Движения электронов в вакууме в электрическом и магнитном полях - Физика и энергетика лекция

Движения электронов в вакууме в электрическом и магнитном полях - Физика и энергетика лекция




































Главная

Физика и энергетика
Движения электронов в вакууме в электрическом и магнитном полях

Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Движение электронов в вакууме в электрическом и магнитном полях
2. Движение электрона в однородном электрическом поле
3. Движение электрона в ускоряющем поле
4. Движение электрона в тормозящем поле
5. Движение электрона в однородном поперечном поле
6. Движение электронов в однородном магнитном поле
7. Анализ энергии электронов методом тормозящего поля
Взаимодействие движущихся электронов с электрическим полем является основным процессом во всех электронных приборах. Полагаем, что электроны движутся в вакууме, без столкновений с другими частицами. Такое движение совершается в электронных лампах. В газоразрядных и полупроводниковых приборах движение сложнее, так как происходит столкновение электронов с ионами и другими частицами газа или твердого вещества.
Законы движения одного электрона в однородном электрическом поле с известным приближением можно применить к движению его в электронном потоке, если пренебречь взаимным отталкиванием электронов.
Электрон является частицей материи с отрицательным электрическим зарядом, абсолютное значение которого е=1,6-10-19 Кл. Масса неподвижного электрона т = 9,1 * 10-28 г. С возрастанием скорости масса электрона увеличивается. Теоретически при скорости с = 3 * 108 м/с она должна стать бесконечно большой. В обычных электровакуумных приборах скорость.
электрон движение электрический поле
Заметим, что возведение в квадрат и сложение двух последних уравнений дает выражение:
которое еще раз подтверждает, что магнитное поле не изменяет величины полной скорости (энергии) электрона.
В результате интегрирования уравнения, определяющего его vx, получаем:
постоянная интегрирования в соответствии с начальными условиями равна нулю.
Интегрирование уравнения, определяющего скорость vz с учетом того, что при z = 0, t = 0 позволяет найти зависимость от времени координаты z электрона:
Решая два последних уравнения относительно и , возводя в квадрат и складывая, после несложных преобразований получаем уравнение проекции траектории электрона на плоскости XOZ:
Это уравнение окружности радиуса , центр которой расположен на оси z на расстоянии r от начала координат (рис. 2.2). Сама траектория электрона представляет собой цилиндрическую спираль радиуса с шагом. Из полученных уравнений очевидно также, что величина представляет собой круговую частоту движения электрона по этой траектории.
7. Анализ энергии электронов методом тормозящего поля
Квантовые постулаты Н.Бора (1913 г.) нашли непосредственное экспериментальное подтверждение в опытах Дж.Франка и Г.Герца (1914 г.)
Известна вольтамперная характеристика лампового диода (I ~ U3/2). Если колбу наполнить газом, и предохранить анод от сбора низкоэнергетических электронов, то обнаружится очень интересный эффект.
Из трубки выкачан воздух и в нее введено небольшое количество (давление около 1 мм рт. ст.) какого-либо вещества. Электроны, испускаемые накаленным катодом (1), ускоряются в постоянном электрическом поле, созданном между катодом и сетчатым анодом (2). Между ним и коллектором (3) поддерживается небольшое (~1В) задерживающее напряжение. Поэтому на коллектор могут попасть только те электроны, энергия которых больше 1 эВ. Ток с коллектора измеряется микроамперметром. С помощью реостата (4) можно изменять ускоряющее напряжение.
Теперь поясним происхождение минимумов на вольтамперной характеристике. Столкновения частиц бывают как упругими, так и неупругими. Упругими называют такие столкновения, в которых суммарная кинетическая энергия частиц до соударения равна сумме кинетических энергий этих частиц после соударения. Очевидно при этом внутренняя энергия частиц (и состояние их) не изменяется. Если же часть кинетической энергии пойдет на изменение внутреннего состояния одной из сталкивающихся частиц, то такое столкновение является неупругим.
Метод задерживающего потенциала. Для анализа энергий электронов малых энергий часто используют тормозящее электрическое поле.
Пусть поток электронов разных энергий от источника К движется слева направо. Между двумя электродами (С и А на рисунке 1) создадим тормозящее электроны поле (слева плюс, справа минус). Электрод С выполнен в виде сетки, а с правого электрода А заряд стекает через гальванометр G на землю. Если разность потенциалов между С и А равна Uзад, то преодолеть промежуток могут только электроны, кинетическая энергия которых T > eUзад, здесь e - заряд электрона. Ток гальванометра I пропорционален суммарному количеству электронов в потоке с энергией большей eUзад. Изменяя Uзад, и замеряя ток при каждом значении, можно получить представление о распределении электронов по энергии n(T). Метод очень прост. Недостаток его - для нахождения распределения n(T) приходится дифференцировать экспериментальную зависимость I(Uзад), что связано с большой потерей точности. Метод задерживающего потенциала использован Джеймсом Франком и Густавом Герцем для анализа энергий, теряемых электронами в столкновениях с атомами.
Изменение энергии налетающей частицы массы m (потеря энергии) при упругом соударении с другой частицей массы M ДT ~ (m/M)·T, где T - энергия частицы до столкновения. Так как масса электрона значительно меньше массы атома, то его кинетическая энергия при упругом столкновении с атомом меняется незначительно, происходит только изменение направления скорости (здесь уместно сравнение, как горох об стенку).
Если возможны неупругие соударения с атомом, то кинетическая энергия электрона после соударения окажется меньше на величину энергии, переданной атому
В первых опытах Дж. Франка и Г. Герца электроны, испущенные подогретым катодом К, ускоряются электрическим полем, создаваемым между катодом и сеткой С разностью потенциалов Uуск. Между сеткой и анодом поле тормозящее (Uзад ~ 0.5 В). Стеклянная колба с электродами наполнена парами ртути. При малых напряжениях (Uуск < 4.9 В для ртути) соударения электронов с атомами упругие, т.к. вольтамперная характеристика такая же, как для вакуумного диода. Упругие столкновения, как было сказано, практически не меняют энергетический спектр электронов, тормозящее поле им не помеха. Но вблизи Uуск ~ 4.9 В ток резко уменьшается. Значит при T ~ 4.9 эВ происходят неупругие соударения с атомами, и электроны, отдавшие атому энергию, не могут преодолеть задерживающий промежуток С - А. Таким образом было установлено, что минимальная энергия, необходимая для возбуждения атомов ртути, составляет 4.9 эВ. Эта энергия, деленная на заряд электрона, называется потенциалом возбуждения. Падения тока при напряжениях, кратных 4.9 В, означает, что электроны, потерявшие энергию в первом неупругом соударении, снова набирают 4.9 эВ по пути к аноду и происходит второе (третье) неупругое соударение.
Чуть раньше, чем проводились эти эксперименты, Н.Бор выдвинул гипотезу о стационарных состояниях атомов и излучении (поглощении) квантов при переходе между ними. Гипотеза Н.Бора объясняла линейчатый характер спектра атомов. Результаты опытов Дж.Франка и Г.Герца стали мощной поддержкой квантовых постулатов Н.Бора: показано существование у изолированных атомов дискретных уровней энергии. ( Позднее Франк признался, что они "не оценили по достоинству фундаментальное значение теории Бора, настолько, что даже не упомянули о ней в своей статье".)
Дополнительным свидетельством того, что переданная электроном энергия пошла на возбуждение атома, явился спектральный анализ излучения, возникающего при возбуждении. Атом в возбужденном состоянии живет недолго. При возврате в основное состояние переданная энергия ДT = 4.9 эВ должна излучиться в виде кванта hн с той же энергией. Длина волны л = hc/ДT = 253 нм. И такая линия действительно была найдена Дж. Франком и Г. Герцем! Если давление паров в приборе снизить (первоначально было ~ 1 мм рт. ст.) до такого значения, что длина свободного пробега электрона будет больше или сравнима с расстоянием катод - анод, станет возможным возбуждения атомов в более высокие энергетические состояния и даже ионизация атомов (не встретив ни одного атома электроны смогут ускорится до энергий, превышающей первый порог возбуждения). Проводя анализ спектра неупруго рассеянных электронов, Дж. Франк и Г. Герц нашли уровни энергии и энергии ионизации большого количества элементов. Для примера некоторые цифры приведены в таблице.
Характеристики атомов некоторых элементов I группы.
энергия возбуждения 1-го уровня, эВ
В 1925 г. Дж. Франку и Г. Герцу присуждена нобелевская премия:
1. Поносов С.В. Курс лекций. Вакуумная и плазменная электроника.
2. Щука А.А. Электроника. Учеб. пособ. для вузов. - СП б: БХВ-Питер, 2005
3. Жеребцов И.П. Основы электроники. Энергоатомиздат 1989
Движение электронов в вакууме в электрическом и магнитном полях, между плоскопараллельными электродами в однородном электрическом поле. Особенности движения в ускоряющем, тормозящем полях. Применение метода тормозящего поля для анализа энергии электронов. курсовая работа [922,1 K], добавлен 28.12.2014
Характеристика движения электронов: в вакууме, в однородном электрическом, ускоряющем, тормозящем, поперечном, магнитном полях. Использование уравнения Лапласа для описания аналитической картины электрического поля в пространстве, свободном от зарядов. курсовая работа [883,5 K], добавлен 27.10.2011
Исследование особенностей движения заряженной частицы в однородном магнитном поле. Установление функциональной зависимости радиуса траектории от свойств частицы и поля. Определение угловой скорости движения заряженной частицы по круговой траектории. лабораторная работа [1,5 M], добавлен 26.10.2014
Эквивалентность движения проводника с током в магнитном поле. Закон Фарадея. Угловая скорость вращения магнитного поля в тороидальном магнитном зазоре. Фактор "вмороженности" магнитных силовых линий в соответствующие домены ферромагнетика ротора, статора. доклад [15,5 K], добавлен 23.07.2015
Особенности газовой среды. Средняя длина свободного пробега частиц в газе. Энергия электронов в кристалле. Электрические свойства кристаллов. Движение электронов в вакууме в электрическом и магнитных полях. Электростатическая (автоэлектронная) эмиссия. курсовая работа [343,0 K], добавлен 08.12.2010
Описание двухступенчатого BOSH-процесса. Классификация электрических разрядов в газе. Способы создания разряда постоянного тока. Движение электрона в постоянном электрическом поле в вакууме. Зависимость типа разряда от частоты отсечки ионов и электронов. презентация [2,5 M], добавлен 02.10.2013
Биографии Г. Герца и Д. Франка. Их совместная работа: исследование взаимодействия электронов с атомами благородных газов низкой плотности. Анализ энергий электронов, претерпевших столкновения с атомами. Характеристика вакуумной и газонаполненной лампы. реферат [1,1 M], добавлен 27.12.2008
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Движения электронов в вакууме в электрическом и магнитном полях лекция. Физика и энергетика.
Реферат По Литературе Душа И Поэзия Тютчева
Доклад по теме Мацуо Басё
Контрольная работа по теме Компьютерные задачи и упражнения по инженерной геодезии
Доклад по теме Образные методы запоминания текстовой и речевой информации
Реферат: Интерференция
Реферат: Деловое общение: формы, культура, имидж, презентации
Организация охраны труда на предприятии 3
Лабораторная Работа Исследование Компаратора Напряжения
Реферат по теме Речь при депрессии
Отношение Человека К Природе Сочинение
Краткая Аннотация Отчета По Практике Представленного Обучающимся
Написание Аргумента В Итоговом Сочинении
Договор продажи недвижимости
Реферат На Тему Князь Александр Невский
Реферат по теме Париж XIII века (по 'Книге ремесел' Этьена Буало)
Сочинение по теме Мандрагора (Mandragora)
Ответ на вопрос по теме Билеты по биологии для 9-10 классов
Эссе На Тему Великая Сила Слова
Написать Сочинение Онлайн С Проверкой
Курсовая работа: Фирма как экономический субъект
Эволюция денежных систем стран Западной Европы - Международные отношения и мировая экономика контрольная работа
Узаконение внебрачных детей в Российской империи в конце XIX – начале XX в. - Государство и право статья
Розробка абстрактного класу pruzhyna в об’єктно-орієнтованому програмуванні - Программирование, компьютеры и кибернетика курсовая работа


Report Page