Физиология центральной нервной системы - Биология и естествознание курсовая работа
Главная
Биология и естествознание
Физиология центральной нервной системы
Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ
УРАЛЬСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ
ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
ОСНОВНЫЕ ФУНКЦИИ ЦНС. ПОТЕНЦИАЛЫ ПОКОЯ И ДЕЙСТВИЯ
Строение биологической мембраны , ионоселективного канала
Биологическая мембрана - это функционально активная структура клетки, ограничивающая цитоплазму и большинство внутриклеточных структур, образующая единую систему канальцев, складок и замкнутых полостей.
Виды электричес ких явлений в возбудимых тканях
В ПОКОЕ ПРИ ВОЗБУЖДЕНИИ
МПП МПКП МЕСТНОЕ РАСПРОСТРАНЯЮЩИЙ
МПКП - миниатюрный потенциал концевой пластинки (синапс)
ВПСП - возбуждающий постсинаптический потенциал
ТПСП - тормозной постсинаптический потенциал
Свойства локально го ответа и потенциала действия
зависимость величины от силы стимула
возбудимость ткани при возникновении потенциала
распространяется на 1-2 мм с затуханием
возрастает с увеличением силы стимула, т.е. подчиняется закону «силы»
суммируется - возрастает при повторных частых допороговых раздражениях
возникает на пороговые и сверхпороговые стимулы
распространяется без затухания на большие расстояния по всей длине нервного волокна
не зависит, подчиняется закону «все или ничего»
уменьшается вплоть до полной невозбудимости (рефрактерность)
РЕЦЕПТОРНОЕ ПОЛЕ, СТРОЕНИЕ И ФУНКЦИЯ РЕ ЦЕПТОРОВ, РЕЦЕПТОРНЫЙ ПОТЕНЦИАЛ
- генерируется в самих нервных окончаниях;
- является градуальным (стимулами разной интенсивности деполяризуются или гиперполяризуются;
- амплитуда рецепторного потенциала отражает силу стимуляции, хотя последняя не служит для него источником энергии;
- является локальным - распространяется по мембране электротонически, а не проводится активно;
- подвергается пространственной и временной суммации (два слабых одиночных стимула вместе могут вызвать надпороговую деполяризацию).
1. По физической природе раздражителя:
- медленно адаптирующиеся (тонические)
- смешанные (фазно-тонические) - адаптирующиеся со средней скоростью (например, фоторецепторы сетчатки, терморецепторы кожи)
- практически не адаптирующиеся (терморецепторы гипоталамуса)
4. По степени специфичности, т.е. по их способности отвечать на одни или более видов раздражителей:
- мономодальные или моносенсорные (например, зрительные, слуховые,
вкусовые, хеморецепторы каротидного синуса и др.)
- полимодальные или полисенсорные (например, ирритатные рецепторы легких, воспринимающих как механические (частицы пыли), так и химические (пахучие вещества) раздражители во вдыхаемом воздухе);
5. По структурно-функциональному организации:
- первично чувствующие рецепторы - представляют собой чувствительные окончания дендрита афферентного нейрона (тактильные, обонятельные, проприорецепторы)
- вторично чувствующие рецепторы - имеется специальная клетка, синоптически связанная с окончанием дендрита сенсорного нейрона, чаще всего эпителиальной природы (слуховые, вкусовые, фоторецепторы сетчатки).
- экстерорецепторы - воспринимают информацию из внешней среды (зрительные, вкусовые, слуховые, обонятельные, тактильные, кожные болевые и температурные)
- интерорецепторы - воспринимают информацию от внутренних органов (висцерорецепторов), сосудов и ЦНС
- вестибулорецепторы - занимают промежуточное положение, находятся внутри организма, но возбуждаются внешними стимулами.
7. По взаиморасположению раздражителя и рецептора:
- дистантные - воспринимающий раздражитель находится на расстоянии (зрительные, слуховые)
- контактные - непосредственный контакт с раздражителем (вкус).
Характеристика первичн о - и вторично чувствующих рецепторов
воспринимает стимул чувствительным окончанием афферентного нейрона
рецепторный и генераторный потенциалы совпадают
ПД возникает у основания аксона (аксонный холмик) или в первом перехвате Ранвье аксона
имеется специальная рецепторная клетка
воспринимает стимул специальная рецепторная клетка, которая связана с окончанием афферентного нейрона синапсом
генераторный потенциал образуется на постсинаптической мембране
возникновение ПД вблизи постсинаптической мембране
Этапы развития электрических явлений при действии стимула в первично - и вторично чувствующих рецепторах
УСТРОЙСТВО СИНАПСА И МЕХАНИЗМ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ
Синапс - это специализированная структура, обеспечивающая передачу нервного импульса с аксона на другую клетку.
- межнейронные синапсы - находятся в ЦНС и вегетативных ганглиях;
- нейроэффекторные синапсы - соединяют эфферентные нейроны соматической и вегетативной нервной системы с исполнительными клетками -поперечнополосатыми и гладкими миоцитами, секреторными клетками;
- нейрорецепторные синапсы - относятся контакты во вторично чувствующих рецепторах между рецепторной клеткой и дендритом афферент. нейрона.
- возбуждающие, т.е. запускающие генерацию ПД;
- тормозные, т.е. препятствующие возникновению ПД.
- химические синапсы - передача осуществляется с помощью химического посредника - медиатора;
- электрические синапсы - ПД непосредственно (электротонически) передается на постсинаптическую клетку;
- смешанные синапсы - наряду с химической передачей имеются участки с электротоническим механизмом передачи (например, в реснитчатом ганглии птиц, спинном мозге лягушки).
4. По природе медиатора химические синапсы:
- холинергические (медиатор - ацетилхолин);
5. По форме контакта химические синапсы:
- терминальные (колбообразное соединение);
- преходящие (варикозное расширение аксона).
- центральные (головной и спинной мозг);
7. По скорости передачи возбуждения (сигнала):
- быстро возбуждающие - в передаче принимают участие классические медиаторы, потенциал сохраняется короткий промежуток времени;
- медленно возбуждающие - локализованы в спинном мозге, относятся к пептидным синапсам, постсинаптические потенциалы сохраняются в течение нескольких минут.
- стабильные (например, синапсы дуг безусловного рефлекса);
- динамичные, появляющиеся в процессе индивидуального развития.
РЕФЛЕКТОРНАЯ ТЕОРИЯ ФУНКЦИОНИРОВАНИЯ ЦНС. РЕФЛЕКС, РЕ ФЛЕКТОРНАЯ ДУГА, ВРЕМЯ РЕФЛЕКСА
Рефлекторная дуга - это совокупность структур, при помощи которых осуществляется рефлекс.
Схематично рефлекторную дугу вегетативного и соматического рефлексов можно представить состоящей из 5 звеньев:
1. рецептор - предназначен для восприятия изменений внешней или внутренней среды организма. Совокупность рецепторов, раздражение которых вызывает рефлекс, называют рефлексогенной зоной.
2. афферентный путь - передает сигнал в ЦНС.
3. вставочные нейроны ЦНС - обеспечивают связь с другими отделами ЦНС, переработка и передача импульсов к эфферентному нейрону.
4. эфферентные нейроны - вместе с другими нейронами перерабатывают информацию, сформировывают ответ в виде нервных импульсов.
- моносинаптическая - самая простая рефлекторная дуга, состоящая из двух нейронов: афферентного и эфферентного;
- полисинаптическая - представлена 3 и более последовательно соединенными нейронами.
Нервный центр - это совокупность нейронов, расположенных на различных уровнях ЦНС, достаточных для регуляции функции органа согласно потребностям организма или для осуществления рефлекторного акта.
Свойства нервных центров во многом определяется структурой и функцией синоптических образований:
1 - односторонность проведения возбуждения;
2 - иррадиация (дивергенция) возбуждения - объясняется ветвлением аксонов нейронов (в среднем нейрон образует до 1000 окончаний) и их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых тоже ветвятся;
3 - суммация возбуждения (как временная, так и пространственная);
4 - наличие синоптической задержки;
5 - высокая утомляемость (в результате истощения запасов медиатора в синапсе, уменьшение энергетических ресурсов, адаптации постсинаптического рецептора к медиатору);
6 - наличие определенной фоновой активности или тонуса (поскольку и при полном покое определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерируя фоновые импульсные потоки);
7 - пластичность - способность нервных элементов к перестройке функциональных свойств; основные проявления этого свойства - синоптическое облегчение, синоптическая депрессия, доминанта и компенсация нарушенных функций;
8 - конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип воронки Шеррингтона); это объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов;
10 - свойство доминанты, т.е. способность притягивать к себе возбуждение других возбужденных зон или нервных центров;
11 - цефализация, т.е. перемещение в процессе эволюции и сосредоточение функции регуляции и координации деятельности организма в головных отделах ЦНС;
12 - высокая чувствительность к недостатку кислорода и химическим веществам.
Время от момента нанесения раздражения до конечного эффекта ( время рефлекса ) достигает 50 - 100 мс. Центральное время - промежуток времени, в течение которого импульс пробегает по структурам мозга. Для прохождения одного синапса требуется около 1,5 мс. Т.е. центральное время рефлекса косвенно указывает на число синаптических передач, имеющих место в данном рефлексе. При полисинаптической рефлекторной дуге центральное время рефлекса больше 3 мс (если 2 синаптических переключения - то около 4-6 мс).
Торможение - активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Торможение всегда возникает как следствие возбуждения.
1 - пресинаптическое торможение - развертывается в аксо-аксональных синапсах, блокируя распространение возбуждения по аксону (часто выявляется в структурах мозгового ствола, в спинном мозге). Протекает по принципу катодической депрессии: в области контакта выделяется медиатор (ГАМК), вызывающий стойкую деполяризацию, что нарушает проведение волны возбуждения через этот участок.
2 - постсинаптическое торможение - основной вид торможения, развивается на постсинаптической мембране аксосоматических и аксодендрических синапсов под влиянием тормозных нейронов, в концевых аксонных отростках которых освобождается тормозной медиатор (ГАМК, глицин). Действие медиатора вызывает в постсинаптической мембране эффект гиперполяризации в виде ТПСП, пространственно-временная суммация которых повышает уровень МП (увеличивает гиперполяризацию), приводит к урежению или полному прекращению генерации ПД.
Если рассмотреть «архитектуру» использования тормозных нейронов при организации нейронных сетей, цепей и рефлекторных дуг, то можно выделить ряд вариантов этой организации:
1 - реципрокное торможение. Пример, сигнал от мышечного веретена поступает с афферентного нейрона в спинной мозг, где переключается на альфа-мотонейрон сгибателя и одновременно на тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя. Явление открыто Ч.Шеррингтоном.
2 - возвратное торможение. Пример, альфа-мотонейрон посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС - она заканчивается на тормозном нейроне (клетка Реншоу) и активирует ее. Тормозной нейрон вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Т.о. альфа-мотонейрон, активируясь, через систему тормозного нейрона сам себя тормозит.
3 - латеральное торможение (вариант возвратного). Пример, фоторецептор активирует биполярную клетку и одновременно рядом расположенный тормозной нейрон, блокирующий проведение возбуждения от соседнего фоторецептора к ганглиозной клетке («вытормаживание информации» - 2 точки на сетчатке рассматриваются как раздельные точки, если между ними есть невозбужденные участки).
Особенности пре синаптического и постсинаптическ ого торможения
ГАМК1 локализованы на нейронах гиппокампа, мозжечка, гипоталамуса, коры больших полушарий, аксонах первичных афферентных клеток.
ГАМК2 расположены в основном на терминалях моноаминергических нервных волокон и при возбуждении тормозят секрецию медиатора Глицин обнаружен, кроме клеток Реншоу, в стволе мозга.
Схема реципрокного торможения ЦНС на примере мышц - антагонистов (сгибателей и разгибателей).
При раздражении кожных рецепторов возникает защитный сгибательный рефлекс: центр сгибания возбужден, а центр разгибания заторможен. В этом случае возбуждающие импульсы поступают к центру мышцы-сгибателя, а через тормозную клетку Реншоу - к центру мышцы-антогониста - разгибателю, что предотвращает ее сокращение.
Характерист ика вторичного торможения в ЦНС
Вторичное торможение - торможение из текущего возбуждения (в результате возбуждения). Наиболее обще правило такого перехода, по Н.Е.Введенскому, заключается в том, что возбуждение переходит в торможение, когда раздражитель по своей силе или частоте становится пессимальным для данного функционального состояния ткани. Такие обратимые переходы наглядно выявлены при раздражении нервно-мышечного аппарата токами разной силы: ток умеренной силы вызывает мощное сокращение - это оптимум силы раздражения. Увеличение же силы тока не усиливает сокращение, но тормозит их, что говорит о достижении пессимума силы раздражения.
КООРДИНАЦИЯ ДЕЯТЕЛЬНОСТИ ЦНС, КОДИРОВАНИЕ ИНФОРМАЦИИ
Координационная деятельность ЦНС - это согласование деятельности различных отделов ЦНС с помощью упорядочения распространения возбуждения между ними. Основой координационной деятельности ЦНС является взаимодействие процессов возбуждения и торможения.
По сути этот вид управления - функциональные системы (ФС) в понимании П.К.Анохина. По мнению П.К.Анохина, любая функциональная система состоит из 5 основных компонентов:
1. полезный приспособительный результат (ведущее звено ФС);
3. обратная афферентация - информация, идущая от рецептора в центр;
4. центральная архитектура - нервные центры;
Принцип декодирования информации в ЦНС
Декодирование информации в ЦНС проходит в коре полушарий большого мозга, высокая скорость декодирования. Каждая зона коры полушарий отвечает за свои функции.
Отличие процессов кодирования и декодирования информации
- виды кодирования информации в ЦНС:
- происходит в коре полушарий большого мозга
- каждая зона коры отвечает за свои индивидуальные функции
Явление конвергенции или принцип общего конечного пути - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу. Это объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. Например, сокращение мышцы (за счет возбуждения альфа-мотонейрона) можно вызвать за счет растяжения мышцы или путем раздражения кожных рецепторов (сгибательный рефлекс).
Дивергенция - способность нервной клетки устанавливать многочисленные синоптические связи с различными нервными клетками, это объясняется ветвлением аксонов нейронов (в среднем нейрон образует до 1000 окончаний) и их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых тоже ветвятся. Обеспечивает иррадиацию возбуждения в центральных нервных образованиях. Тормозные процессы ограничивают дивергенцию и делают процессы управления более точными. Когда торможение снимется, то происходит полная дискоординация в деятельности ЦНС (например, при столбняке).
ДОМИНАНТА, ЕЕ Ф ИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ДЛЯ ЦНС
Доминанта - это стойкий, господствующий очаг возбуждения, подчиняющий себе активность других нервных центров.
- он стойкий (его трудно затормозить);
- интенсивность его возбуждения усиливается слабыми раздражителями;
- тормозит другие потенциальные доминантные очаги.
Доминанта как один из основных принципов координационной деятельности ЦНС имеет важное значение в жизни человека. Например, именно благодаря доминанте возможно сосредоточение психической деятельности (внимание) и выполнение умственной или физической деятельности (в данном случае - это трудовая доминанта). В период поиска пищи и поедания возникает пищевая доминанта. Существуют половая, оборонительная и другие виды доминант. Доминантность того или иного очага определяется состоянием организма.
ФИЗИОЛОГИЯ СПИННОГО МОЗГА. РЕ ФЛЕКТОНЫЕ ЦЕНТРЫ СПИННОГО МОЗГА
1. Проводниковая - обеспечение связи в обоих направлениях. Функция осуществляется с помощью нисходящих и восходящих путей.
2. Собственно рефлекторная функция (сегментарная). Рефлексы спинного мозга достаточно просты. По форме это в основном сгибательные и разгибательные рефлексы сегментарного характера. Сила и длительность спинальных рефлексов, как и рефлексов других отделов ЦНС, увеличиваются при повторном раздражении, при увеличении площади раздражаемой рефлексогенной зоны вследствие суммации возбуждения, а также при увеличении силы стимула.
Между ними сложные взаимоотношения: подчинение сегментарной деятельности надсегментарным центрам различных функциональных уровней.
Сегмент спинного мозг а (метамер) - участок спинного мозга, соответствующий двум парам корешков спинномозговых нервов (паре спинномозговых нервов), расположенных на одном уровне.
Различают 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый сегменты.
Дорсальные корешки формируют афферентные входы спинного мозга, они образованы центральными отростками волокон первичных афферентных нейронов, тела которых вынесены на периферию и находятся в спинномозговых ганглиях.
Вентральные корешки образуют эфферентные выходы спинного мозга, в них проходят аксоны мотонейронов, а также преганглионарных нейронов вегетативной нервной системы.
ФИЗИОЛОГИЯ МЫШЦ И ИХ ИННЕРВАЦ ИЯ, НЕРВНО-МЫШЕЧНАЯ ПЕРЕДАЧА
Строение мышцы. Классификация мышечных волокон
1 - скелетная - мышцы прикрепляются к костям скелета;
3 - гладкая - мышечные слои внутренних органов.
Характеристика быстр ых и медленных мышечных волокон
высокое содержание миофибрилл при небольшом объеме саркоплазмы
возбуждение импульсами частотой 50 в сек
возбуждение импульсами частотой 10 -15 в сек
запуск сокращений через ПД и градуальную деполяризацию
могут выполнять кратковременную, но мощную работу
могут выполнять долговременную, но слабую работу
ФИЗИОЛОГИЯ ГОЛОВНОГО МОЗГА. ФИЗИОЛОГИЯ СТВОЛА ГОЛОВНОГО МОЗГА И МОЗЖЕЧКА
Ствол мозга включает продолговатый мозг, мост, средний мозг, промежуточный мозг, мозжечок.
- Организует рефлексы, обеспечивающие подготовку и реализацию различных форм поведения.
- Осуществляет проводниковую функцию: через ствол мозга проходят в восходящем и нисходящем направлении пути, связывающие между собой структуры ЦНС.
- Обеспечивает ассоциативную функцию, т.е. взаимодействие своих структур между собой, со спинным мозгом, базальными ганглиями и корой больших полушарий.
Продолговатый мозг является продолжением спинного мозга. Не имеет метамерного, повторяемого строения, серое вещество расположено не в центре, а ядрами к периферии.
1 - оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком - это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля и Бурдаха); перекресты нисходящих и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха);
- VIII - преддверно-улиткового (улитковое ядро),
- IX - языкоглоточного (ядро из 3-х частей - двигательной, чувствиительной, вегетативной),
- XI - добавочного (двигательное ядро),
- XII - подъязычного (двигательное ядро).
За счет ядерных образований и ретикулярной формации продолговатый мозг участвует в реализации вегетативных, соматических, вкусовых, слуховых, вестибулярных рефлексов. Его ядра обеспечивают выполнение сложных рефлексов, требующих последовательного включения разных мышечных групп (например, глотание).
Сенсорная функция связана с чувствительными ядрами черепных нервов, в которых импульсация с первых афферентных нейронов переключается на вторые нейроны. В них осуществляется первичный анализ сила и качества (вида) раздражителей, обработанная информация передается в высшие афферентные центры.
- Вкусовая чувствительность анализируется в ядрах лицевого, языкоглоточного и блуждающего нервов.
- Чувствительность кожи и слизистых оболочек лица и головы (тактильная, температурная, болевая), а также мышечно-суставная анализируется в ядрах тройничного нерва.
- Интероцептивная чувствительность органов головы, грудной и брюшной полостей оценивается в ядрах блуждающего и языкоглоточного нервов.
- Слуховая и вестибулярная чувствительность анализируется в соответствующих ядрах преддверно-улиткового нерва.
Через продолговатый мозг проходят все восходящие и нисходящие пути спинного мозга. В нем заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. В нем заканчиваются пути из коры больших полушарий - корковоретикулярные пути. Продолговатый мозг имеет двусторонние связи с образованиями головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус, кора больших полушарий.
Защитные рефлексы: рвоты, чихания, кашля, слезоотделения, смыкания век.
Рефлексы пищевого поведения: сосания, жевания, глотания. Организуются путем последовательного включения мышечных групп головы, шеи, грудной клетки, диафрагмы.
Рефлексы поддержания позы: статистические - регулируют тонус скелетных мышц с целью удержания определенного положения тела и статокинетические - обеспечивают перераспределение тонуса мышц для организации позы, соответствующей моменту прямолинейного или вращательного движения.
- центр слюноотделения, парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая - белковой секреции слюнных желез.
- дыхательный центр локализуется в медиальной части ретикулярной формации каждой симметричной половины продолговатого мозга.
- сосудодвигательный центр находится в ретикулярной формации.
Мост (варолиев мост) располагается выше продолговатого мозга.
1- Сенсорные функции обеспечиваются:
- улитковыми и преддверными (треугольное, латеральное - Дейтерса, верхнее - Бехтерева) ядрами преддверно-улиткового нерва (первичный анализ вестибулярных раздражений, их силы и направленности);
- чувствительным ядром тройничного нерва (сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, конъюнктивы глазного яблока).
2 - Двигательные функции обеспечиваются:
- двигательным ядром тройничного нерва (V) - иннервирует жевательные мышцы, мышцы, натягивающие барабанную перепонку, мышцу, натягивающую небную занавеску;
- лицевой нерв (VII) иннервирует все мимические мышцы лица;
- отводящий нерв (VI) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи.
- в покрышке моста - длинный медиальный и тектоспинальный пути;
- переднее и заднее ядро трапециевидного тела и латеральной петли обеспечивают первичный анализ информации от органов слуха и затем передают ее в задние бугры четверохолмий.
4 - Интегративные рефлекторные реакции.
Функциональные связи мозжечка. С имптомы после удаления мозжечка
Адиадохокинез - невозможность быстро выполнять чередующиеся противоположные по направлению движения.
Асинергия - нарушение деятельности мышц - синергистов.
Астазия - нет слитного тетанического сокращения мышц.
Атаксия - недостаточная координация движений.
Атония (дистония) - нарушение регуляции мышечного тонуса.
Деэквилибрация - нарушение равновесия.
Дизартрия - расстройство артикуляции.
Дисметрия - избыточность или недостаточность амплитуды целенаправленных движений.
Тремор - дрожание пальцев рук, кистей, головы в покое, усиливающиеся при движении.
Через стволовые моторные центры и их тракты осуществляется регуляция установки тела в пространстве, направленной на сохранение нормальной позы тела и равновесия. Эти рефлексы изучены голландским физиологом Р.Магнусом (1924), который разделил их на две группы:
I - статические рефлексы, которые обуславливают положение тела и его равновесие в покое:
1 - рефлексы позы - возникают при изменениях положениях головы (сдвиг центра равновесия) и направлены на создание удобной позы.
2 - выпрямительные рефлексы - благодаря им организм способен принимать естественную позу при ее нарушении.
3 - рефлексы компенсаторного положения глаз - обеспечивают правильное видение при различных положениях головы относительно тела и в пространстве.
II - статокинетические рефлексы - возникают при ускорениях прямолинейного и вращательного движений организма. Сокращения мышц при этом направлены на преодоление действующих на человека ускорений, сохранение нормальной позы, равновесия и ориентации в пространстве.
1 - рефлексы прямолинейного ускорения (например, лифтный рефлекс: при подъеме вверх повышается тонус сгибателей ног, а при опускании вниз возрастает тонус разгибателей);
2 - рефлексы вращения - включают мышцы тела и глазные мышцы например, нистагм глазных яблок и головы: медленное вращение в сторону, противоположную вращению, и быстрый возврат в сторону вращения).
В осуществлении этих рефлексов принимают участие вестибулярные афферентные волокна и нейроны латерального вестибулярного ядра, аксоны которых идут в спинной мозг в составе вестибулоспинального тракта. Рефлекторная дуга указанных рефлексов включает в себя небольшое число последовательно включенных нервных элементов, что обеспечивает эффективную и своевременную коррекцию позы при вестибулярных раздражений благодаря моносинаптическим связям быстропроводящих вестибулоспинальных волокон с мотонейронами мышц - разгибателей и параллельному торможению мотонейронов мышц-сгибателей.
Имеют наиболее сложный характер, направленный на сохранение позы и ориентации в пространстве при изменении скорости движения. При этом происходит сокращение мышц для преодоления действующих на человека ускорений. Развивающиеся двигательные реакции отличаются значительной силой, быстротой и сложностью, представляя собой резкие фазные ответы, отличные от медленных лозных реакций. Эти рефлексы вовлекают в деятельность почти всю мускулатуру тела.
Ф ИЗИОЛОГИЯ РЕТИКУЛЯРНОЙ ФОРМАЦИИ
Структурные ос обенности ретикулярной формации
Нейроны ретикулярной формации имеют длинные мало ветвящиеся дендриты и хорошо ветвящиеся аксоны, которые часто образуют Т - образное ветвление: одна из ветвей аксона имеет нисходящее, а вторая - восходящее направление. Ветви нейронов под микроскопом образуют сеточку (ретикулум), с чем и связано название данной структуры мозга, предложенное О.Дейтерсом (1865).
Функциональные особенности ретикулярной формации.
1 - Полисенсорная конвергенция: принимают коллатерали от нескольких сенсорных путей, идущих от разных рецепторов. В основном это полимодальные нейроны, имеющие большие рецепторные поля.
2 - У нейронов ретикулярной формации длительный латентный период ответа на периферическую стимуляцию в связи с проведением возбуждения к ним через многочисленные синапсы.
3 - Они имеют тоническую активность, в покое 5 - 10 имп/с.
4 - Нейроны ретикулярной формации обладают высокой чувствительностью к некоторым веществам крови (например, к адреналину, углекислому газу) и лекарственным веществам (к барбитуратам, аминазину и др.).
Главные ядерные структуры ретикулярной формации и их функции
v Латеральное ретикулярное ядро продолговатого мозга входит в центр кровообращения, способствуя повышению АД и частоты сердечных сокращений, оказывает активирующее влияние на кору, передает на мозжечок спинальные влияния, участвует в регуляции быстрых движений глаз, движений челюсти и языка в рефлексах сосания, жевания и глотания.
v Ретикулярное гигантоклеточное ядро продолговатого мозга повышает тонус мышц-сгибателей, входит в противоболевую систему мозга, в дыхательный центр и центр кровообращения, оказывает активирующее влияние на кору мозга.
v Парамедианное ретикулярное ядро продолговатого мозга входит в состав центра глотания, участвует в регуляции содружественных движений глаз, в осуществлении сердечнососудистых рефлексов, передает на мозжечок влияние коры.
v Ретикулярное вентральное ядро продолговатого мозга входит в депрессорную зону центра кровообращения, оказывает активирующее влияние на кору мозга.
v Ретикулярное мелкоклеточное ядро продолговатого мозга входит в экспираторную область дыхательного центра.
v Каудальное ядро моста входит в депрессорную зону сосудодвигательного центра, повышает тонус мышц-разгибателей.
v Ретикулярное ядро покрышки моста (Бехтерева) передает корковые и спинальные влияния на мозжечок.
v Оральное ретикулярное ядро моста входит в депрессорную зону центра кровообращения, повышает тонус мышц-разгибателей, участвует в регуляции частоты дыхания.
v Оральное интерстициальное ядро среднего мозга участвует в регуляции поворота верхней части туловища и вращательных движений.
Промежуточный мозг образует стенки III желудочка. В процессе эмбриогенеза он формируется вместе с большими полушариями из переднего мозгового пузыря.
Промежуточный мозг состоит из таламической области и гипоталамуса. Таламическая область включает в себя таламус, метаталамус (коленчатые тела) и эпиталамус (эпифиз).
Таламус (зрительный бугор) представляет собой парный ядерный комплекс, занимающий преимущественно дорсальную часть промежуточного мозга. Таламус составляет основную массу (около 20 г) промежуточного мозга, наибольшее развитие имеет у человека. В таламусе выделяют около 120 ядер, которые в функциональном плане можно разделить на следующие три группы: релейные, ассоциативные и неспецифические. Все ядра таламуса в разной степени обладают тремя общими функциями - переключающей, интегративной и модулирующей.
Гипоталамус является вентральной частью промежуточного мозга. Макроскопически он включает в себя преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные тела. Микроскопически в гипоталамусе выделяют около 50 пар ядер, которые топографически объединяют в 5 групп. Ядра гипоталамуса имеют мощное кро
Физиология центральной нервной системы курсовая работа. Биология и естествознание.
Реферат: Причины вегетерианства
Реферат На Тему Понятие Малой Группы В Социальной Психологии
Курсовая Работа Физическое Воспитание Детей
Сочинение: Своеобразие проблематики ранней прозы М. Горького. (На примере одного из рассказов.)
Количество Страниц В Кандидатской Диссертации
Современная Банковская Система Реферат
История Развития Гимнастики Реферат Коротко
Курсовая работа по теме Анализ системы управления персоналом на примере предприятия ОАО 'Чебоксарский хлебозавод №2'
Реферат: Индустриализация. Скачать бесплатно и без регистрации
Курсовая Разработка Функций Организации
Статья: Два Дон Жуана
Скачать Дипломные Работы Пожарной Безопасности В Библиотеки
Курсовая работа: Наукові основи організації виховного процесу в сучасній загальноосвітній школі
Реферат На Тему Визитные Карточки И Их Использование
Реферат: Причины и характер первой мировой войны. Скачать бесплатно и без регистрации
Реферат по теме Особенности организации однопредметной прерывно-поточной линии
Методы Экономической Теории Реферат
Отчет по практике по теме Управление сферой физической культуры и спорта Ярославля
Контрольная Работа Номер 2 Алгебра Мерзляк
Обязательное и добровольное медицинское страхование в России
Іксодові кліщі - Биология и естествознание курсовая работа
Разработка мероприятий по улучшению условий и охраны труда в ОАО "СибирьЭнерго" - Безопасность жизнедеятельности и охрана труда дипломная работа
Дослідження особливості пристосувань рослин для запилення комахами - Биология и естествознание контрольная работа