Галерея 2394752

Галерея 2394752




🔞 ПОДРОБНЕЕ ЖМИТЕ ТУТ 👈🏻👈🏻👈🏻

































Галерея 2394752
Starting A Registration How to start a new registration.
My Account - Part 1 My Account Basics
My Account - Part 2 Importing, Managing, and Using a Personal Roster
Parent Portal - Parents Guide How parents can update registrations.
Leave No Trace Trainer Course (Camp Teetonkah)
Map of Event $ View Pricing Coords: 42.208412, -84.2394752 3710 Burkhart Road Jackson, Michigan 49201 Registration Closes:  04-16-2023 11:59 PM
The Michigan Crossroads Council is sponsoring this special Trainer course for all individuals, youth and adult, wanting to be verified as Trainers of Leave No Trace. Youth, 14 and older will need this course to fulfill the requirements of their units new BSA Outdoor Ethics Position of Responsibility.
Units are encouraged to have both an adult and youth trainer to deliver a complete LNT program - multiple registrations from the same unit will receive a $10/person discount. Ask your Committee to support their unit by covering the cost of this unique course!

An updated BSA Annual Health Form A&B is required for all Participants


Access denied
Error code 1020


Was this page helpful?
Yes
No

You do not have access to www.carvana.com.
The site owner may have set restrictions that prevent you from accessing the site.
Provide the site owner this information.
I got an error when visiting www.carvana.com/vehicle/2394752.

Performance & security by Cloudflare




Dashboard
Publications
Account settings
Log out







Journal List



Genome Biol



v.8(6); 2007



PMC2394752










Create a new collection



Add to an existing collection




Unable to load your collection due to an error
Please try again

Published online 2007 Jun 6. doi: 10.1186/gb-2007-8-6-r104
1 The Hamner Institutes for Health Sciences, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709-2137, USA
2 Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
3 Institute for Translational Medicine and Therapeutics, 810 Biomedical Research Building, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
4 Almac Diagnostics, 801-1 Capitola Drive, Durham, NC 27713, USA
Thomas A Halsey: gro.renmaheht@yeslaht ; Longlong Yang: gro.renmaheht@gnayl ; John R Walker: gro.fng@reklawj ; John B Hogenesch: ude.nnepu.dem.liam@csenegoh ; Russell S Thomas: gro.renmaheht@samohtr
Received 2006 Jan 9; Revised 2007 Apr 3; Accepted 2007 Jun 6.
Copyright © 2007 Thomas et al.; licensee BioMed Central Ltd.
Additional data file 1 A complete list of positive NFκB modulators identified using the gain-of-function full-length gene screens.
GUID: 1930B040-3948-40B9-8D28-85C408C3E849
Additional data file 2 A complete list of negative NFκB modulators identified using the loss-of-function full-length gene screens.
GUID: 4E3AEBEC-9AF5-42F4-A775-6B1508601D4A
Additional data file 3 A table listing the reduction in NFκB activation by the positive modulators using the IKBKB, IKBKG, MAP3K7, and TRAF2 dominant-negative mutants.
GUID: 8B2B3641-FD7E-492C-9A31-6A746A848099
Additional data file 4 A table listing the reduction in NFκB activation by a constitutively active IKBKB mutant using the negative NFκB modulators.
GUID: 0014435B-EB24-47B4-8E43-E353E0CE9E85
Additional data file 5 A figure of the overlap and location of positive and negative modulators identified in the cell-based screens within the canonical TNF (A) and IL1 (B) signaling pathways. The signaling pathways were obtained from the Human Protein Reference Database and visualized using GenMAPP 2.1. The green shaded boxes represent positive modulators and red shaded boxes represent negative modulators. Green shaded boxes with red borders represent modulators that were identified as both positive and negative.
GUID: 0D70F9B7-9F51-4CED-B6ED-14A5703D2151
Additional data file 6 A figure showing the overlap and location of positive and negative modulators identified in the cell-based screens within the canonical B-cell receptor (A) and T-cell receptor (B) signaling pathways. The signaling pathways were obtained from the Human Protein Reference Database and visualized using GenMAPP 2.1. The green shaded boxes represent positive modulators and red shaded boxes represent negative modulators. Green shaded boxes with red borders represent modulators that were identified as both positive and negative.
GUID: 5F9DC9EE-6DE6-44CD-8FF4-44A6AD7B0E26
Additional data file 7 A figure showing a network map of the NFκB modulators. An adjacency matrix was constructed on the basis of the orientation flags from the dominant-negative and constitutively active screens (that is, upstream, downstream, or unclassified). The adjacency matrix containing the experimental data was merged with a separate adjacency matrix containing members of the currently accepted NFκB signaling network. Based on the combined adjacency matrix, a network map was constructed as a rooted tree with the NFκB complex serving as the obligate root node. The longest path was calculated from each terminal node to the root node. Peach nodes = positive modulators; green nodes = negative modulators; pink nodes = genes identified as both positive and negative modulators; orange nodes = members of the known NFκB signaling network; red nodes = dominant-negative mutants (plus TRAF2); blue nodes = positive modulators whose network location was adjusted based on the currently accepted NFκB network structure.
GUID: A4D70202-E68D-4860-9CB3-8315D46C8193
Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998; 16 :225–260. doi: 10.1146/annurev.immunol.16.1.225. [ PubMed ] [ CrossRef ] [ Google Scholar ] Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000; 18 :621–663. doi: 10.1146/annurev.immunol.18.1.621. [ PubMed ] [ CrossRef ] [ Google Scholar ] Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001; 293 :1495–1499. doi: 10.1126/science.1062677. [ PubMed ] [ CrossRef ] [ Google Scholar ] Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF, Green DR. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity. 2002; 17 :525–535. doi: 10.1016/S1074-7613(02)00423-5. [ PubMed ] [ CrossRef ] [ Google Scholar ] Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001; 7 :401–409. doi: 10.1016/S1097-2765(01)00187-3. [ PubMed ] [ CrossRef ] [ Google Scholar ] Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR, Wirth T. Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA. 2000; 97 :4615–4620. doi: 10.1073/pnas.080583397. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol. 2000; 59 :55–63. doi: 10.1016/S0006-2952(99)00299-3. [ PubMed ] [ CrossRef ] [ Google Scholar ] Siegmund D, Wicovsky A, Schmitz I, Schulze-Osthoff K, Kreuz S, Leverkus M, Dittrich-Breiholz O, Kracht M, Wajant H. Death receptor-induced signaling pathways are differentially regulated by gamma interferon upstream of caspase 8 processing. Mol Cell Biol. 2005; 25 :6363–6379. doi: 10.1128/MCB.25.15.6363-6379.2005. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Oda K, Kitano H. A comprehensive map of the Toll-like receptor signaling network. Mol Syst Biol. 2006; 2 :2006.0015. doi: 10.1038/msb4100057. Epub 2006 Apr 18. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, Doi T, Shimotohno K, Harada T, Nishida E, et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene. 2003; 22 :3307–3318. doi: 10.1038/sj.onc.1206406. [ PubMed ] [ CrossRef ] [ Google Scholar ] Zheng L, Liu J, Batalov S, Zhou D, Orth A, Ding S, Schultz PG. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci USA. 2004; 101 :135–140. doi: 10.1073/pnas.2136685100. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol. 2004; 6 :97–105. doi: 10.1038/ncb1086. [ PubMed ] [ CrossRef ] [ Google Scholar ] Zhang J, Xu LG, Han KJ, Wei X, Shu HB. PIASy represses TRIF-induced ISRE and NF-kappaB activation but not apoptosis. FEBS Lett. 2004; 570 :97–101. doi: 10.1016/j.febslet.2004.05.081. [ PubMed ] [ CrossRef ] [ Google Scholar ] Fritz G, Kaina B. Ras-related GTPase Rhob represses NF-kappaB signaling. J Biol Chem. 2001; 276 :3115–3122. doi: 10.1074/jbc.M005058200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Chinnadurai G. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol [ PubMed ] [ Google Scholar ] Wei H, Wang X, Gan B, Urvalek AM, Melkoumian ZK, Guan JL, Zhao J. Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle regulation. J Biol Chem. 2006; 281 :16664–16671. doi: 10.1074/jbc.M513135200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Woods A, Beier F. RhoA/ROCK signaling regulates chondrogenesis in a context-dependent manner. J Biol Chem. 2006; 281 :13134–13140. doi: 10.1074/jbc.M509433200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Bondos SE, Tan XX, Matthews KS. Physical and genetic interactions link hox function with diverse transcription factors and cell signaling proteins. Mol Cell Proteomics. 2006; 5 :824–834. doi: 10.1074/mcp.M500256-MCP200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Kitajima K, Tanaka M, Zheng J, Yen H, Sato A, Sugiyama D, Umehara H, Sakai E, Nakano T. Redirecting differentiation of hematopoietic progenitors by a transcription factor, GATA-2. Blood. 2006; 107 :1857–1863. doi: 10.1182/blood-2005-06-2527. [ PubMed ] [ CrossRef ] [ Google Scholar ] Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science. 2005; 310 :1646–1653. doi: 10.1126/science.1116598. [ PubMed ] [ CrossRef ] [ Google Scholar ] Nguyen LT, Duncan GS, Mirtsos C, Ng M, Speiser DE, Shahinian A, Marino MW, Mak TW, Ohashi PS, Yeh WC. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity. 1999; 11 :379–389. doi: 10.1016/S1074-7613(00)80113-2. [ PubMed ] [ CrossRef ] [ Google Scholar ] Xia ZP, Chen ZJ. TRAF2: a double-edged sword? Sci STKE. 2005; 2005 :pe7. doi: 10.1126/stke.2722005pe7. [ PubMed ] [ CrossRef ] [ Google Scholar ] Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004; 101 :6062–6067. doi: 10.1073/pnas.0400782101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA. 2003; 100 :4903–4908. doi: 10.1073/pnas.0230374100. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003; 114 :181–190. doi: 10.1016/S0092-8674(03)00521-X. [ PubMed ] [ CrossRef ] [ Google Scholar ] Vischioni B, Giaccone G, Span SW, Kruyt FA, Rodriguez JA. Nuclear shuttling and TRAF2-mediated retention in the cytoplasm regulate the subcellular localization of cIAP1 and cIAP2. Exp Cell Res. 2004; 298 :535–548. doi: 10.1016/j.yexcr.2004.04.040. [ PubMed ] [ CrossRef ] [ Google Scholar ] Pazdernik NJ, Donner DB, Goebl MG, Harrington MA. Mouse receptor interacting protein 3 does not contain a caspase-recruiting or a death domain but induces apoptosis and activates NF-kappaB. Mol Cell Biol. 1999; 19 :6500–6508. [ PMC free article ] [ PubMed ] [ Google Scholar ] Jiang X, Takahashi N, Ando K, Otsuka T, Tetsuka T, Okamoto T. NF-kappa B p65 transactivation domain is involved in the NF-kappa B-inducing kinase pathway. Biochem Biophys Res Commun. 2003; 301 :583–590. doi: 10.1016/S0006-291X(03)00011-1. [ PubMed ] [ CrossRef ] [ Google Scholar ] Bin LH, Xu LG, Shu HB. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem. 2003; 278 :24526–24532. doi: 10.1074/jbc.M303451200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003; 171 :4304–4310. [ PubMed ] [ Google Scholar ] Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 1999; 18 :6694–6704. doi: 10.1093/emboj/18.23.6694. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol. 2002; 22 :7158–7167. doi: 10.1128/MCB.22.20.7158-7167.2002. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Masumoto J, Yang K, Varambally S, Hasegawa M, Tomlins SA, Qiu S, Fujimoto Y, Kawasaki A, Foster SJ, Horie Y, et al. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo . J Exp Med. 2006; 203 :203–213. doi: 10.1084/jem.20051229. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Nakano H, Sakon S, Koseki H, Takemori T, Tada K, Matsumoto M, Munechika E, Sakai T, Shirasawa T, Akiba H, et al. Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci USA. 1999; 96 :9803–9808. doi: 10.1073/pnas.96.17.9803. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Yeh WC, Shahinian A, Speiser D, Kraunus J, Billia F, Wakeham A, de la Pompa JL, Ferrick D, Hum B, Iscove N, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity. 1997; 7 :715–725. doi: 10.1016/S1074-7613(00)80391-X. [ PubMed ] [ CrossRef ] [ Google Scholar ] Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo . Genes Dev. 2005; 19 :2668–2681. doi: 10.1101/gad.1360605. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A, Doi T, Saiki I. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem. 2003; 278 :36916–36923. doi: 10.1074/jbc.M301598200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y, Nunez G. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem. 2000; 275 :27823–27831. [ PubMed ] [ Google Scholar ] Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002; 2 :725–734. doi: 10.1038/nri910. [ PubMed ] [ CrossRef ] [ Google Scholar ] Ling L, Cao Z, Goeddel DV. NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci USA. 1998; 95 :3792–3797. doi: 10.1073/pnas.95.7.3792. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M. Identification and characterization of an IkappaB kinase. Cell. 1997; 90 :373–383. doi: 10.1016/S0092-8674(00)80344-X. [ PubMed ] [ CrossRef ] [ Google Scholar ] Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science. 1997; 278 :866–869. doi: 10.1126/science.278.5339.866. [ PubMed ] [ CrossRef ] [ Google Scholar ] Jijon H, Allard B, Jobin C. NF-kappaB inducing kinase activates NF-kappaB transcriptional activity independently of IkappaB kinase gamma through a p38 MAPK-dependent RelA phosphorylation pathway. Cell Signal. 2004; 16 :1023–1032. [ PubMed ] [ Google Scholar ] Jang HD, Yoon K, Shin YJ, Kim J, Lee SY. PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit. J Biol Chem. 2004; 279 :24873–24880. doi: 10.1074/jbc.M313018200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Guan H, Hou S, Ricciardi RP. DNA binding of repressor nuclear factor-kappaB p50/p50 depends on phosphorylation of Ser337 by the protein kinase A catalytic subunit. J Biol Chem. 2005; 280 :9957–9962. doi: 10.1074/jbc.M412180200. [ PubMed ] [ CrossRef ] [ Google Scholar ] Akaogi J, Yamada H, Kuroda Y, Nacionales DC, Reeves WH, Satoh M. Prostaglandin E2 receptors EP2 and EP4 are up-regulated in peritoneal macrophages and joints of pristane-treated mice and modulate TNF-alpha and IL-6 production. J Leukoc Biol. 2004; 76 :227–236. doi: 10.1189/jlb.1203627. [ PubMed ] [ CrossRef ] [ Google Scholar ] Wagner A. How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics. 2001; 17 :1183–1197. doi: 10.1093/bioinformatics/17.12.1183. [ PubMed ] [ CrossRef ] [ Google Scholar ] Gilmore TD. The Rel/NF-kB signal transduction pathway: Introduction. Oncogene. 1999; 18 :6842–6844. doi: 10.1038/sj.onc.1203237. [ PubMed ] [ CrossRef ] [ Google Scholar ] Kitano H. Biological robustness. Nat Rev Genet. 2004; 5 :826–837. doi: 10.1038/nrg1471. [ PubMed ] [ CrossRef ] [ Google Scholar ] Kitano H, Oda K. Robustness trade-offs and host-microbial symbiosis in the immune system. Mol Syst Biol. 2006; 2 2006 0022. [ PMC free article ] [ PubMed ] [ Google Scholar ] Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002; 298 :1241–1245. doi: 10.1126/science.1071914. [ PubMed ] [ CrossRef ] [ Google Scholar ] Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2006; 2
Трусики под юбкой крупным планом
Ноги зрелой на каблуках
Садовник поимел на кухне фигуристую домохозяйку

Report Page