Эксплуатация электроизмерительных приборов - Физика и энергетика курсовая работа

Эксплуатация электроизмерительных приборов - Физика и энергетика курсовая работа




































Главная

Физика и энергетика
Эксплуатация электроизмерительных приборов

Исследование истории развития электрических измерительных приборов. Анализ принципа действия магнитоэлектрических, индукционных, стрелочных и электродинамических измерительных приборов. Характеристика устройства для создания противодействующего момента.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Нижегородская государственная сельскохозяйственная академия
На тему: Эксплуатация электроизмерительных приборов
1. Краткие сведения об электрических измерительных приборах
2. Схемы включения электрических измерительных приборов
3. Надзор за состоянием электроизмерительных приборов
4. Обучение персонала правилам электробезопасности
Особое место в измерительной технике занимают электрические измерения. Современная энергетика и электроника опираются на измерение электрических величин. В настоящее время разработаны и выпускаются приборы, с помощью которых могут быть произведены измерения более 50 электрических величин. Перечень электрических величин включает в себя ток, напряжение, частоту, отношение токов и напряжений, сопротивление, емкость, индуктивность, мощность и т.д. Многообразие измеряемых величин определило и многообразие технических средств, реализующих измерения.
Измерения являются одним из основных способов познания природы, её явлений и законов. Каждому, новому открытию в области естественных и технических наук предшествует большое число различных измерений.
Важную роль играют измерения в создании новых машин, сооружений, повышении качества продукции.
Особо важную роль играют электрические измерения как электрических так и не электрических величин.
Первый в мире электроизмерительный прибор «указатель электрической силы» был создан в 1745 году, академиком Г.В. Рохманом, соратником М.В. Ломоносова.
Это был электрометр - прибор для измерения разности потенциалов. Однако только со второй половины XIX века в связи с созданием генераторов электрической энергии остро встал вопрос о разработке различных электроизмерительных приборов.
Вторая половина XIX века, начало XX века, - русский электротехник М.О. Доливо-добровольский разработал амперметр и вольтметр, электромагнитный системы; индукционный измерительный механизм; основы ферродинамических приборов.
В последующем развитие приборостроения идёт неизменно опережающими темпами.
- Аналоговые приборы непосредственной оценки улучшенных свойств;
- Узко профильные аналоговые сигнализирующие контрольные приборы;
- Прецизионные полуавтоматические конденсаторы, мосты, делители напряжения, другие установки;
Современное производство немыслимо без современных средств измерений. Электроизмерительная техника постоянно совершенствуется.
В приборостроении широко используется достижения радиоэлектроники, вычислительной техники, и другие достижения науки и техники. Всё чаще применяют микропроцессоры и микро ЭВМ.
Измерением называется нахождение значений физической величины опытным путём с помощью специальных технических средств.
Измерения должны выполняться в общепринятых единицах.
Средствами электрических измерений называются технические средства, использующиеся при электрических измерениях.
Цель работы заключается в анализе эксплуатации электроизмерительных приборов.
· Рассмотреть магнитоэлектрические приборы
· Рассмотреть Электродинамические приборы
· Изучить схему включения электрических измерительных приборов
· Рассмотреть надзор за состоянием электроизмерительных приборов
· Проанализировать обучение персонала правилам электробезопасности
1. Краткие сведения об электрических измерительных приборах
Развитие электроизмерительной техники конца второй половины XIX и начала XX ст. значительные заслуги принадлежат М.О.Доливо-Добровольскому. Он разработал электромагнитные амперметры и вольтметры, индукционные приборы с вращающимся магнитным полем (ваттметр, фазометр) и ферродинамический ваттметр.
Принцип измерения электрических величин был впервые предложен основоположником русской науки М.В. Ломоносовым. Который экспериментально пришёл к выводу, что "Электричество взвешено быть может". Первый электроизмерительный прибор был построен в России современником Ломоносова Г. В. Рихманом. Это был электрометр со шкалой и стрелкой, принцип действия которого положен в основу устройства большинства современных приборов.
Электроизмерительные приборы - техническое устройство с помощью которого происходит измерение электрических величин.
Электроизмерительные приборы классифицируют по следующим признакам:
· По роду измеряемой величины: для измерения тока-амперметры, миллиамперметры, гальванометры; для измерения напряжения - вольтметры, милливольтметры, гальванометры; для измерения мощности - ваттметры, киловаттметры; для измерения энергии - счётчики; для измерения сдвига фаз и коэффициента мощности - фазометры; для измерения частоты - частотометры; для измерения сопротивлений - омметры и мегомметры.
· По роду измеряемого тока: для измерения в цепях постоянного, переменного, постоянного и переменного токов, а также в трёхфазных цепях.
· По степени точности: приборы делят не восемь классов точности - 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5;и 4,0.Класс точности - отношение предельной абсолютной погрешности к максимальному (номинальному) значению измеряемой величины, выраженное в процентах.
· По принципу действия: магнитоэлектрические, электромагнитные, электродинамические, индукционные, тепловые, термоэлектрические, электростатические, электронные, электролитические, фотоэлектрические.
Детали электроизмерительных приборов
электрический измерительный прибор индукционный
Устройство для создания противодействующего момента.
Принцип работы большинства электроизмерительных стрелочных приборов основан на повороте подвижной их части под действием вращающегося момента. Последний создается током, связанным определенной зависимостью с измеряемой электрической величиной.
Если этому повороту ничем не противодействовать, то подвижная часть прибора либо повернется на наибольший возможный угол, либо придет в ускоренное движение. Противодействующий момент у большинства приборов создается закручивающейся упругой бронзовой пружиной 1, концы которой прикреплены: один -- к оси подвижной части прибора 2, а другой -- к неподвижной части прибора ( к вилке пружино держателя) 3. Очевидно, что чем больше ток, проходящий через прибор, тем больше вращающий момент, действующий на подвижную часть прибора. Под действием этого вращающего момента подвижная часть прибора поворачивается, закручивая спиральную пружину. Пружина, в свою очередь, препятствует этому повороту. Поворот будет происходить до тех пор, пока вращающий и противодействующий моменты не сравняются:. Кроме того, спиральная пружина возвращает подвижную часть прибора в первоначальное (нулевое) положение после того, как прибор выключен из цепи.
Для уравновешивания стрелки прибора иногда применяют грузики 4 (противовесы), навинченные на стержни с мелкой резьбой, посредством которой можно изменять расстояние грузиков от оси вращения. Для установки стрелки прибора против нулевого деления служит корректор, состоящий из поводка 5 и винта 6. Эксцентрично поворачивающийся выступ винта 6 изменяет положение пружино-держателя 3 и одного конца спиральной пружины 1, поворачивая тем самым стрелку 7 в нужную сторону. У многих приборов по две противодействующих пружины. Они помещаются либо рядом, либо у концов оси подвижной системы.
Шкалы приборов. Шкала прибора служит для отсчета значений измеряемой величины. Кроме того, на шкалу обычно наносят условные обозначения, соответствующие характеристикам данного прибора (род измеряемой величины, род тока, класс точности, принцип действия и т. д.).В многопредельных приборах шкала имеет определенное число условных делений, по которым путем пересчета определяют измеряемую величину в нужных единицах. Шкалы других приборов градуируют непосредственно в значениях измеряемой величины, -- это шкалы непосредственного отсчета.
Различают равномерные и неравномерные шкалы. Достоинством равномерной является постоянство масштаба вдоль всей шкалы, что обеспечивает простоту отсчета измеряемой величины в любой части шкалы.
Обычно в стрелочных приборах стрелка находится на некотором расстоянии от шкалы, а для снятия показаний приборов приходится проецировать положение стрелки на шкалу. При этом положение проекции стрелки зависит от угла между лучом зрения на стрелку и плоскостью шкалы, т. е. от положения глаза относительно стрелки и шкалы. Этот угол должен быть прямым. На практике трудно добиться такого угла, поэтому получается так называемая погрешность от параллакса (параллакс -- видимое смещение предмета из-за перемены места наблюдения). Для устранения этой параллактической погрешности на шкалах наиболее точных приборов укрепляют плоскую зеркальную пластину. Отсчет показаний снимают одним глазом, причем глаз располагают относительно стрелки и шкалы так, чтобы стрелка и ее изображение в зеркале сливались воедино.
Успокоители. Подвижную часть прибора с противодействующей спиральной пружиной можно рассматривать как некоторую колебательную систему. В самом деле, при включении прибора в цепь подвижная его часть под действием толчка, создаваемого быстро нарастающим вращающим моментом, поворачивается, но не сразу может остановиться в положении, в котором вращающий и противодействующий моменты равны (подобно тому, как маятник не в состоянии остановиться, проходя через положение равновесия). Подвижная часть прибора будет совершать затухающие колебания, и для снятия показаний необходимо некоторое время для полной остановки его стрелки. Для быстрой остановки подвижной части прибора применяют специальные устройства -- успокоители. Наиболее распространенными успокоителями являются воздушные и магнитоиндукционные.
Воздушный успокоитель представляет собой дугообразный цилиндр1, запаянный с одного конца. Внутри цилиндра находится поршень 2. Он жестко связан с подвижной частью прибора и не касается стенок цилиндра. Зазор между поршнем и цилиндром невелик и при быстрых перемещениях поршня давление внутри цилиндра не успевает выровняться с атмосферным. В цилиндре создаются то сгущения, то разрежения воздуха, которые препятствуют движению поршня и тем самым быстро успокаивают подвижную систему. При медленном же движении поршня часть воздуха может свободно входить в цилиндр и выходить из него через зазор, не препятствуя поворотам подвижной части прибора.
Иногда воздушный успокоитель имеет форму замкнутой коробочки со щелью .Эта щель служит для перемещения рычага /, на котором укреплена пластинка 2. Последняя не касается стенок коробочки и выполняет ту же роль, что и поршень. При движении пластинки в коробочке одновременно действуют и сгущения (по одну сторону пластинки) и разрежения (по другую сторону), препятствующие колебаниям.
Магнитоиндукционный успокоитель представляет собой перемещающуюся между полюсами постоянного магнита М легкую алюминиевую пластину А, жестко связанную с подвижной системой прибора. При колебаниях пластинки в магнитном поле постоянного магнита в соответствии с законом Ленца в ней индуцируются токи, препятствующие этим колебаниям, поэтому колебания подвижной системы и стрелки быстро прекращаются. Астатические измерительные приборы применяют для устранения влияния внешних магнитных полей на показания электромагнитных и электродинамических приборов. Астатический прибор -- это совокупность двух измерительных механизмов, подвижные системы которых объединены в одном приборе и воздействуют на одну и ту же ось со стрелкой. При этом измерительные механизмы расположены так, что под действием внешнего поля вращающий момент одного из них увеличивается, тогда как другого на столько же уменьшается, а общий вращающий момент, действующий на всю подвижную систему прибора, остается неизменным.
Принцип действия приборов магнитоэлектрической системы основан на взаимодействии проводника с током (рамки 3) с магнитным полем постоянного магнита М. Подковообразный постоянный магнит М, стальные полюсные наконечники N и S, стальной цилиндр 2 образуют магнитную цепь (полюсные наконечники и стальной цилиндр служат для уменьшения магнитного сопротивления этой цепи). Благодаря форме полюсных наконечников в большей части воздушного зазора между цилиндром и наконечником создается радиально направленное однородное магнитное поле, в котором может поворачиваться подвижная рамка 3. Рамку прибора (обмотку) чаще всего выполняют из изолированного провода на легком алюминиевом каркасе, укрепленном на двух полуосях. Измеряемый ток проходит в рамку через токоведущие спиральные пружины 5, служащие одновременно и для создания противодействующего-момента. При протекании тока по рамке на ее стороны, находящиеся в воздушном зазоре, действует пара сил (токи в этих сторонах рамки имеют противоположное направление), создающая вращающий момент и поворачивающая эту рамку в ту или иную сторону вокруг оси. Направление силы F, действующей на одну сторону рамки, может быть определено по правилу левой руки, а значение -- по закону Ампера:
где В - магнитная индукция в зазоре,  - длина активной стороны рамки, I - сила тока в рамке,  - число витков рамки ,  - угол между плоскостью рамки и вектором индукции в воздушном зазоре. Благодаря тому что магнитное поле в рабочем зазоре радиальное(), то момент этой пары сил (вращающий момент) равен 
где d - ширина рамки, являющаяся плечом пары. Так как величины В, для данного прибора постоянные, то их произведение дает также постоянную величину, которую обозначим через :
Под действием этого вращающего момента рамка поворачивается, закручивая (или раскручивая) спиральные пружины, создающие противодействующий момент
где  - постоянная, характеризующая жёсткость пружин, б - угол поворота оси со стрелкой. Очевидно, что рамка будет поворачиваться до тех пор, пока противодействующий момент, увеличиваясь с углом поворота, не окажется равным вращающему, т. е.
где - постоянная данного прибора по току. Таким образом, угол поворота стрелки магнитоэлектрического прибора пропорционален току в рамке и шкала такого прибора равномерная. Механизм магнитоэлектрического прибора может быть использован для устройства гальванометра, амперметра и вольтметра. Ток, проходя по обмотке рамки, создает напряжении , равное приложенному, тогда
где  - постоянная прибора по напряжению. Из последнего соотношения следует, что магнитоэлектрический механизм можно использовать для изготовления вольтметра. В этом случае сопротивление рамки должно быть достаточно большим с тем, чтобы прибор можно было включать параллельно нагрузкам. Однако для этого пришлось бы рамку делать из большего числа витков тонкой проволоки (а для амперметра -- из небольшого числа витков толстой проволоки). Как в том, так и в другом случае рамка получилась бы тяжелой, а прибор -- грубым. На практике рамки амперметров и вольтметров не имеют принципиального различия. В первом случае рамку шунтируют, а во втором -- последовательно с ней включают добавочное гасящее сопротивление.
Принцип градуирования магнитоэлектрического прибора в качестве вольтметра основан на прямой пропорциональной зависимости между током в рамке и приложенным к ней измеряемым напряжением.
Для переменных токов эти приборы без дополнительных устройств -- выпрямителей -- непригодны, так как направление отклонения стрелки прибора зависит от направления тока в рамке. Следовательно, в цепи переменного тока подвижная часть прибора ничего не покажет. Поэтому, если нулевое деление шкалы находится не в ее середине, а на левом краю, то около зажимов прибора ставятся знаки "+" и "--", к которым следует подключать провода соответствующей полярности. При неправильном включении такого прибора стрелка упирается в ограничитель, стремясь уйти в противоположную сторону за нулевое деление шкалы. Специальных успокоителей в магнитоэлектрических приборах не делают. Их роль выполняет алюминиевый замкнутый каркас, на который навивается рамка. При колебаниях каркаса в нем индуцируются токи, препятствующие этим колебаниям, и подвижная система прибора быстро успокаивается. Изменения температуры окружающей среды могут влиять на изменения сопротивления прибора, плотности магнитного потока в воздушном зазоре и упругих свойств пружин, создающих противодействующий момент. Однако два последних обстоятельства приблизительно компенсируют друг друга. Например, повышение температуры вызывает ослабление магнитного потока в воздушном зазоре, т. е. вращающий момент уменьшается, при этом уменьшение упругости пружин примерно на столько же уменьшает противодействующий момент. Изменение сопротивления прибора из-за изменения температуры окружающей среды значительно сказывается на показаниях амперметров с шунтами, но почти не сказывается на показаниях вольтметров. У вольтметра сопротивление рамки значительно меньше добавочного сопротивления, а последнее изготовляют из манганиновой проволоки, имеющей незначительный температурный коэффициент. Поэтому сопротивление всего прибора почти не изменяется. Для устранения температурной погрешности в некоторых приборах применяют специальные схемы так называемой температурной компенсации.
К достоинствам магнитоэлектрических приборов относятся: равномерная шкала; большая точность при малой чувствительности; высокая чувствительность при малой точности (гальванометр); малая чувствительность к внешним магнитным полям; малое потребление энергии.
Чувствительность - отношение линейного или углового перемещения указателя к изменению измеряемой величины, вызвавшую это перемещение.
Недостатками таких приборов являются: пригодность только для постоянных токов (без выпрямителей), большая чувствительность к перегрузкам, сравнительно высокая стоимость.
Приоры такого вида систем обозначаются следующим образом: .
Принцип действия приборов электродинамической системы основан на механическом взаимодействии двух катушек с токами. На рисунке изображен измерительный механизм электродинамического прибора с воздушным успокоителем 3. Неподвижная катушка 1 состоит из двух секций (для создания однородного поля) и навивается обычно толстой проволокой. Легкая подвижная катушка 2 помещается внутри неподвижной и жестко скрепляется с осью и стрелкой. Подвижная катушка включается в измеряемую цепь через спиральные пружины, создающие противодействующий момент. Если токи в катушках 1 и 2 принять равными соответственно  и , то их взаимодействие создаст вращающий момент , стремящийся повернуть подвижную катушку так, чтобы энергия магнитного поля системы двух катушек стала наибольшей (до совпадения направлений полей). При этом поворот подвижной катушки произойдет за счет энергии магнитного поля катушек. Тогда вращающий момент М вр , действующий на подвижную катушку, можно представить в следующем виде:
Где  - энергия магнитного поля катушек; б - угол поворота подвижной катушки. Энергия магнитного поля системы двух катушек  складывается из энергий катушек и энергии, обусловленной их взаимной индукцией
Где - индуктивность катушек; - коэффициент их взаимной индукции. Тогда получим:
Так как  постоянны для данного набора, то
Вообще говоря,  и сильно зависит от формы катушек. Предположив, простоты ради, = const получим: = . Поворот подвижной системы будет происходить до наступления равновесия между вращающим  и противодействующим М пр юментами, создаваемыми спиральными пружинами: 
Где k 2  -- жесткость пружины. Окончательно имеем:
=k, где k=- постоянная данного прибора.
Отсюда следует, что угол поворота подвижной системы электродинамического прибора в случае постоянных токов пропорционален произведению токов в его катушках. В случае переменных токов, например , мгновенный вращающий момент , а средний за период момент (после преобразований) равен:
Пригодность электродинамических приборов для переменных токов объясняется тем, что направления токов в обеих катушках изменяются на противоположные одновременно (или с постоянным сдвигом по фазе), а следовательно, направление поворота подвижной катушки остается неизменным. В зависимости от назначения прибора катушки в нем могут быть соединены либо последовательно -- в вольтметре (рис. а), либо параллельно -- в амперметре (рис. б), либо в разные цепи -- в ваттметре (рис. в). Из выражения вращающего момента = 
следует, что изменение направления тока в какой-либо одной из катушек приведет к изменению направления поворота подвижной системы на противоположное. У вольтметров и амперметров взаимное соединение концов обмоток сделано внутри прибора, а к зажимам прибора выведены только два конца, подключаемые в цепь (включение ваттметра будет рассмотрено ниже).
Шкалы электродинамических вольтметров и амперметров неравномерны, так как токи в обоих катушках пропорциональны одной и той же измеряемой величине: для вольтметра -- ток в обоих катушках один и тот же, поэтому
т.е. шкала неравномерная (квадратичная); для амперметра , где - сопротивления подвижной и неподвижной катушек. Откуда
Точно также и для : = k 2 , тогда =, т. е. шкала также квадратичная. Однако на практике добиваются приблизительно равномерной шкалы в ее рабочей части подбором взаимного расположения катушек и их формы. На показания электродинамических приборов могут влиять внешние магнитные поля, так как собственное поле катушек слабое. Для устранения этого влияния применяют астатические измерительные механизмы:
Приборы электродинамической системы изготовляют и применяют в основном как переносные лабораторные приборы классов точности 0,1; 0,2 и 0,5.
К достоинствам электродинамических приборов относятся: большая точность, позволяющая применить их в лабораторной практике как контрольные, и пригодность для измерения постоянных и переменных токов, а к недостаткам -- неравномерная шкала; большая чувствительность к перегрузкам (из-за наличия токо-зедущих пружин); влияние внешних магнитных полей и высокая стоимость.
Приборы такого типа системы обозначаются следующим образом:.
Принцип действия индукционных приборов основан на взаимодействии бегущего магнитного поля с вихревыми токами, индуцируемыми этим же полем в проводящем подвижном диске.
Бегущее поле создается двумя магнитными потоками, сдвинутыми на некоторый угол по фазе и в пространстве. Можно создать индукционные приборы любого назначения -- амперметры, вольтметры, ваттметры и др. На практике наибольшее распространение получили индукционные счетчики электрической энергии.
Приведенная конструкция (трехпоточная) счетчика со стоит из двух электромагнитов 1 и 2 и подвижного алюминиевого диска 5. Диск укреплен на оси, которая связана с помощью червячной передачи со счетным механизмом. Диск вращается в зазоре электромагнитов. Магнитный поток Ф1 электромагнита 1 U-образной формы создается током I приемника электрической энергии, так как его обмотка включена последовательно в цепь нагрузки. Поток Ф1 дважды пересекает диск и не значительно отстает по фазе от образующего его тока I. Поэтому можно считать, что значение потока Ф1 в первом приближении пропорционально току I: Ф1 = kI. Электромагнит 2 имеет Т-образный вид. На его среднем стержне расположена гистерезис и вихревые токи.
Подвижная катушка вращается около неподвижного стального сердечника 4, помещенного в соосную расточку магнито провода. Стороны обмотки (рамки) 3 подвижной части находятся в зазоре между магнито проводом и неподвижным стальным сердечником, где магнитное поле достигает значительно больших значений, чем магнитное поле, создаваемое в воздухе неподвижной катушкой электродинамического прибора.
Так как реактивное сопротивление этой обмотки большое, можно считать, что ее полное сопротивление Z U  » Х U , и ток I U  в обмотке сдвинут по фазе относительно напряжения U почти на p/2. Поток Ф U , как видно из рисунка, делится на две части: рабочий поток Ф р  и потоки Ф L , которые замыкаются по мимо диска по боковым ветвям магнито провода 2.
Рабочий поток Ф р  проходит по среднему стержню магнито провода и пересекает диск, замыкаясь через противо полюсную скобу 4, средняя часть которой находится под центральным стержнем магнито провода 2. При такой конструкции под диском находятся три полюса (два от U-образного магнита и один от Т-образного магни та). Потоки Ф L определяют сдвиг по фазе между потоками Ф P  и Ф r  Вихревые токи, индуцируемые в диске магнитными потоками, пропорциональны магнитным потокам и частоте. Магнитный поток Ф P индуцирует в диске вихревой ток.
Взаимодействие между индуцируемым током в диске и созданным им потоком, например, между I вI  и Ф r , не создает электромагнитной силы, так как g = p/2 и cosg = 0. Электромагнитные силы создаются только в результате взаимодействия магнитного потока Ф P  с током I вI  и пото ка Ф I  с током I в.р .
Противодействующий момент М пр  создается постоянным магнитом 3, в поле которого вращается диск, и является тормозным моментом, пропорциональным часто те вращения диска. Постоянный магнитный поток Ф индуцирует во вращающемся диске
под действием которой в нем возникает вихревой ток
где R д  -- сопротивление диска. Когда моменты равны, т. е. М т  = М вр , частота вращения диска постоянна (установившийся режим).
Число оборотов диска за промежуток времени. Таким образом, число оборотов диска пропорционально расходу электроэнергии. Величину с т  /с р 2p называют постоянной счетчика. Она показывает, какому количеству киловатт-часов электроэнергии соответствует один оборот диска. Червячная передача счетного механизма учитывает постоянную счетчика, и счетный механизм непосредственно отсчитывает энергию в киловатт-часах.
Поскольку индуцируемые токи во вращающемся элементе зависят от частоты сети, ее изменение сказывается на правильности показаний счетчика.
Для трехфазных систем выпускают счетчики, состоящие из трех и двух однофазных систем (для четырех- и трехпроводной сети). В этом случае вращающий элемент является общим и счетный механизм показывает потреб электроэнергии трехфазным электро приемником.
Индукционные счетчики весьма надежны в эксплуатации.
У стрелочных приборов довольно долгая и давняя история. Дойдя до наших дней они всё же обрели некую простоту и надёжность.
В конструкции стрелочных приборов, как правило, отсутствуют сложные элементы схемы (к примеру - микросхемы), что позволяет отремонтировать его в короткие сроки без особого труда и без особого опыта. Исключение составляет летательный исход самой магнитной части и ротора - подвижная часть со стрелкой.
Источник питания (батарейка) в обычных приборах, как правило, не нужна для измерения величин напряжения и тока. Причём, в этом случае стрелочные приборы никак не уступают цифровым приборам. И касается это не только наличия батарейки, но и очень низкой погрешности.
Следует так же отметить, что батарейки в стрелочных приборах «живут» дольше, чем в цифровых. Работа прибора на одном комплекте батареек (если она не одна) может проработать до 10 лет. Точно сказать трудно.
При измерении напряжения стрелочные приборы практически не учитывают «наводку» в проводниках. Если в проводнике всё же наводится напряжение от других соседних проводников, то его можно вычислить по величине. В этом случае цифровые приборы «врут», что называется - они показывают чёткое наличие напряжения. Всё это из-за того, что цифровые приборы сделаны на чувствительных компонентах (к примеру - полевые транзисторы).
В некоторых моделях стрелочных приборов встречаются схемы защиты, что ещё реже встречается у цифровых приборов. Если, к примеру, диапазон измерения напряжения будет выставлен на 80-150V и Вы воткнёте его в розетку, то стрелочный прибор просто зашкалит, что часто бывает. А вот для цифрового это может быть «смерть». Примерно, то же самое может произойти, если измерять напряжение, предварительно забыв переключить режим измерения с «омметр» на «напряжение».
Поломка стрелочного прибора по причине летального исхода стрелочного механизма встречается примерно в 30-40% случаев. У цифровых же приборов основной частью является центральная большая микросхема. Вероятность её «смерти» - 60-70%. В обоих случаях поломок именно эти основные части и составляют ценность приборам. Цена этих частей будет колебаться в пределах 65-80% от стоимости изделия.
В период политических и экономических преобразований 1985 - 2000 г.г. в России приборостроение претерпело качественные изменения. Ряд приборостроительных предприятий бывшего СССР было реорганизовано, некоторые из них прекратили своё существование, а некоторые из предприятий, наоборот, существенно нарастили выпуск электроизмерительных приборов и расширили их номенклатуру (завод «Электроприбор» г.Чебоксары).
По оценке специалистов, общий парк стрелочных приборов к 2005 году составлял около 250 млн. штук. В основном это щитовые приборы, большинство из которых применяются в щитах диспетчерского управления (ЩДУ).
И сегодня потребность в стрелочных приборах остаётся большой, несмотря на появление современных цифровых приборов, габариты которых сопоставимы со стрелочными приборами, у которых такие характеристики, как точность, функциональность, возможность работы в системах автоматизации - безусловно, превосходят стрелочные приборы.
Однако и сегодня потребность в стрелочных приборах превышает потребность в цифровых приборах. Объясняется это не только их низкой стоимостью, но и основным преимуществом - аналоговое представление измеряемой информации удобно для оператора. По положению стрелок на шкалах опытный оператор быстро оценивает состояние объекта управления. Для оператора ЩДУ, у которого на щите расположены десятки или сотни щитовых стрелочных электроизмерительных приборов, замена их на цифровые приборы может привести к ошибкам в оценке состояния объекта и в конечном итоге к авариям.
На сегодняшний день развитие традиционного «стрелочного» приборостроения, которое базировалось на разработках, выполненных в конце XIX и начале XX веков, достигло своего технологического совершенства. Но качественный разрыв между возможностями щитовых стрелочных приборов и потребностями современной промышленности не позволяет эффективно совместить автоматизированные системы управления и щитовые стрелочные приборы.
Решить эту проблему взяло на себя приборостроительное предприятие «ЗИП-Магнитоника». На предприятии был разработан прибор, по сути являющийся аналого-цифровым измерительным прибором, у которого функцию индикатора выполняет стрелка, перемещаемая на шкале прибора миниатюрным шаговым двигателем.
Первые щитовые стрелочные приборы нового поколения серии ЗМ300 предназначены для замены традиционных стрелочных приборов постоянного и переменного тока. ЗМ300 может использоваться в АСУ ТП, в пультах диспетчерского управления для оснащения ЩДУ - в энергетике, на транспорте, машиностроении и других отраслях.
Прибор имеет возможно
Эксплуатация электроизмерительных приборов курсовая работа. Физика и энергетика.
Реферат: Организационное и финансово экономическое обоснование создания фирмы
Контрольная работа: Внутренние стандарты аудиторских фирм
Реферат: на тему «Борьба добра и зла в героях романа М. А. Булгакова «Мастер и Маргарита»
Исторический Путь Не Тротуар Невского Проспекта Эссе
Реферат: Экологическая обстановка Северо-Западного округа Москвы
Лабораторная Работа Измерение Показателя Преломления Стекла
Проверка Закона Сохранения Импульса Лабораторная Работа Юургу
Реферат Город Как Среда Обитания
Реферат по теме Революции 1848-1849 гг. в Европе
Курсовая работа по теме Информационное производство в расширенном общественном воспроизводстве
Система Контроля И Управления Доступом Реферат
Практическая Работа На Тему Расчет Цикла Паротурбинной Установки
Понятие правосудия и его отличительные признаки
Аргументы Для Эссе По Английскому Егэ
Физическая Реабилитация При Ожирении Реферат
Практическое задание по теме Классификация, учет и анализ брака. Построение диаграммы Парето
Реферат: Transcendentalism Writing Essay Research Paper Transcendentalism Writing
Отзывы Сочинение 3 Класс
Почему Нельзя Забывать Историю Своего Народа Сочинение
Реферат: История Бразилии
Роль пищеварительной системы. Витамины, их классификация и характеристика - Медицина реферат
Особенности развития памяти в младшем школьном возрасте - Педагогика курсовая работа
Клинические проявления хронического тонзиллита - Медицина презентация


Report Page