I, Ng J, Schulz-Schaeffer W, Kretzschmar HA, McLean PJ, et al. Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol. 2008; 213 :315–325. doi: 10.1016/j.expneurol.2008.06.004. [ PubMed ] [ CrossRef ] [ Google Scholar ] Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, Ney PA, Ng J, McGoldrick M, Mollenhauer B, et al. GATA transcription factors directly regulate the Parkinson's disease-linked gene alpha-synuclein. Proc Natl Acad Sci USA. 2008; 105 :10907–10912. doi: 10.1073/pnas.0802437105. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, Koster A, Hess B, Evers M, von Figura K, et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 1995; 14 :3599–3608. [ PMC free article ] [ PubMed ] [ Google Scholar ] Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, Ochiishi T, Shimura H, Sharon R, Hattori N, et al. Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol. 2002; 160 :1655–1667. [ PMC free article ] [ PubMed ] [ Google Scholar ] Myllykangas L, Tyynela J, Page-McCaw A, Rubin GM, Haltia MJ, Feany MB. Cathepsin D-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses. Neurobiol Dis. 2005; 19 :194–199. doi: 10.1016/j.nbd.2004.12.019. [ PubMed ] [ CrossRef ] [ Google Scholar ] Crawford GD, Jr, Le WD, Smith RG, Xie WJ, Stefani E, Appel SH. A novel N18TG2 × mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J Neurosci. 1992; 12 :3392–3398. [ PMC free article ] [ PubMed ] [ Google Scholar ] Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ. alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci USA. 2001; 98 :9110–9115. doi: 10.1073/pnas.171300598. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci. 2007; 27 :3338–3346. doi: 10.1523/JNEUROSCI.0285-07.2007. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002; 4 :160–164. [ PubMed ] [ Google Scholar ] Cabin DE, Gispert-Sanchez S, Murphy D, Auburger G, Myers RR, Nussbaum RL. Exacerbated synucleinopathy in mice expressing A53T SNCA on a Snca null background. Neurobiol Aging. 2005; 26 :25–35. doi: 10.1016/j.neurobiolaging.2004.02.026. [ PubMed ] [ CrossRef ] [ Google Scholar ] Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci. 2002; 22 :8797–8807. [ PMC free article ] [ PubMed ] [ Google Scholar ] Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, Haltia M, Lobel P. Congenital ovine neuronal ceroid lipofuscinosis – a cathepsin D deficiency with increased levels of the inactive enzyme. Eur J Paediatr Neurol. 2001; 5 :43–45. doi: 10.1053/ejpn.2000.0433. [ PubMed ] [ CrossRef ] [ Google Scholar ] Garborg I, Torvik A, Hals J, Tangsrud SE, Lindemann R. Congenital neuronal ceroid lipofuscinosis. A case report. Acta Pathol Microbiol Immunol Scand [A] 1987; 95 :119–125. [ PubMed ] [ Google Scholar ] Xilouri M, Vogiat
Галерея 2811889
Холли Хендрикс и двойной анал
Галерея 2418601

Report Page