Функционирование радиоканалов связи в городских условиях - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа

Функционирование радиоканалов связи в городских условиях - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа




































Главная

Коммуникации, связь, цифровые приборы и радиоэлектроника
Функционирование радиоканалов связи в городских условиях

Исследование особенностей распространения радиоволн в городской местности. Поляризационные характеристики лучей радиоканала и флуктуации уровня сигнала в городе. Расчет потерь сигнала радиосвязи и исследование распределение поля в городских условиях.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Функционирование радиоканалов связи в городских условиях
1. РАСПРЕДЕЛЕНИЕ ПОЛЕЙ РАДИОКАНАЛА СВЯЗИ В УСЛОВИЯХ ГОРОДА
1.1 Особенности распространения радиоволн в городской местности
1.1.1 Характеристики многолучевости радиоканала
1.1.2 Поляризационные характеристики сигнала
1.1.3 Флуктуации уровня сигнала и статические характеристики распределения поля
1.2 Медленные и быстрые замирания сигналов в радиоканале. Методы их оценки
2. МОДЕЛИ РАСЧЁТА ПОТЕРЬ СИГНАЛА В ГОРОДЕ
2.1 Расчет напряженности поля эмпирическими методами
2.2 Метод расчета статистических характеристик сигналов в службах подвижной связи согласно. Рекомендации IТU-R Р. 1546
2.1.2 Расчет ослабления сигнала с помощью моделей Окамура - Хата
2.1.3 Расчет ослабления сигнала с помощью модели Ли
2.1.4 Выбор модели для расчета уровня поля
2.3 Методика расчета напряженности поля
2.3.1 База данных и ее применение для расчетов
2.4 Замирания сигналов при распространении радиоволн
3. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ УРОВНЕЙ ПОЛЯ В ГОРОДСКИХ УСЛОВИЯХ
3.1 Методика проведения экспериментального исследования распределения уровней поля
3.1.1 Выбор методики проведения экспериментального исследования
3.1.2 Обработка результатов измерений
4.Охрана труда и техника безопасности при обслуживании базовых станций
4.1 Соблюдение техника безопасности при эксплуатации базовых станции.
4.2 Воздействие СВЧ - излучения на организм человека и зашита от неё
радиоволна флуктуация сигнал радиосвязь город
1. РАСПРЕДЕЛЕНИЕ ПОЛЕЙ РАДИОКАНАЛА СВЯЗИ В УСЛОВИЯХ ГОРОДА
1. 1 Особенности распространения радиоволн в городской местности
Распространении радиоволн в городе имеет сложный характер. Городская застройка представляет собой неоднородное пространство, заполненное хаотически расположенными полупроводящими препятствиями. Как правило, в точку приема попадает не одна волна, а несколько - за счет отражений от окружающих зданий и дифракции на крышах зданий (рис.1.5).
Рис.1.5. Многолучевое распространение радиоволн в городе
Детерминировано учесть фазы и амплитуды этих волн чрезвычайно трудно и поэтому особый интерес представляют экспериментальные данные. Следует, однако, учесть, что архитектура оказывает значительное влияние на характеристики РРВ в городе.
В подвижной связи передаваемые сигналы подвержены также влиянию различных явлений, связанных с многолучевым распространением и рассеянием радиоволн на неоднородностях среды распространения. Эти явления приводят к замираниям радиосигналов. Замирания делятся на быстрые и медленные, отличающиеся своими статистическими характеристиками. Медленные замирания обычно обусловлены относительно небольшими изменениями рельефа местности на пути распространения. Быстрые замирания вызваны отражениями сигналов как от неподвижных, так и от подвижных объектов, их называют многолучевыми замираниями.
Характеристики распространения сигналов между подвижным объектом и базовой станцией, в основном, зависят именно от многолучевых замираний. Многолучевость, помимо замираний, вызывает явление "расширение задержки" (или "уширение импульса"), которое вызывается наложением сдвинутых во времени переотражённых импульсов.
Многолучевое распространение приводит также к явлению деполяризации, когда за счет наложения отраженных радиоволн, изменяется плоскость поляризации сигнала и появляется сигнал ортогональной поляризации.
На качество приема радиоволн в городских условиях оказывают также значительное влияние индустриальные помехи. При рассмотрении этих факторов обычно имеют ввиду, что высота подвеса приемной антенны подвижных объектов ниже уровня крыш.
1. 1 .1 Характеристики многолучевости радиоканала
По мере увеличения числа рассеивателей в непосредственной близости от приемной антенны дискретные импульсы сливаются, и образуется непрерывный импульс с увеличенной длительностью ф рз . Расширение задержки ( ф рз ) определяет время ожидания, соответствующее времени, через которое может быть передан следующий импульс. Это требует снижения скорости передачи информации до значения много меньшего 1/ ф рз , иначе возможно появление межсимвольной интерференции. Так в частности, эксперименты, проведенные на частоте 700 МГц, показывают, что среднее значение задержки импульса составляет в городе - 1,3 мкс и в пригороде - 0,5 мкс (время задержки определено на уровне минус 30 дБ).
Ли У. приводит типичные диапазоны изменения задержек переотраженных волн на частоте 750 МГц (табл.1.2).
Таблица 1.2 Диапазон изменения переотраженных волн в мкс
Максимальная временная задержка (на уровне -30 дБ)
Среднее значение расширения задержки
Известно, что при скоростях передачи информации с тактовой частотой свыше 2 МГц может возникнуть явление межсимвольной интерференции. Существуют отчеты по изучению явления "расширения задержки" сигналов в диапазонах 450 и 900 МГц. Однако имеется лишь ограниченное число экспериментальных данных о «расширении задержки» в диапазоне СВЧ и эти данные свидетельствуют о том, что «расширение задержки» не зависит от несущей частоты в диапазоне выше 30 МГц. Для объяснения этого явления могут быть приведены следующие аргументы.
Во-первых, потери распространения меньше на более низких частотах, в результате этого происходит расширение зоны рассеяния вокруг подвижного объекта и, следовательно, можно ожидать увеличение расширения задержки с уменьшением частоты.
Во-вторых, так как длина волны увеличивается с уменьшением частоты, то размеры предметов, на которых может происходить рассеяние, становятся соизмеримыми с длиной волны, соответствующей 30 МГц. Следовательно, большая часть энергии радиоволны проходит сквозь предметы меньшего размера, и расширение задержки уменьшается с уменьшением частоты. При этом уменьшении поверхности рассеяния «расширение задержки» также уменьшается.
Джейкс (W.С. Jakes), обработав экспериментальные данные временных задержек на частотах 450 и 910 МГц, предложил аппроксимировать функцию плотности вероятности времени задержки экспоненциальным распределением вида
ф 0 - параметр принимающий значение от 0,125 до 0,75 мкс.
В ряде источников отмечается, что интенсивность отражений с увеличением времени задержки быстро уменьшается. Среднее расширение времени задержек импульсов в многолучевом радиоканале с уровнем не ниже -6 дБ составило около 0,5 мкс, что соответствовало полосе когерентности канала около 0,3 МГц. Подчеркивается, что решающий вклад в формировании результирующего сигнала вносит участок городской застройки в месте расположения приемной антенны. Расширение импульса проявляется в виде удлинения времени спада заднего фронта импульса.
В результате анализа зависимостей относительных амплитуд от времени их задержки, в г. Ташкенте, эмпирическое выражение для аппроксимации этих зависимостей, которое дает вполне приемлемую точность для значений ф = 0 ... 0,8 мкс имеет вид [10]
где ф ' - нормированный коэффициент, равный 1 мкс;
Для примера в табл.1.3 приведены значения коэффициента В 1 в городе Ташкента для районов с большой (БПЗ) и малой (МПЗ) плотностью застройки, радиальных и поперечных улиц по отношению к передающей антенне.
Как видно из этой таблицы, значения коэффициента В 1 определяются архитектурой городской застройки, типом приемной антенны, а также ее ориентацией в пространстве.
Таблица 1.3 Значения эмпирического коэффициента В 1 для г. Ташкента
Симметричный горизонтальный вибратор
Экспериментальное исследование характеристик многолучевости, проведенное за рубежом и в европейской части СНГ показало, что максимальная величина задержки переотраженных волн (на уровне -15 дБ) ф max в городе может достигать 1,0...1,5 мкс. Величина ф max также зависит от типа используемой приемной антенны. Так, при приеме на штыревую антенну максимальная величина задержек в городе Санкт-Петербурге и его пригороде составила 0,8 ... 1,0 мкс и 0,6 мкс; при использовании симметричного полуволнового вибратора - 0,6 мкс и 0,4 мкс соответственно, а при приеме на логопериодическую антенну - 0,2...0,4 мкс [10].
Экспериментальное исследование в г. Ташкенте (прием велся на симметричный вибратор) показало, что:
- при отсутствии прямой видимости между передающей и приемной антеннами обычно выделялись две-три переотраженные волны с временной задержкой ф = 0,2...0,5 мкс, а при наличии прямой видимости между антеннами - одна переотраженная волна с задержкой ф = 0,2...0,3 мкс
- в отдельных точках города максимальная величина временной задержки переотраженных волн составила 1,3...1,6 мкс;
- при изменении ориентации приемной антенны относительно передающей менялось количество переотраженных волн и время их задержек.
Из аппроксимации гистограмм временных задержек в г. Ташкенте было получено следующее выражение [10]
где параметр ф равен соответственно для районов с БПЗ и МПЗ 0,156 и 0,145 мкс при направлении приемной антенны на передающую.
Характеристики многолучевости радиоканала являются важнейшей характеристикой распространения радиоволн в городе для разработки перспективных цифровых средств радиосвязи.
В работе [19 исправить] приведены результаты измерений угловых характеристик излучения антенны базовой станции, расположенной на крыше здания высотой 47 м. Измерения проводились в центральной части Парижа на частоте 890 МГц. В качестве приемной антенны использовалась антенная решетка из 21x4 элементов, расположенная на кузове автомобиля. Приемная аппаратура позволила получить высокое разрешение по азимуту и углу места (< 1 0 ), а также высокое временное разрешение (< 33 нс). Основной целью измерений являлось исследование углового распределения мощности принимаемого сигнала. По результатам измерений, выполненных в тридцати различных точках города, были выделены три типа принимаемых сигналов: сигналы, приходящие в точку приема вдоль волновода, образованного зданиями, расположенными вдоль улицы; сигналы, приходящие в точку приема путем рассеяния на углах улиц и сигналы с большой временной задержкой.
Сигналы первого типа характерны для условий волноводного распространения радиоволн вдоль улиц. Они имели значительные временные задержки (до 25 мкс), связанные с многократными отражениями радиоволн с зданий. Эти сигналы приходили с направления, совпадающего с направление улицы. Сигналы с небольшими временными задержками (рис.1.6) имеют почти равномерное распределение по азимуту, что свидетельствует о рассеянии радиоволн на объектах, расположенных вблизи приемной станции (рис.1.7 ). Представление о волноводном характере распространения радиоволн дает рис.1.8, где хорошо видно, что в основном сигналы к мобильной станции приходят вдоль улицы.
Сигналы первого типа характерны для условий волноводного распространения радиоволн вдоль улиц. Они имели значительные временные задержки (до 25 мкс), связанные с многократными отражениями радиоволн с зданий. Эти сигналы приходили с направления, совпадающего с направление улицы. Сигналы с небольшими временными задержками (рис.1.6) имеют почти равномерное распределение по азимуту, что свидетельствует о рассеянии радиоволн на объектах, расположенных вблизи приемной станции (рис.1.7 ). Представление о волноводном характере распространения радиоволн дает рис.1.8, где хорошо видно, что в основном сигналы к мобильной станции приходят вдоль улицы.
Сигналы второго типа наблюдаются в тех случаях, когда мобильная станция находится вблизи перекрестков улиц. Они поступают на антенну мобильной станции в результате рассеяния на кромках близлежащих зданий, что демонстрирует рис.1.9. Эти сигналы могут иметь различные времена задержки, определяемые их траекториями. В ряде случаев наблюдались сигналы с большими временами задержки, приходящие под малыми углами места. Эти сигналы, как правило, были обусловлены наличием высоких зданий, расположенных в конце улицы в пределах прямой видимости. Чаще регистрировались сигналы с большими временами задержки, связанные с наличием удаленных крупных объектов вне пределов прямой видимости. Такие сигналы после отражения от каких-либо препятствий могли быть захвачены в волновод, образованный расположенными вдоль улицы домами, в результате дифракции на кромках зданий.
Измерения угловой зависимости мощности принимаемых сигналов в вертикальной плоскости показали, что она не испытывает сильных вариаций в зависимости от положения мобильной станции. Отмечено, что угол прихода сигнала уменьшается с увеличением времени задержки. Этот факт подтверждает гипотезу о волноводном характере распространения сигналов с большой временной задержкой. На рис.1.10 приведена усредненная зависимость амплитуды сигнала от угла прихода в вертикальной плоскости. Там же пунктиром показана диаграмма направленности приемного четвертьволнового вибратора, расположенного над идеально проводящей плоскостью. Указано, что более 65 % энергии сигнала приходит в результате распространения радиоволн над крышами зданий.
На основании проведенных исследований делается вывод о том, что в условиях города с регулярной плотной застройкой определяющим может быть волноводный механизм распространения радиоволн. С этим механизмом связано наличие сигналов с большими временами задержки и ярко выраженная анизотропия азимутальных характеристик принимаемых сигналов. Однако если мобильная станция расположена вблизи пересечения улиц, основной вклад в принимаемый сигнал могут давать волны, испытывающие дифракцию на углах и острых кромках зданий.
Измерение характеристик принимаемого сигнала на базовой станции
В работе [20] приведены результаты экспериментального исследования характеристик сигналов на базовой станции, антенна которой располагалась на крышах различных зданий. Измерения проводились в центральной части Хельсинки на частоте 2154 МГц. Приемная антенна представляла собой решетку 16x58 элементов (8x29 X) . Проведены три серии экспериментов для различных положений приемной антенны. Расстояние между мобильной и базовой станциями изменялось в пределах 100…500 м.
В первой серии антенна находилась на высоте 10 м на уровне третьего этажа здания, расположенного на площади. Напротив него располагалось здание железнодорожного вокзала. Передающая антенна располагалась либо во дворе вокзала, либо на одной из расположенных рядом улиц. Схема расположения приемной и передающей антенн в первом случае показана на рис.1.11. На рис.1.12 показана азимутальная зависимость мощности принимаемого сигнала, усредненная по различным положениям передающей антенны. Следует отметить, что независимо от положения мобильной станции наблюдаются несколько максимумов мощности принимаемого сигнала на базовой станции, определяемые рассеянием радиоволн на окружающих антенну базовой станции объектах. В частности, четко выражены два максимума, соответствующие распространению радиоволн вдоль расположенных рядом улиц. Видны максимумы, соответствующие рассеянию на входе в здание вокзала и на башне, расположенной на его крыше.
Наглядную информацию о механизмах распространения радиоволн дают зависимости угла места и времени задержки принимаемых базовой станцией сигналов от азимута, приведенные на рис.1.13 и 1.14. Авторы работы [20] отмечают, что принимаемые сигналы группируются в «кластеры», соответствующие различным механизмам распространения. На этих рисунках видны группы сигналов, соответствующие волноводному распространению вдоль улиц, а также группа сигналов, отраженных от башни театра.
Аналогичные измерения были проведены для других положений приемной антенны. Во второй серии экспериментов антенна располагалась на высоте 27 м (на уровне крыши здания) и в третьей серии - на высоте 21 м (выше уровня крыши). В обоих случаях антенна была расположена выше уровня крыш соседних зданий.
Проведенные измерения позволили авторам работы [20] выделить три различных механизма распространения радиоволн: волноводное распространение вдоль улиц, прямое распространение поверх крыш зданий и распространение поверх крыш после рассеяния возвышающимися над уровнем крыш объектами.
Указано, что в исследуемом интервале расстояний между мобильной и базовой станциями (100…500 м) преобладает волноводный механизм. Если приемная антенна базовой станции располагалась ниже или на уровне крыш, до 97 % принимаемых сигналов определяется этим механизмом. Отмечается, что даже для поднятых над уровнем крыш антенн доля сигналов, связанных с волноводным механизмом, достигала 70 %. Здания, возвышающиеся над средним уровнем крыш, обычно действуют как рассеиватели радиоволн. Особенно ярко рассеяние такими объектами проявляется, если они находятся в зоне прямой видимости как для базовой, так и для мобильной станций. Доля сигналов, рассеянных этими объектами, в описываемых измерениях составила 9 %.
1. 1 .2 Поляризационные характеристики сигнала
Выбор типов приемных антенн для систем подвижной радиосвязи определяется поляризационными характеристиками сигнала в городских условиях. Известно, что эллиптически поляризованные волны могут образовываться при сложении двух или более линейно-поляризованных волн, у которых электрические векторы ориентированы под углом друг к другу и колебания их сдвинуты по фазе. Наличие таких волн в пункте приема объясняется различием углов прихода переотраженных волн при горизонтальной поляризации, и появлением продольной составляющей векторов при отражениях от поверхности Земли и зданий при вертикальной поляризации. Коэффициент деполяризации D определяется разностью значений в децибелах основной и ортогональной составляющих поля. Если основная поляризация поля вертикальная, то значение D определяется разностью вертикальной составляющей (ВС) E в и горизонтальной составляющей (ГС) Е г напряженности поля в децибелах
Установлено, что коэффициент деполяризации определяется архитектурой городской застройки и обычно составляет 10 ... 15 дБ по отношению к основной поляризации. Значения Е в и Е г в крупном городе практически не коррелированны, что позволяет рекомендовать для приема кроссполяризованные антенны.
Наличие явления деполяризации позволяет производить прием сигналов радио и телевидения, сигналов других видов радиосвязи в городе при произвольном расположении плоскости полотна приемной антенны.
Так, анализ экспериментальных данных, полученных в г. Ташкенте на частоте 100 МГц и горизонтальной поляризации поля показал что [ ]:
-значения коэффициентов деполяризации на радиальных улицах на 2...4 дБ больше, чем на поперечных;
-значения коэффициентов деполяризации в районах с БПЗ ниже, чем в районах с МПЗ;
-наблюдается увеличение значений коэффициента деполяризации при увеличении высоты подвеса приемной антенны.
1. 1 .3 Флуктуации уровня сигнала и статические характеристики распределения поля
Флуктуации уровня принимаемого сигнала при перемещении приемной антенны являются следствием интерференции переотраженных волн. В результате интерференции этих волн напряженность поля будет меняться. Знание характера флуктуации напряженности электрического поля в городских условиях необходимо при проектировании цифровых радиосистем, обладающих пороговым эффектом.
В ряде работ [ ] отмечается, что значения напряженности поля в точках максимумов и минимумов интерференционной картины поля случайны, но расстояние между ближайшими минимумами напряженности поля (квазипериод интерференционной картины поля) составляет в среднем 0,6…0,8 длины волны л.
Рис.1.4. Пример зависимости амплитуды напряженности поля от расстояния
Наибольшую угрозу помехоустойчивому приему создают быстрые флуктуации радиосигнала в случае приема на подвижном объекте из-за их большой скорости, сравнимой с быстродействием АРУ приемного устройства, что приводит к значительному ухудшению отношения сигнал/шум. Квазипериодичность изменений уровня сигнала свидетельствует о квазицикличном изменении фаз переотраженных волн и следовательно флуктуациях фазы результирующего сигнала на выходе антенны подвижного объекта.
Одним из эффективных методов борьбы с быстрыми пространственными замираниями является прием на разнесенные антенны. С этой целью были проведены измерения флуктуации фазового сдвига ?ц между напряжениями несущей частоты с выходов разнесенных антенн подвижного объекта. Исследовались флуктуации ?ц между сигналами с выходов антенн горизонтальной поляризации (кольцевые антенны), соответствующие поляризации излучаемого сигнала, штыревых (кроссполяризованных) антенн и конструктивно совмещенных штыревой и кольцевой антенн (поляризационное разнесение). В табл.1.4, для примера, приведены усредненные значения среднеквадратичного отклонения (СКО) у ц флуктуации фазового сдвига в градусах и пространственного радиуса автокорреляции R ц в значениях длин волн л в зависимости от ориентации улиц при продольном разнесении антенн на величину л /2.
Таблица 1.4 Значения среднеквадратического отклонения флуктуации фазового сдвига и пространственного радиуса автокорреляции
Из табл.1.4 видно, что наименьшие флуктуации ?ц наблюдаются при применении кроcсполяризованных антенн, а наибольшие при поляризационном разнесении. Зависимость от ориентации улиц наблюдалось в ближней зоне, где флуктуации наименьшие, а масштаб автокорреляции достигал 0,84л. В остальных зонах радиус автокорреляции ?ц не превышал 0,28л. Также отмечалось, что при продольном разнесении вертикальных антенн интервал изменения ?ц не превышал 90 0 до значения базы разнесения 0,2л во всех зонах удаления от передатчика. Такие сигналы можно считать когерентными и коррелированными по амплитуде. С увеличением базы разнесения интервал изменения ?ц быстро нарастал, достигая максимально возможных величин (?ц <2р), при этом ухудшалась и амплитудная корреляция. Поперечное расположение антенн приводило к резкому увеличению интервала изменения ?ц независимо от базы разнесения и удаления от передатчика, отсутствовала корреляция сигналов по амплитуде. Для антенн горизонтальной поляризации интервал изменения ?ц почти не зависел от базы разнесения во всех зонах удаления от передатчика. При поперечном разнесении антенн интервалы автокорреляции и амплитуды были значительно меньше, чем при продольном разнесении, что обеспечивали некоррелированные сигналы при меньших значениях базы разнесения.
При поляризационном разнесении с нулевой базой, когда антенны с разной поляризацией были совмещены, интервал изменения ?ц был максимальным -рФункционирование радиоканалов связи в городских условиях курсовая работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Реферат: Органы исполнительной власти понятие, система и правовое положение
Контрольная работа по теме Электронные библиотеки
Обмен Реферат
Реферат: Порядок и условия применения контрольно-кассовых машин. Скачать бесплатно и без регистрации
Контрольная Работа На Тему Теплоизоляция Зданий И Сооружений
Эссе Отечественная Война
Курсовая Работа На Тему Реструктуризация Как Важнейшее Направление По Оздоровлению Предприятия
Курсовая работа: Таможенный контроль и оформление международных почтовых отправлени
Курсовая работа по теме Сооружения для очистки сточных вод
Реферат На Тему Лимфатическая Система
Реферат: Спортивний травматизм під час занять фізичною підготовкою і його профілактика
Курсовая работа по теме Проект автоматической системы технологического оборудования для обработки основания гидрораспределителя очистного комбайна 2РКУ10
История Болезни На Тему Неспецифический Язвенный Колит
Разработка мероприятий по увеличению прибыли и повышению уровня рентабельности ОАО «Авиакомпания «Омскавиа» г. Омск
Сочинение По Рассказу После
Пособие по теме Боевые отравляющие вещества и их поражающее действие
Книга: Красная книга понятие и структура
Контрольная Работа Степени 5 Класс
Реферат по теме Мікроорганізми ґрунту. Самоочищення ґрунту
Практическая Работа На Тему Нормы Русского Правописания
Объекты правоотношений - Государство и право реферат
Реки и озера Дагестана - География и экономическая география реферат
Отказ от наследства - Государство и право дипломная работа


Report Page