Дуговая резка металлов - Производство и технологии курсовая работа

Дуговая резка металлов - Производство и технологии курсовая работа




































Главная

Производство и технологии
Дуговая резка металлов

Возникновение и развитие сварки и резки металлов. Понятие, сущность и классификация способов дуговой резки. Рабочие инструменты, используемые при резке металлов. Организация рабочего места сварщика. Техника безопасности труда при дуговой сварке и резке.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


1.1 Возникновение и развитие сварки и резки металлов
Сварку и термическую резку широко используют в народном хозяйстве страны. Это объясняется прежде всего экономией металла. При изготовлении сварных конструкций применяют стыковые соединения, при изготовлении клепаных - нахлесточные. Благодаря этому экономия металла, например, при сварке строительных конструкций (фермы, колонны, балки) составляет около 20%. Сокращение расхода металла снижает стоимость сварных изделий.
Республика Беларусь занимает ведущее место среди крупнейших стран мира по развитию сварочной науки и техники, а по некоторым показателям сварочного производства - первое место.
Наша страна - родина наиболее распространённого вида сварки сталей - дуговой. Ещё в СССР впервые предложили подводную, электрошлаковую, диффузионную сварку, сварку в космосе.
В настоящее время всё больше производится сварных изделий не только из сталей, но и из алюминия, меди, никеля, титана и их сплавов, а также из разнородных материалов, например алюминия и стали.
Одним из способов повышения износостойкости деталей в механизмах, поверхности которых работают на истирание, является наплавка сплавами с особыми свойствами.
Явление электрического дугового разряда было открыто в 1802 г. русским академиком В.В. Петровым. В своих работах В.В. Петров отмечал, что электрическая дуга способна расплавлять и сжигать металл. Однако для сварки и резки электрическая дуга впервые была применена русским инженером-изобретателем Н.Н. Бенардосом в 1882 г. Н.Н. Бёнардос использовал для сварки металлов угольный электрод. Несколько позднее, в 1886--1888 гг., русский инженер Н.Г. Славянов применил металлический электрод.
Проводя свои работы по сварке угольным электродом, Н.Н. Бенардос применил электрическую дугу также и для резки металлов. В патенте, который был ему выдан, говорилось о том, что с помощью сварочной дуги можно производить соединение металлических частей между собою, разъединение или разрезывание металла на части, сверление отверстий и полостей в нем и наплавление металла слоями.
Таким образом, электрическая дуговая резка начала применяться одновременно с развитием электродуговой сварки. В дальнейшем электродуговая резка все более совершенствовать и получила широкое применение.
Дуговая резка по сравнению с обычной газокислородной резкой обладает некоторыми преимуществами, как например простотой оборудования, возможностью резки металлов различного химического состава, безопасностью работы.
Термическая резка во многих случаях полностью заменяет механическую обработку. В настоящее время применяется кислородная резка сплавов железа, титана и некоторых других сплавов. Наряду с кислородной стала выполняться резка металлов низкотемпературной плазмой.
Выпускать продукцию отличного качества, совершенствовать приёмы труда, соблюдать новейшую передовую технологию могут только рабочие, хорошо овладевшие теорией и передовой практикой. Большое значение имеет повышение профессионального мастерства и культурно-технического уровня рабочих.
В настоящее время получили распространение несколько разновидностей резки металлов.
Кислородная резка стали, основана на свойстве железа гореть в струе чистого кислорода, будучи нагретым, до температуры, близкой к температуре плавления.
Температура загорания железа в кислороде зависит от состояния, в котором оно находится. Так, например, железный порошок загорается при 315 С, тонкое листовое или полосовое железо -- при 930 С, а поверхность крупного куска стали -- при 1200-1300 С. Горение железа происходит с выделением значительного количества тепла и может поддерживаться за счет теплоты сгорания железа.
Как показал анализ шлака, 30-40% удаленного из реза металла составляет не сгоревшее, а только расплавившееся железо; 90-95% окислов состоят из FeO.
Скорость реакции Fе + О = FеО пропорциональна , где  -- давление кислорода в месте реакции. При повышении давления кислорода в струе процесс резки ускоряется за счет повышения скорости реакции окисления и за счет более быстрого удаления окислов из места разреза.
Нагревание металла при резке производят газокислородным пламенем. В качестве горючих при резке могут применяться ацетилен, пропан-бутан, пиролизный, природный, коксовый и городской газы, пары керосина.
Кроме подогрева металла до температуры горения в кислороде, подогревающее пламя выполняет еще следующие дополнительные функции: -подогревает переднюю (в направлении резки) верхнюю кромку реза впереди струи режущего кислорода до температуры воспламенения, что обеспечивает непрерывность процесса резки;
- вводит в зону реакции окисления дополнительное тепло, покрывающее его потери за счет теплопроводности металла и в окружающую среду; это имеет особенно важное значение при резке металла малой толщины;
- создает защитную оболочку вокруг режущей струи кислорода, предохраняющую от подсоса в нее азота из окружающего воздуха;
- подогревает дополнительно нижнюю кромку реза, что важно при резке больших толщин.
Мощность подогревающего пламени зависит от толщины и состава разрезаемой стали и температуры металла перед резкой.
Скорость резки, толщина металла, расход ацетилена в подогревающем пламени и эффективная мощность пламени связаны между собой зависимостью.
Производительность резки зависит также от распределения подогрева. Применение нескольких подогревающих пламен увеличивает скорость резки по сравнению с таковой при одном подогревающем пламени (при равных расходах ацетилена в обоих случаях).
При обычной кислородной резке высоколегированных хромистых и хромоникелевых нержавеющих сталей на поверхности реза образуется пленка тугоплавких окислов хрома, имеющих температуру плавления около 2000°С и препятствующих дальнейшему окислению металлов в месте реза. Поэтому кислородная резка этих сталей требует применения особых приемов и способов.
До разработки способа кислородно-флюсовой резки нержавеющих сталей пользовались приемами резки, основанными на создании вблизи поверхности реза участков металла с высокой температурой нагрева, способствующих расплавлению пленки окислов хрома. Это достигалось введением в разрез дополнительного тепла от сгорания присадки из малоуглеродистой стали. В качестве таковой использовалась стальная полоска, уложенная вдоль линии реза, или валик, наплавленный металлическим электродом. Выделяющееся при сгорании железа тепло, а также переходящее в шлак железо (полоски или наплавки) и его окислы способствуют разжижению и удалению окислов хрома. Этими способами можно было резать нержавеющую сталь небольшой толщины (10--20 мм), при этом качество реза и производительность низкие, резка протекает неустойчиво и часто прерывается.
Лучшие результаты получают при непрерывном введении в рез прутка из низкоуглеродистой стали диаметром 10--15 мм. При соответствующем навыке этим способом можно выполнять отрезку прибылей отливок толщиной до 400 мм. Существенным недостатком способа Ищется необходимость выполнения резки двумя рабочими: один должен быстро подавать пруток в зону резки, а второй -- вести резку. При резке необходима повышенная мощность подогревающего пламени. Рез получается широким, скорость резки низкая (при толщине 40 мм -- 100 мм/мин, при 80 мм -- 70 мм/мин и при 200 мм -- 20 мм/мин), а качество поверхности реза -- плохое.
Более совершенным способом резки высоколегированных нержавеющих сталей является кислородно-флюсовая резка. В качестве флюса применяют, как правило, железный порошок с зернами 0,1--0,2 мм. Сгорая в струе режущего кислорода, железный порошок выделяет дополнительное тепло, которое повышает температуру в месте реза. Вследствие этого тугоплавкие окислы остаются в жидком состоянии и, будучи разбавлены продуктами сгорания железа, дают жидкотекучие шлаки. Резка протекает с нормальной скоростью, а поверхность реза получается чистой.
За последние годы широкое распространение получили способы газо-дуговой резки: воздушно-дуговая, плазменно-дуговая и плазменная. Они применяются для резки многих металлов и сплавов. В ряде случаев находит также применение кислородно-дуговая резка стали. Способы газо-дуговой резки используют сейчас на многих предприятиях, что дает большую экономию в народном хозяйстве. Ведутся работы по механизации и автоматизации газо-дуговой резки.
Кислородно-дуговую резку применяют для углеродистой стали. Металл расплавляется электрической дугой, а струя кислорода служит для сжигания металла и выдувания шлаков из места разреза. В качестве электродов используют стальные трубки наружным диаметром 8 мм, длиной 340-400 мм, изготовляемые протяжкой из стальной полосы. Снаружи трубки-электроды покрывают обмазкой для устойчивости горения дуги. При резке электрод опирают концом о поверхность металла под углом к ней 80-85°, с наклоном в сторону направления резки. Образующийся на конце электрода козырек из обмазки обеспечивает необходимую длину дуги при резке.
Недостатком стальных электродов является их большой расход вследствие быстрого сгорания за 40-50 сек. Более стойкими являются керамические трубчатые электроды из карбида кремния (карборунда) или карбида бора, покрытые металлической оболочкой и обмазкой. Карборундовый электрод диаметром 12 мм и длиной 300 мм может работать 30-40 мин при токе 300-350 А. Недостатком керамических электродов является их высокая стоимость. Трубчатые электроды можно применять при вырезке отверстий в стали толщиной до 100 мм, резке профильного проката, пакетной резке листов и других работах.
Применяют также последовательно-струйный способ кислородно-дуговой резки стали толщиной до 50 мм. При этом способе к обычному электрододержателю для дуговой сварки присоединяют резательную приставку, с помощью которой подается струя кислорода на металл, расплавленный дугой. При резке мундштук перемещают вслед за Электродом. Резка этим способом может производиться на постоянном или переменном токе. Для этого способа резки пригодны электроды любых марок, Можно использовать также углеродистую проволоку любой марки диаметром 5 мм, покрытую обмазкой из 20% мела и 80% каменноугольного шлака. При диаметре проволоки 5 мм ток берут 200-250 А. Качество реза и производительность при этом способе резки примерно такие же, как при ручной ацетилено-кислородной резке.
Для подводной резки применяют специальные резаки, работающие на газообразном горючем (водороде) или на жидком горючем (бензине).
В головке водородно-кислородного резака по центральному каналу мундштука поступает режущий кислород, а по кольцевому каналу между мундштуками идет водородно-кислородная смесь, образующая подогревательное пламя. Снаружи мундштука имеется колпак, через который проходит сжатый воздух, образующий пузырь вокруг пламени, предохраняющий его от соприкосновения с водой. Пламя резака зажигается над водой, затем в мундштук подается сжатый воздух и резак опускают под воду.
Головка бензино-кислородного резака имеет распылитель, через отверстие которого в камеру подается кислород, а через другие отверстия -- бензин. Испаряясь в камере, бензин с кислородом образует горючую смесь, которая выходит через отверстие в донышке и сгорает. Режущая струя кислорода подается через центральный канал. Газообразные продукты сгорания своим давлением оттесняют воду от пламени и не дают ему погаснуть.
Водородно-кислородным резаком можно разрезать сталь толщиной до 70 мм под водой на глубине до 30 м. При этом наибольшее давление газов перед резаком составляет в кгс/см2: кислорода 6,6, водорода 5,5 и воздуха. 5.
Способ копьевой резки применяют для резания низкоуглеродистой и нержавеющей стали и чугуна большой толщины, а также при резка железобетона. Толщина стальных болванок, разрезаемых кислородным копьём, может достигать нескольких метров. Применяют два основных способа копьевой резки: кислородным и кислородно-порошковым копьём (кислородно-флюсовая резка). Прожигание отверстий в разрезаемой болванке из стали или чугуна или в железобетоне производится концом стальной трубки (копья), в которую непрерывно подаётся кислород под давлением. Необходимая для процесса теплота создаётся при сгорании конца трубки и железа обрабатываемой болванки.
Перемещая копье в горизонтальном или вертикальном направлении, этими способами можно не только прожигать отверстия, но и производить разрезку болванок, отрезку прибылей литья, вырезку отверстий в железобетонных, кирпичных и каменных строительных конструкциях.
Процесс резки может быть механизирован. Технология и режимы процесса, конструкции копьедержателей, а также установки для ручной и механизированной кислородной и кислородно-порошковой копьевой резки разработаны в сварочной лаборатории МВТУ им. Баумана.
2.1 Понятие и сущность дуговой резки
Дуговой резкой называют процесс выплавления металла, нагреваемого дугой и вытекающего из полости реза. Для обеспечения и ускорения дуговой резки процесс ведут при вертикальном или наклонном положении разрезаемого изделия, так как при этом вытекание расплавляемого металла облегчается.
Дуговая резка по сравнению с газовой имеет ряд недостатков: широкий рез, неровность его краев, натеки на нижнем крае реза, поэтому ее применение сравнительно ограниченно. Дуговую резку применяют в тех случаях, когда металл не поддается газовой резке, когда отсутствует оборудование для резки газом или в случае таких работ, как разделка лома, отрезка литников и т.п. Для увеличения производительности применяют выдувание расплавляемого металла сжатым воздухом.
Основные процессы дуговой резки металла основаны на расплавлении металла в месте реза и удалении его за счет давления дуги и собственного веса, а в некоторых случаях и дополнительного потока воздуха. Резку металла, как правило, выполняют вручную угольными или покрытыми металлическими электродами и используют для чугуна, высоколегированных сталей, цветных металлов и сплавов. Качество реза обычно низкое, с неровными кромками, покрытыми шлаком и оплавившимся металлом. Перед последующей сваркой требуется обязательная механическая обработка. Производительность резки невысокая.
Дуговая резка металла не требует специального оборудования и может быть осуществлена там, где выполняется дуговая сварка. Дуговая резка металла возможна в различных пространственных положениях. Подобная универсальность способствует применению (особенно в монтажных условиях) дуговой резки металла для углеродистых и низколегированных сталей. Резку металла можно выполнять как разделительную, так и поверхностную для выплавления канавок в основном металле, удаления дефектов в сварных швах и литейных отливках и т.д.
В настоящее время получили распространение несколько разновидностей электродуговой резки металлов. Основные из них:
1. Дуговая резка металлическим электродом;
2. Дуговая резка угольным электродом;
5. Разделительная дуговая резка металла.
6. Поверхностная дуговая резка металла.
Для дуговой резки металла металлическим электродом используют толстопокрытые электроды, обычно те же, что и для сварки. Род тока зависит от марки электрода. На скорость разделительной резки основное влияние оказывают толщина металла, диаметр электрода и величина тока. С увеличением толщины металла скорость резки металла резко уменьшается. Для резки угольными или графитовыми электродами используют постоянный ток прямой полярности, так как в этом случае на изделии выделяется больше теплоты. Науглероживание кромок реза затрудняет их последующую механическую резку. Ширина реза больше, чем при использовании металлического электрода.
Сущность этого способа резки заключается в том, что металл в месте реза проплавляют электрической дугой.
Рис. 1. Схема дуговой резки металлическим электродом
Силу тока при резке берут максимально возможную. Обычно при резке металлическим электродом сила тока на 20--30% больше, чем при сварке электродами такого же диаметра. Металлическим электродом можно резать чугун, нержавеющие стали и цветные металлы, которые не поддаются обычной кислородной резке.
При дуговой резке используют электроды, имеющие специальные электродные покрытия, способствующие улучшению процесса резки. Металлические электроды для резки изготовляют из проволоки марок Св-08 или Св-08А по ГОСТ 2246--70 диаметром 3--12 мм и длиной не более 250--300 мм. На электродные стержни наносят покрытия следующего состава (%):
Толщина слоя покрытия 1--1,5 мм на сторону
Металлическим электродом можно резать на переменном и на постоянном токе. Режимы резки приведены в табл.
Основные недостатки этого способа резки -- низкая производительность и плохое качество реза. Рез получается с большими неровностями и натеками металлах обратной стороны.
Наряду с ручной резкой применяют автоматическую резку металлическим электродом под слоем флюса. Этим способом в основном раскраивают листы из нержавеющей стали толщиной до 30 мм.
Режут на обычных сварочных автоматах сварочной проволокой марок Св-08 или Св-08А с флюсом АН-348А. Автоматическая резка более производительна. Режимы автоматической резки под слоем флюса приведены в таблице
2. Резка угольным электродом, или угольной дугой . Дуговую резку можно производить и угольным, и металлическим электродом.
Резка угольным электродом, или угольной дугой, отличается от вышерассмотренного способа тем, что вместо металлического электрода в данном случае применяются угольные или графитовые электроды. Угольные и графитовые электроды в процессе резки не плавятся, а только медленно сгорают. Резка угольными или графитовыми электродами производится на постоянном токе и в большинстве случаев при прямой полярности (минусна электроде). Схема процесса резки угольным электродом показана на фиг. 2. По сравнению с металлической дугой рез получается более чистым, так как угольный электрод не плавится и тем самым не создает дополнительного количества расплавленного металла, как при резке металлическими электродами. Однако производительность и чистота реза при резке угольной дугой остаются низкими. Как и при резке металлической дугой, с обратной стороны реза на металле остаются натеки. Кислородно-электродуговая резка заключается в том, что разрезаемый металл разогревается с помощью электрической дуги, а затем сжигается струей кислорода, подающейся к месту реза параллельно электроду. Обычно режущая струя кислорода следует за направлением движения электрода. Окислы, получаемые при сгорании металла, выдуваются из места реза этой же струей кислорода. Для этого способа резки применяются специальные резаки, обеспечивающие закрепление электрода и подвод кислорода к месту реза. При резке применяются угольные, графитовые или стальные электроды. В практике применяются также стальные трубчатые электроды с нанесенным на них специальным покрытием. В этом случае дуга горит между разрезаемым металлом и трубчатым электродом, а кислород к месту реза подается через внутреннее отверстие электродной трубки. В процессе резки трубчатый стальной электрод плавится. Резка производится на постоянном токе при обратной полярности
Металлическими электродами при дуговой резке пользуются в случае небольших толщин подлежащего резке материала (до 20 мм). Резку металлическим электродом можно производить на переменном токе. Преимуществом резки металлическим электродом, кроме возможности работать на переменном токе, является малая ширина и чистота реза; к недостаткам относится большой расход электродов и натеки металла на нижнем крае реза.
Подводную дуговую резку производят так же, как и резку на воздухе. Электроды, применяемые при подводной резке, необходимо покрывать водонепроницаемой обмазкой толщиной около 1 мм. Сила тока, применяемого при подводной резке, должна быть на 20--25% больше, чем при резке на воздухе. Для подводной резки применяют угольные и металлические электроды с дополнительной подачей в дугу режущего кислорода. дуговой резка инструмент безопасность
Метод резки металлов электрической дугой имеет и некоторые недостатки: низкая производительность процесса, недостаточная чистота реза, науглероживание кромок при резке угольным электродом, натеки на нижней кромке, большой расход основного металла.
3. Кислородно-дуговая резка металла
Сущность процесса кислородно-дуговой резки заключается в том, что между трубчатым толстопокрытым электродом и разрезаемой деталью возбуждается дуга, в зоне горения которой через полость электрода подается кислород. Наружный диаметр трубчатых электродов 5-7 мм, внутренний 1,5-2,5 мм, питание дуги может производиться постоянным или переменным током в зависимости от типа толстого покрытия. Для закрепления электрода и подвода кислорода служит электрододержатель специальной конструкции, оборудованный предохранительным щитком.
Одним из преимуществ этого метода при резке стали толщиной 10-12 мм являются высокие скорости резки и в связи с этим малый расход кислорода. Большая скорость резки является результатом сильного подогрева режущего кислорода теплом электрической дуги. Подогрев усиливает и без того высокое окисляющее действие кислорода и способствует повышению производительности резки. Недостатком этого метода является сравнительно быстрое расплавление и высокая стоимость трубчатых электродов.
Этот метод резки применяется главным образом для пробивания отверстий в стальных плитах толщиной до 300 мм и при выполнении работ по резке цветных металлов. Разработан также метод кислородно-дуговой резки металлов с применением угольных электродов. При этом между угольным электродом, закрепленном в специальном электрододержателе, и разрезаемой деталью возбуждается дуга, под тепловым действием которой металл расплавляется на глубину от 2 до 4 мм. На определенном расстоянии от дуги на расплавленный металл подается струя кислорода, которая обеспечивает энергичное окисление и удаление окисленного и расплавленного металла из полости реза.
При разделительной резке металла изделие устанавливают в положение, в котором наиболее благоприятны условия для вытекания расплавленного металла из места реза. При вертикальных резах резку металла ведут сверху вниз, для того чтобы выплавляемый металл не засорял выполненный разрез. Для отклонения дуги магнитным дутьем в направлении реза второй сварочный кабель присоединяют сверху у начала разреза. Разделительную резку металла начинают с кромки или с середины листа. В последнем случае вначале прорезают отверстие. Затем, наклонив электрод так, чтобы кратер был расположен на торцовой кромке реза, оплавляют ее. Если толщина разрезаемого металла меньше диаметра электрода, последний располагают перпендикулярно поверхности и просто перемещают вдоль линии реза без дополнительных колебаний.
При поверхностной резке металла электрод наклоняют к поверхности под углом 5--20° и перемещают, частично погружая его конец в образовавшуюся полость. Широкие канавки выплавляют с поперечными колебаниями электрода в вертикальном положении. Глубина канавки зависит от скорости перемещения дуги и наклона электрода. Глубокие канавки выполняют за несколько проходов. Для прорезания дугой круглых отверстий различного размера электрод устанавливают перпендикулярно к поверхности и возбуждают дугу возможно большей длины.
7. Подводная дуговая резка металлов
Подводную дуговую резку производят так же, как и резку на воздухе. Электроды, применяемые при подводной резке, необходимо покрывать водонепроницаемой обмазкой толщиной около 1 мм. Сила тока, применяемого при подводной резке, должна быть на 20--25% больше, чем при резке на воздухе. Для подводной резки применяют угольные и металлические электроды с дополнительной подачей в дугу режущего кислорода.
Для вырезки больших отверстий вначале прорезают маленькое отверстие, несколько отступя внутрь от края реза, а затем рез продолжают, выводя его на края основного отверстия. Особое внимание при дуговой резке металла следует обращать на предохранение от брызг и капель металла и шлака, которые могут вызвать ожоги и загорания.
2.3 Основные рабочие инструменты используемые при резке металла
Основным рабочим инструментом является резак. Резаки, в зависимости от назначения и метода подачи воздуха, можно разделить на следующие группы:
резак с обтекаемой подачей воздуха;
резак с двухсторонней подачей воздуха;
Резаком с обтекаемой подачей воздуха можно производить резку в любом направлении: справа налево, слева направо, от себя, на себя. Недостатком резака с обтекаемой подачей воздуха является круговое обдувание электрода воздухом, что вызывает большой расход воздуха.
Резку резаком с боковой подачей воздуха ведут в одном направлении (обычно справа налево), а воздух подается параллельно электроду сзади.
Резак с двусторонней подачей воздуха перемещают при операции справа налево и слева направо. Воздух подается и перед электродом и за ним.
Универсальные держатели употребляются не только для резки, но и для сварки металлов металлическим электродом.
Резаки специального назначения снимают большие поверхности металла за один проход.
Производительность воздушно-дуговой резки прямо пропорциональна силе тока, т.е. целесообразно применять мощные сварочные генераторы. Рекомендуемые значения тока в зависимости от диаметра электрода приведены ниже:
Питание резака сжатым воздухом производится от цеховой сети под давлением 4-6 ати или от сети индивидуального компрессора. Если давление больше, обрывается дуга, а если меньше -- слабо выдувается металл.
Рис. 4. Схема воздушно-дуговой строжки: 1 - электрод, 2 - резак, 3 - воздушная струя, 4 - канавка
Вылет электрода не должен превышать 100 мм. При работе электрод «обгорает» и периодически должен выдвигаться на ту же величину. Воздушный вентиль открывают до начала резки. Возбуждение дуги производится при поступлении воздуха. Выплавка металла начинается немедленно с появлением дуги, поэтому дугу надо возбуждать в намеченной точке реза. Во всех случаях электрод устанавливается с наклоном 35-40 град. к поверхности металла.
При использовании электрододержателей с боковой подачей воздуха (рис. 4. Схема воздушно-дуговой строжки) воздушные отверстия должны быть внизу, но отношению к рабочему концу угольного электрода в призме электрододержателя. Движение резака производится в направлении конца электрода.
После появления дуги резак движется вперед с постоянным касанием передней кромки расплавленной ванны. Нажимать на электрод не следует, так как при нагреве электрод становится непрочным - может легко сломаться. Скорость перемещения принимается примерно 500--2000 мм/мин, а глубина канавки увеличивается с возрастанием силы тока, увеличением угла между электродом и металлом и с уменьшением скорости продвижения электрода.
При устойчивом ведении электрода канавка получается постоянной формы с ровной поверхностью, без брызг расплавленного металла. Если ширину канавки требуется получить больше диаметра электрода, то резка ведется с поперечными колебаниями по ширине реза.
Рис. 5. Схема разделительной воздушно-дуговой резки
При резке (рис. 5. Схема разделительной воздушно-дуговой резки) электрод располагается под углом 45-60° по отношению к изделию, причем электрод проходит через всю толщину металла. Скорость резки увеличивается с возрастанием силы тока и уменьшением толщины разрезаемого металла. Однако при равных условиях она уменьшается с увеличением диаметра электрода.
Режимы воздушно-дуговой разделительной резки.
Скорость резки, мм/мин при толщине разрезаемой стали, мм
При воздушно-дуговой разделительной резке получается чистая гладкая кромка реза. Если придать электроду наклон в поперечном направлении к линии реза, то можно получить резку со скосом кромок. Особого внимания заслуживает резка этим способом нержавеющей стали толщиной до 15 мм.
Воздушно-дуговой поверхностной и разделительной резке могут подвергаться цветные металлы и их сплавы. Однако применение этого способа для разделения цветных металлов требует повышения погонной энергии ввиду более высокой теплоемкости и теплопроводности этих материалов. Кромки у этих металлов получаются неровными, окисленными и требуют последующей механической обработки. С помощью воздушно-дуговой резки можно удалить все дефекты в стальном литье: газовые и усадочные раковины, шлаковые включения, земляные засоры, трещины, рыхлости, пористости.
Чем больше площадь дефекта и глубина его залегания, тем больше требуется диаметр электрода. Этим способом можно удалять и прибыли на литых деталях, прожигать отверстия. При достаточном навыке можно получить отверстие правильной формы.
Основные параметры электрододержателей должны соответствовать указанным в ниже приведенной таблице.
Электрододержатели должны допускать возможность захвата электрода не менее чем в двух положениях: перпендикулярно и под углом не менее 115° к оси электрододержателя. Конструкция электрододержателя должна обеспечить время на смену электрода не более 4 с. Токоведущие части электрододержателей должны быть надежно изолированы от случайного соприкосновения со свариваемым изделием или руками сварщика. Сопротивление изоляции должно быть не менее 5 Мом.
Изоляция рукоятки должна выдерживать без пробоя в течение 1 мин испытательное напряжение 1500 В при частоте 50 Гц.
Превышение температуры наружной поверхности рукоятки при номинальном режиме работы не должно быть более 55° С. Поперечное сечение рукоятки на длине, охватываемой ладонью сварщика, должно вписываться в круг диаметром не более 40 мм.
Электрододержатели должны обладать достаточной механической прочностью.
Схемы некоторых конструкций электрододержателей показаны на рисунке 6.
Дополнительный инструмент сварщика. Для присоединения провода к изделию применяют винтовые зажимы типа струбцин, в которые конец провода впаивают твердым припоем. Зажимы должны обеспечивать плотный контакт со свариваемым изделием.
Для зачистки швов и удаления шлака применяют проволочные щетки -- ручные и с электроприводом.
Для клеймения швов, вырубки дефектных мест, удаления брызг и шлака служат клейма, зубила и молотки. Для хранения электродов при сварке на монтаже применяют брезентовые сумки длиной 300 мм, подвешиваемые к поясу сварщика. В цеховых условиях для этой цели используют стаканы, изготовленные из отрезка трубы диаметром 50--75 мм, длиной 300 мм, с приваренным донышком-подставкой.
Сварочные провода служат для подвода тока от сваро
Дуговая резка металлов курсовая работа. Производство и технологии.
Понятие Преступления Курсовая
Курсовая работа по теме Политическое и экономическое закабаление Ирана
Курсовая Работа На Тему Топливно-Энергетический Комплекс России
Реферат: Класифікація факторів ураження джерел надзвичайних техногенних ситуацій
Понятие Семьи Реферат
Реферат По Физкультуре Тема Баскетбол
Профессор Червинский Анатолий Александрович
Реферат по теме Холестерин
Реферат по теме Сравнение американской и японской школ управления качеством
Контрольная работа по теме Газовая промышленность Туркменистана
Сочинение по теме Лаймен Фрэнк Баум. Озма из страны Оз
Итоговая Контрольная Работа По Физике 8
Реферат 2 Класса
Рефераты: Технология
Курс Лекций На Тему Редагування Спецдокументації
Курсовая Работа На Тему Правовое Регулирование Деятельности По Оказанию Юридических Услуг
Реферат: Melbourne Australia Essay Research Paper Melbourne Australia
Дипломная работа по теме Международные стандарты финансовой отчетности и опыт их использования в Беларуси (на примере организации РУП «Минскэнерго).
Реферат по теме Особенности разведения, кормления и содержание лисиц
Сочинение На Тему Внутренний Мир Человека Егэ
Система планирования потребности в персонале предприятия - Менеджмент и трудовые отношения дипломная работа
Анализ автоматизированной электромеханической системы - Производство и технологии практическая работа
Маркетинговое исследование рынка - Маркетинг, реклама и торговля контрольная работа


Report Page