Эксплуатация Зубчатых Передач Реферат

Эксплуатация Зубчатых Передач Реферат



>>> ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ <<<






























Эксплуатация Зубчатых Передач Реферат
Классификация и разновидности зубчатых колес и передач, их функциональные особенности, цели и задачи установки. Эвольвента и ее свойства, общая характеристика и назначение. Способы нарезания зубчатых колес. Порядок и этапы подрезания профиля зуба.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
зубчатый колесо передача эвольвента
Бурное развитие науки и техники приводит к появлению новых материалов, новых технологических решений позволяющих создавать принципиально новые конструкции, однако фундаментальные методические положения остаются неизменными.
В XI веке особое внимание уделено машиностроительной и самолётостроительной отраслям, в связи с этим хотелось бы остановиться на элементах общего назначения используемых в данных отраслях, а именно зубчатых передачах.
В реферате дано определение зубчатой передаче, рассмотрены их классификации, методика расчета геометрических параметров зубчатых колес.
Также в данной работе описаны назначения зубчатой передачи, приведены характеристики передачи в механизмах.
1 . Зу бчат ое колесо , классификация
Зубчатое колесо, шестерня - основная деталь зубчатой передачи в виде диска с зубьями на цилиндрическойили конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса. В машиностроении принято малое зубчатое колесо с меньшим числом зубьев называть шестернёй, а большое - колесом. Однако часто все зубчатые колёса называют шестернями.
Зубчатые колёса обычно используются памрами с разным числом зубьев с целью преобразования вращающего момента и числа оборотов валов на входе и выходе. Колесо, к которому вращающий момент подводится извне, называется ведущим, а колесо, с которого момент снимается - ведомым. Если диаметр ведущего колеса меньше, то вращающий момент ведомого колеса увеличивается за счёт пропорционального уменьшения скорости вращения, и наоборот. В соответствии с передаточным отношением, увеличение крутящего момента будет вызывать пропорциональное уменьшение угловой скорости вращения ведомой шестерни, а их произведение - механическая мощность - останется неизменным. Данное соотношение справедливо лишь для идеального случая, не учитывающего потери на трение и другие эффекты, характерные для реальных устройств.
Профиль зубьев колёс как правило имеет эвольвентную боковую форму. Однако, существуют передачи с круговой формой профиля зубьев (передача Новикова с одной и двумя линиями зацепления) и с циклоидальной. Кроме того, в храповых механизмах применяются зубчатые колёса с несимметричным профилем зуба.
m - модуль колеса. Модулем зацепления называется линейная величина в р раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к р , то есть модуль - число миллиметров диаметра приходящееся на один зуб. Тёмное и светлое колёсо имеют одинаковый модуль. Самый главный параметр, стандартизирован, определяется из прочностного расчёта зубчатых передач. Чем больше нагружена передача, тем выше значение модуля.
Все геометрические параметры зубчатого зацепления выражаются через его модуль:
5. Диаметр делительной окружности d = mz .
6. Диаметр окружности выступов d = d + 2 h = d + 2 m = m ( z + 2).
7. Диаметр окружности впадин d= d+ 2 h =d+ 2 m=m ( z+ 2).
8. Радиальный зазор между сопряженными кольцами с =0,25 т .
13. Ширина венца зубчатого колеса (длина зуба) b ? (6…8). m
14. Диаметр ступицы d ? (1,6…2) d .
17. Угол профиля, угол зацепления б = б = 20.
18. Делительный диаметр, начальный диаметр d = d = mz .
В машиностроении приняты определенные значение модуля зубчатого колеса m для удобства изготовления и замены зубчатых колёс, представляющие собой целые числа или числа с десятичной дробью: 0,5; 0,7; 1; 1,25; 1,5; 1,75; 2; 2,5; 3; 3,5; 4; 4,5; 5 и так далее до 50.
Зубчатые колеса классифицируются в зависимости от формы продольной линии зуба на: прямозубые, косозубые, шевронные.
Прямозубые колёса - самый распространённый вид зубчатых колёс. Зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, но, в то же время, предельный крутящий момент таких колес ниже, чем косозубых и шевронных.
Косозубые колёса являются усовершенствованным вариантом прямозубых. Их зубья располагаются под углом к оси вращения, а по форме образуют часть спирали.
Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом;
Площадь контакта увеличена по сравнению с прямозубой передачей, таким образом, предельный крутящий момент, передаваемый зубчатой парой, тоже больше.
Недостатками косозубых колёс можно считать следующие факторы:
При работе косозубого колеса возникает механическая сила, направленная вдоль оси, что вызывает необходимость применения для установки вала упорных подшипников;
Увеличение площади трения зубьев (что вызывает дополнительные потери мощности на нагрев), которое компенсируется применением специальных смазок.
В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.
Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными».
Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило - на подшипниках с короткими цилиндрическими роликами).
Д) Зубчатые колёса с внутренним зацеплением
При жёстких ограничениях на габариты, в планетарных механизмах, в шестерённых насосах с внутренним зацеплением, в приводе башни танка, применяют колёса с зубчатым венцом, нарезанным с внутренней стороны. Вращение ведущего и ведомого колеса совершается в одну сторону. В такой передаче меньше потери на трение, то есть выше КПД.
Секторное колесо представляет собой часть обычного колеса любого типа. Такие колёса применяются в тех случаях, когда не требуется вращение звена на полный оборот, и поэтому можно сэкономить на его габаритах.
Передача на основе колёс с круговыми зубьями имеет ещё более высокие ходовые качества, чем косозубые - высокую нагрузочную способность зацепления, высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования. Контакт поверхностей зубьев происходит в одной точке на линии зацепления, расположенной параллельно осям колёс
2. З убчатая передача, классификация
Збчатая передача - это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса.
По взаимному расположению осей валов:
- с параллельными осями (цилиндрические передачи с прямыми, косыми и шевронными зубьями);
- с пересекающимися осями - конические передачи;
По относительному вращению колёс и расположению зубьев:
- внутреннее зацепление (вращениие колёс в одном направлении);
- внешнее зацепление (вращение колёс в противоположном направлении).
Подавляющее большинство зубчатых передач, применяемых в технике, имеет зубчатые колеса с эвольвентным профилем.
Эвольвента как кривая для формирования профиля зуба была предложена Л. Эйлером. Она обладает значительными преимуществами перед другими кривыми, применяемыми для этой цели, - удовлетворяет основному закону зацепления, обеспечивает постоянство передаточного отношения, нечувствительна к неточностям межосевого расстояния (что облегчает сборку), наиболее проста и технологична в изготовлении, легко стандартизируется (что особенно важно для такого распространенного вида механизмов как зубчатые передачи).
Эвольвента - это траектория движения точки, принадлежащей прямой, перекатывающейся без скольжения по окружности. Данная прямая называется производящей прямой, а окружность, по которой она перекатывается - основной окружностью (рисунок 3 а).
Эвольвента обладает следующими свойствами, которые используются в теории зацепления:
1) форма эвольвенты определяется радиусом основной окружности;
2) нормаль к эвольвенте в любой ее точке является касательной к основной окружности. Точка касания нормали с основной окружностью является центром кривизны эвольвенты в рассматриваемой точке;
3) эвольвенты одной и той же основной окружности являются эквидистантными (равноотстоящими друг от друга) кривыми.
Положение любой точки на эвольвенте может быть однозначно охарактеризовано диаметром окружности, на которой она расположена, а также характерными для эвольвенты углами: углом развернутости (обозначается н), углом профиля (б), эвольвентным углом - invб (рисунок 3 б). На рисунке 1 б показаны эти углы для произвольно выбранной на эвольвенте точки Y, поэтому они имеют соответствующий индекс:
- н Y - угол развернутости эвольвенты до точки у;
- invб Y - эвольвентный угол в точке Y (на окружности диаметра dY).
То есть индекс показывает, на какой окружности находится рассматриваемая точка эвольвенты, поэтому для характерных окружностей используются индексы, приведенные выше.
Например: б a1 - угол профиля эвольвенты в точке, лежащей на окружности вершин первого колеса;
invб - эвольвентный угол в точке эвольвенты, находящейся на делительной окружности колеса и т.д.
4. С пособы нарезания зубчатых колес
Существует два принципиально различных метода нарезания:
1) метод копирования; 2) метод обкатки.
В первом случае впадина зубчатого колеса фрезеруется на универсальном фрезерном станке фасонными дисковыми или пальцевыми фрезами, профиль которых соответствует профилю впадины. Затем заготовку поворачивают
на угол 360?/Z и нарезают следующую впадину. При этом используется делительная головка, а также имеются наборы фрез для нарезания колёс с различным модулем и различным числом зубьев. Метод непроизводителен и применяется в мелкосерийном и единичном производстве.
Второй метод обката или огибания может производиться с помощью инструментальной рейки (гребёнки) на зубострогальном станке; долбяком на зубодолбёжном станке или червячной фрезой на зубофрезерном станке. Этот метод высокопроизводителен и применяется в массовом и крупносерийном производстве. Одним и тем же инструментом можно нарезать колёса с различным числом зубьев. Нарезание с помощью инструментальной рейки имитирует реечное зацепление, где профиль зуба образуется как огибающая последовательных положений профиля инструмента, угол исходного контура которого б=20?. Зацепление между режущим инструментом и нарезаемым колесом называется станочным. В станочном зацеплении начальная окружность всегда совпадает с делительной.
Самым производительным из рассмотренных методов является зубофрезерование с помощью червячных фрез, которые находятся в зацеплении с заготовкой по аналогии с червячной передачей.
При нарезании долбяком осуществляется его возвратно поступательное движение при одновременном вращении. Фактически при этом осуществляется зацепление заготовки с инструментальным зубчатым колесом - долбяком. Этот метод чаще всего используется при нарезании внутренних зубчатых венцов.
Все рассмотренные методы используются для нарезания цилиндрических колёс как с прямыми, так и с косыми зубьями.
5. Подрезание профиля зуба. Корригирование зубчатого колеса
При резке зубчатого колеса возможно подрезания зубов, которое проявляется в уменьшении толщины делительной ножки зуба. Это приводит к срезанию главного (эвольвентного) профиля зубьев и уменьшения их прочности на изгиб. Подрезания зубов наступает в том случае, когда активная линия зацепления Н Н2 выходит за пределы теоретической линии зацепления В, В2, поскольку любая точка профиля зуба (шестерни), что лежит за пределами этой линии, не соответствует основной теореме зацепления (нормаль N'N», проведена до такого профиля в точке контакта, не будет проходить через полюс зацепления). Опасность подрезания больше в менее колеса, поскольку ВуН2 <В2Н.
Для определения минимального коэффициента смещения xmin и минимального числа зубьев при которых не наблюдается подрезание, можно использовать зависимость для радиуса кривизны предельной точки L главного бокового профиля зубьев. Напомним, что точка, которая разделяет эвольвенты и переходную части бокового профиля, называется предельной. Как известно, для построения главного профиля эвольвентного зуба используется эвольвенты, радиус кривизны которой всегда удовлетворяет условию р> 0. Причем эвольвенты будет за пределами основного круга и в своем начале, что совпадает с основным кругом, будет радиус кривизны р = 0. Это и есть предельный случай, при котором профиль зуба колеса может находиться на линии зацепления NN и иметь радиус кривизны р = 0. В некоторых случаях небольшое ослабление зуба вполне допустимо, это делается для улучшения условий контакта зубов в начале (или в конце) зацепления.
Корригирование зубчатых колёс (от лат. corrigo - исправляю, улучшаю), приём улучшения формы зубьев эвольвентного зубчатого зацепления. При нарезании зубчатых колёс исходный стандартный контур производящей рейки смещают в радиальном направлении так, что её делительная прямая не касается делительной окружности колеса. При этом можно использовать нормальный реечный зуборезный инструмент (гребёнку, червячную фрезу и т.п.) или долбяки. Обработку ведут назубообрабатывающем станке методом обкатки (см. Зубонарезание) , нарезая колёса с требуемым смещением исходного контура.
К. з. к. появилось как средство устранения нежелательного подрезания ножки зуба у колёс с малым числом зубьев из-за несовершенства инструмента. Современное К. з. к. имеет более общее значение и практически выражается в преднамеренном смещении исходного контура, которое является одним из основных геометрических параметров зубчатых колёс. Смещение от центра колеса может быть отрицательным или положительным. В случае положительного смещения для профиля зубьев используются участки эвольвенты с большими радиусами кривизны, что повышает контактную прочность зубьев, а также увеличивает их прочность на излом. К. з. к. может быть использовано для повышения качества зацепления как двух колёс, так и зацепления колеса с рейкой. Целесообразный выбор смещений может уменьшить скольжение зубьев друг по другу, снизить их износ, уменьшить опасность заедания и повысить кпд передачи.
К. з. к. позволяет изменять межосевые расстояния в зубчатых передачах, что даёт возможность решать ряд важных конструктивных задач. Например, в коробках скоростей, планетарных механизмах и др. можно разместить между двумя валами передачи, у которых одно и то же колесо входит в зацепление с колёсами, имеющими разные числа зубьев, или при ремонте нестандартные зубчатые передачи можно заменять стандартными.
При расчёте геометрии корригированных зацеплений пользуются коэффициентом смещения х, который равен смещению исходного контура, деленному на модуль зубчатого колеса. При назначении x 1 для 1-го и х 2 для 2-го колеса необходимо учитывать ограничивающие условия: отсутствие или ограничение подреза ножки зуба; отсутствие интерференции, т.е. взаимного пересечения профилей зубьев при относительном движении колёс; получение достаточного коэффициента перекрытия, надёжно обеспечивающего вхождение в зацепление последующей пары зубьев, пока предыдущая не вышла из зацепления; отсутствие заострения зубьев, т.е. получение достаточной толщины зубьев у вершины. В СССР разработан удобный способ учёта этих условий т. н. блокирующими контурами - кривыми, построенными в координатах x 1 и x 2 . Эти графики отражают указанные ограничения и образуют замкнутый контур, очерчивающий зону допустимых сочетаний x 1 и x 2 . Для каждого сочетания чисел зубьев колёс ( Z 1 и Z 2 ) строится свой блокирующий контур. Если к передаче не предъявляется особых требований, то x 1 и x 2 в зоне допускаемых значений выбирают по общим рекомендациям, учитывающим улучшение всех свойств зацепления (т. н. универсальные системы К. з. к.). При наличии специальных требований к передаче (например, высокая прочность зубьев на излом и т.п.) x 1 и x 2 выбирают из условия наиболее полного удовлетворения этих требований (специальные системы К. з. к.).
Зубчатые передачи являются наиболее рациональным и распространенным видом механических передач. Их применяют для передачи мощностей - от ничтожно малых до десятков тысяч кВт, для передачи окружных усилий от долей грамма до 10 Мн (1000mc).Основные достоинства зубчатых передач: значительно меньшие габариты, чем у других передач; высокий кпд (потери в точных, хорошо смазываемых передачах 1-2%, в особо благоприятных условиях 0,5%); большая долговечность и надежность; отсутствие проскальзывания; малые нагрузки на валы. К недостаткам зубчатых передач можно отнести шум при работе и необходимость точного изготовления.
Простейшая зубчатая передача состоит из двух колес с зубьями, посредство которых они сцепляются между собой. Вращение ведущего зубчатого колеса преобразуется во вращение ведомого колеса путем нажатия зубьев первого на зубья второго. Меньшее зубчатое колесо передачи называется шестерней, большее - колесом.
1. Иванов М.Н. Детали машин: учебник для студентов высш. техн. учеб. заведений. М.: Высш. шк., 1991. - 383 с.
2. Гузенков П.Г. Детали машин. - М.: Высшая школа, 1982. - 504 с.
3. Куклин Н.Г., Куклина Г.С., Детали машин. - М.: Высшая школа, 1984 г. - 310 c.
4. Г.И. Рощин, Е.А. Самойлов, Н.А. Алексеева. Детали машин и основы конструирования: учеб. для вузов /под ред. Г.И. Рощинн и Е.А. Самойлова. - М.: Дрофа, 2006. -415 с.
Классификация зубчатых передач по эксплуатационному назначению. Система допусков для цилиндрических зубчатых передач. Методы и средства контроля зубчатых колес и передач. Приборы для контроля цилиндрических зубчатых колес, прикладные методы их применения. реферат [31,5 K], добавлен 26.11.2009
Зубчатые механизмы, в которых движение между звеньями передается последовательным зацеплением зубьев. Классификация зубчатых передач. Элементы теории зацепления передачи. Геометрический расчет эвольвентных прямозубых передач. Конструкции зубчатых колес. презентация [462,9 K], добавлен 24.02.2014
Виды зубчатых передач. Параметры цилиндрических зубчатых передач внешнего зацепления. Виды разрушения зубьев. Критерии расчета зубчатых передач. Выбор материалов зубчатых колес и способов термообработки. Допускаемые напряжения при пиковых нагрузках. курс лекций [2,2 M], добавлен 15.04.2011
Параметры цилиндрических косозубых колес. Конструкции и материалы зубчатых колес, их размеры и форма. Конические зубчатые передачи и ее геометрический расчет. Конструкция и расчет червячных передач. Основные достоинства и недостатки червячных передач. реферат [2,0 M], добавлен 18.01.2009
Материал для изготовления зубчатых колес, их конструктивные и технологические особенности. Сущность химико-термической обработки зубчатых колес. Погрешности изготовления зубчатых колес. Технологический маршрут обработки цементируемого зубчатого колеса. реферат [16,6 K], добавлен 17.01.2012
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2020, ООО «Олбест»
Все права защищены


Зубчатые передачи | реферат [16,6 K], добавлен 17.01.2012
Реферат : Зубчатые передачи
Зубчатая передача
Зубчатые передачи (3) - Реферат
Зубчатые передачи
Подготовка К Контрольной Работе 6 Класс
В Магистратуре Диплом Или Диссертация
Сочинение Пугачев И Гринев Капитанская Дочка
Разбор Сочинения Егэ По Русскому Языку 2021
Гражданско Правовое Положение Акционерного Общества Курсовая Работа

Report Page