Дослідження проблеми тригонометричних рівнянь - Математика дипломная работа

Главная
Математика
Дослідження проблеми тригонометричних рівнянь
Функціональні методи рішення тригонометричних і комбінованих рівнянь. Рішення тригонометричних нерівностей графічним методом. Відомість тригонометричних рівнянь до алгебраїчних. Перетворення й об'єднання груп загальних рішень тригонометричних рівнянь.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Дослідження проблеми тригонометричних рівнянь
У стародавності тригонометрія виникла у зв'язку з потребами астрономії, будівельної справи, тобто носила чисто геометричний характер і представляла головним чином <<вирахування хорд>>. Згодом у неї почали вкраплятися деякі аналітичні моменти. У першій половині 18-го століття відбувся різкий перелом, після чого тригонометрія прийняла новий напрямок і змістилася убік математичного аналізу. Саме в цей час тригонометричні залежності стали розглядатися як функції.
Тригонометричні рівняння одна із самих складних тем у шкільному курсі математики. Тригонометричні рівняння виникають при рішенні задач по планіметрії, стереометрії, астрономії, фізики й в інших областях. Тригонометричні рівняння й нерівності рік у рік зустрічаються серед завдань централізованого тестування.
Найважливіша відмінність тригонометричних рівнянь від алгебраїчних полягає в тому, що в алгебраїчних рівняннях кінцеве число корінь, а в тригонометричних нескінченне, що сильно ускладнює відбір корінь. Ще одною специфікою тригонометричних рівнянь є не одиничність форми запису відповіді.
Дана дипломна робота присвячена методам рішення тригонометричних рівнянь і нерівностей.
Дипломна робота складається з 6 розділів.
У першому розділі наведені основні теоретичні відомості: визначення й властивості тригонометричних і зворотних тригонометричних функцій; таблиця значень тригонометричних функцій для деяких аргументів; вираження тригонометричних функцій через інші тригонометричні функції, що дуже важливо для перетворення тригонометричних виражень, що особливо містять зворотні тригонометричні функції; крім основних тригонометричних формул, добре відомих зі шкільного курсу, наведені формули вираження, що спрощують, утримуючі зворотні тригонометричні функції.
У другому розділі викладені основні методи рішення тригонометричних рівнянь. Розглянуто рішення елементарних тригонометричних рівнянь, метод розкладання на множники, методи відомості тригонометричних рівнянь до алгебраїчного. Через те, що рішення тригонометричних рівнянь можна записати декількома способами, і вид цих рішень не дозволяє відразу встановити, чи є ці рішення однаковими або різними, що може <<спантеличити>> при рішенні тестів, розглянута загальна схема рішення тригонометричних рівнянь і докладно розглянуте перетворення груп загальних рішень тригонометричних рівнянь.
У третьому розділі розглядаються нестандартні тригонометричні рівняння, рішення яких засноване на функціональному підході.
У четвертому розділі розглядаються тригонометричні нерівності. Докладно розглянуті методи рішення елементарних тригонометричних нерівностей, як на одиничній окружності, так і графічним методом. Описано процес рішення неелементарних тригонометричних нерівностей через елементарні нерівності й уже добре відомий школярам метод інтервалів.
У п'ятому розділі представлені найбільш складні завдання: коли необхідно не тільки вирішити тригонометричне рівняння, але й зі знайдених корінь відібрати корінь, що задовольняють якій-небудь умові. У даному розділі наведені рішення типових завдань на відбір корінь. Наведено необхідні теоретичних відомості для відбору корінь: розбивка множини цілих чисел на непересічні підмножини, рішення рівнянь у цілих числах (діафантових).
У шостому розділі представлені задачі для самостійного рішення, оформлені у вигляді тесту. В 20 завданнях тесту наведені найбільш складні завдання, які можуть зустрітися на централізованому тестуванні.
ОСНОВНІ МЕТОДИ РІШЕННЯ ТРИГОНОМЕТРИЧНИХ РІВНЯНЬ
Елементарні тригонометричні рівняння
Елементарні тригонометричні рівняння - це рівняння виду
де - одна із тригонометричних функцій
Елементарні тригонометричні рівняння мають нескінченно багато корінь. Наприклад, рівнянню
і т.д. Загальна формула по який перебувають всі коріння рівняння
Тут може приймати будь-які цілі значення, кожному з них відповідає певний корінь рівняння; у цій формулі (так само як і в інших формулах, по яких вирішуються елементарні тригонометричні рівняння) називають параметром. Записують звичайно , підкреслюючи тим самим, що параметр приймати будь-які цілі значення.
Рівняння вирішується застосовуючи формулу
Особливо відзначимо деякі окремі випадки елементарних тригонометричних рівнянь, коли рішення може бути записане без застосування загальних формул:
При рішенні тригонометричних рівнянь важливу роль грає період тригонометричних функцій. Тому приведемо дві корисні теореми:
Теорема Якщо --- основний період функції , то число є основним періодом функції .
Періоди функцій і називаються порівнянними, якщо існують натуральні числа й , що .
Теорема Якщо періодичні функції й , мають порівнянні й , те вони мають загальний період
У теоремі говориться про те, що є періодом функції
і не обов'язково є основним періодом. Наприклад, основний період функцій
а основний період їхнього добутку - .
Стандартним шляхом перетворення виражень виду
наступний прийом: нехай - кут, що задається рівностями
Для будь-яких і такий кут існує. У такий спосіб
Схема рішення тригонометричних рівнянь
Основна схема, який ми будемо керуватися при рішенні тригонометричних рівнянь наступна:
рішення заданого рівняння зводиться до рішення елементарних рівнянь. Засоби рішення -і- перетворення, розкладання на множники, заміна невідомих. Провідний принцип -і- не втрачати корінь. Це означає, що при переході до наступного рівняння (рівнянням) ми не побоюємося появи зайвих (сторонніх) корнів, а піклуємося лише про те, щоб кожне наступне рівняння нашої "ланцюжка" (або сукупність рівнянь у випадку розгалуження) було наслідком попередні. Одним з можливих методів відбору корнів є перевірка. Відразу помітимо, що у випадку тригонометричних рівнянь труднощі, пов'язані з відбором корнів, з перевіркою, як правило, різко зростають у порівнянні з алгебраїчними рівняннями. Адже перевіряти доводиться серії, що складаються з нескінченного числа членів.
Особливо варто сказати про заміну невідомих при рішенні тригонометричних рівнянь. У більшості випадків після потрібної заміни виходить алгебраїчне рівняння. Більше того, не так уже й рідкі рівняння, які, хоча і є тригонометричними по зовнішньому вигляді, по суті такими не є, оскільки вже після першого кроку -і- заміни змінних -і- перетворюються в алгебраїчні, а повернення до тригонометрії відбувається лише на етапі рішення елементарних тригонометричних рівнянь.
Ще раз нагадаємо: заміну невідомого варто робити з першою нагодою, що вийшла після заміни рівняння необхідно вирішити до кінця, включаючи етап відбору корнів, а потім вернеться до первісного невідомого.
Одна з особливостей тригонометричних рівнянь полягає в тім, що відповідь у багатьох випадках може бути записаний різними способами. Навіть для рішення рівняння відповідь може бути записаний у такий спосіб:
2) у стандартній формі що представляє собою об'єднання зазначених вище серій
те відповідь можна записати у вигляд
(Надалі наявність параметра , , або в записі відповіді автоматично означає, що цей параметр приймає всілякі цілочисленні значення. Виключення будуть обмовлятися.)
Очевидно, що трьома перерахованими випадками не вичерпуються всі можливості для запису відповіді розглянутого рівняння (їх нескінченно багато).
Наприклад, при справедливо рівність
Отже, у двох перших випадках, якщо , ми можемо замінити
Звичайно відповідь записується на підставі пункту 2. Корисно запам'ятати наступну рекомендацію: якщо на рішенні рівняння робота не закінчується, необхідно ще провести дослідження, відбір корнів, те найбільш зручна форма запису, зазначена в пункті 1. (Аналогічну рекомендацію варто дати й для рівняння .)
Рішення. Найбільш очевидним є наступний шлях. Дане рівняння розпадається на два
Вирішуючи кожне з них і поєднуючи отримані відповіді, знайдемо
те, заміняючи й по формулах зниження ступеня. Після невеликих перетворень одержимо
На перший погляд ніяких особливих переваг у другої формули в порівнянні з першої немає. Однак, якщо візьмемо, наприклад,
у той час як перший спосіб нас приводить до відповіді
Перетворення й об'єднання груп загальних рішень тригонометричних рівнянь
Будемо розглядати арифметичну прогресію, що нескінченно простирається в обидва боки. Члени цієї прогресії можна розбити на дві групи членів, що розташовуються вправо й уліво від деякого члена, називаного центральним або нульовим членом прогресії.
Фіксуючи один зі членів нескінченної прогресії нульовим номером, ми повинні будемо вести подвійну нумерацію для всіх членів, що залишилися: позитивну для членів, розташованих вправо, і негативну для членів, розташованих уліво від нульового.
У загальному випадку, якщо різниця прогресії , нульовий член , формула для кожного ( -го) члена нескінченної арифметичної прогресії представляє вид:
Перетворення формули для будь-якого члена нескінченної арифметичної прогресії
1. Якщо до нульового члена додати або відняти різниця прогресії , то від цього прогресія не зміниться, а тільки переміститься нульовий член, тобто зміниться нумерація членів.
2. Якщо коефіцієнт при змінній величині помножити на , то від цього відбудеться лише перестановка правої й лівої груп членів.
3. Якщо послідовних членів нескінченної прогресії
зробити центральними членами прогресій з однаковою різницею, рівної :
те прогресія й ряд прогресій виражають собою ті самі числа.
може бути замінений наступними трьома рядами
4. Якщо нескінченних прогресій з однаковою різницею мають центральними членами числа, що утворять арифметичну прогресію з різницею , то ці рядів можуть бути замінені одною прогресією з різницею , і із центральним членом, рівним кожному із центральних членів даних прогресій, тобто якщо
Для перетворення груп, що мають загальні рішення, у групи, загальних рішень не дані групи, що мають, розкладають на групи із загальним періодом, а потім об'єднати групи, що вийшли, виключивши повторювані.
Метод розкладання полягає в наступному: якщо
Зворотне твердження, загалом кажучи невірно: не всяке рішення сукупності є рішенням рівняння. Це пояснюється тим, що рішення окремих рівнянь можуть не входити в область визначення функції .
Рішення. Використовуючи основну тригонометричну тотожність, рівняння представимо у вигляді
Перетворення суми тригонометричних функцій у добуток
Рішення. Застосуємо формулу , одержимо рівносильне рівняння
Рішення. У цьому випадку, перш ніж застосовувати формули суми тригонометричних функцій, варто використовувати формулу приведення
У підсумку одержимо рівносильне рівняння
Рішення рівнянь добутку тригонометричних функцій у суму
При рішенні ряду рівнянь застосовуються формули.
Рішення. Застосувавши формулу , одержимо рівносильне рівняння:
Рішення. Застосувавши формулу , одержимо рівносильне рівняння:
Рішення рівнянь із застосуванням формул зниження ступеня
При рішенні широкого кола тригонометричних рівнянь ключову роль грають формули.
Рішення. Застосовуючи формулу, одержимо рівносильне рівняння.
Рішення рівнянь із формул потрійного аргументу
Рішення. Застосуємо формулу , одержимо рівняння
Застосуємо формули зниження ступеня одержимо
Рівність однойменних тригонометричних функцій
Приклад Відомо, що й задовольняють рівнянню
Помноження на деяку тригонометричну функцію
Дані суми можна перетворити в добуток, до множив і розділивши їх на
Зазначений прийом може бути використаний при рішенні деяких тригонометричних рівнянь, однак варто мати на увазі, що в результаті можлива поява сторонніх корінь. Приведемо узагальнення даних формул:
Рішення. Видно, що множина є рішенням вихідного рівняння. Тому множення лівої й правої частини рівняння на не приведе до появи зайвих корінь.
Рішення. До множимо ліву й праву частини рівняння на
й застосувавши формули перетворення добутку тригонометричних функцій у суму, отримаємо
Це рівняння рівносильне сукупності двох рівнянь
не є коріннями рівняння, то з отриманих множин рішень варто виключити
Відомість тригонометричних рівнянь до алгебраїчних
те заміна приводить його до квадратного, оскільки
Якщо замість доданка буде, то потрібна заміна буде
поданням як . Легко перевірити, що при яких , не є коріннями рівняння, і, зробивши заміну , рівняння зводиться до квадратного.
Рішення. Перенесемо в ліву частину, замінимо її на
Розділимо по членне на , зробимо заміну :
де , , , ..., , --- дійсні числа. У кожному складати^ся лівої частини рівняння ступеня одночленів рівні , тобто сума ступенів синуса й косинуса та сама й дорівнює . Таке рівняння називається однорідним відносно й , а число називається показником однорідності.
Ясно, що якщо , те рівняння прийме вид:
рішеннями якого є значення , при яких , тобто числа , . Друге рівняння, записане в дужках також є однорідним, але ступеня на 1 нижче.
Якщо ж , то ці числа не є коріннями рівняння .
При одержимо: , і ліва частина рівняння (1) приймає значення .
Отже, при , і , тому можна розділити обидві частини рівняння на . У результаті одержуємо рівняння:
яке, підстановкою легко зводиться до алгебраїчного:
Однорідні рівняння з показником однорідності 1. При маємо рівняння .
Якщо , то це рівняння рівносильне рівнянню
Рішення. Це рівняння однорідне першого ступеня . Розділимо обидві його частини на одержимо:
Приклад При одержимо однорідне рівняння виду
Якщо , тоді розділимо обидві частини рівняння на , одержимо рівняння , що підстановкою легко приводиться до квадратного: . Якщо , то рівняння має дійсні коріння , . Вихідне рівняння буде мати дві групи рішень: , , .
Це рівняння однорідне другого ступеня. Розділимо обидві честі рівняння на , одержимо
До рівняння виду зводиться рівняння
Для цього досить скористатися тотожністю
зводиться до однорідного, якщо замінити на
Рішення. Перетворимо рівняння до однорідного
Розділимо обидві частини рівняння на , одержимо рівняння:
Нехай , тоді приходимо до квадратного рівняння
Зведемо обидві частини рівняння у квадрат, з огляду на, що вони мають позитивні значення:
Рівняння, розв'язувані за допомогою тотожностей
Рішення. Використовуючи , одержуємо
Пропонуємо не самі формули, а спосіб їхнього висновку:
Універсальна тригонометрична підстановка
де --- раціональна функція за допомогою формул -- , а так само за допомогою формул -- можна звести до раціонального рівняння щодо аргументів , , , , після чого рівняння може бути зведене до алгебраїчного раціонального рівняння відносно
за допомогою формул універсальної тригонометричної підстановки
Слід зазначити, що застосування формул може приводити до звуження ОДЗ вихідного рівняння, оскільки не визначений у крапках , тому в таких випадках потрібно перевіряти, чи є кути , коріннями вихідного рівняння.
Рішення. За умовою задачі . Застосувавши формули й зробивши заміну , одержимо
де --- багаточлен, вирішуються за допомогою замін невідомих
Рішення. Зробивши заміну й з огляду на, що
звідки , . - сторонній корінь, тому що
НЕСТАНДАРТНІ ТРИГОНОМЕТРИЧНІ РІВНЯННЯ
У практиці тестування не так вуж рідко зустрічаються рівняння, рішення яких ґрунтується на обмеженості функцій і . Наприклад:
те ліва частина не перевершує й дорівнює , якщо
Для знаходження значень , що задовольняють обом рівнянням, надійдемо в такий спосіб. Вирішимо одне з них, потім серед знайдених значень відберемо ті, які задовольняють і іншому
Зрозуміло, що лише для парних буде .
Інша ідея реалізується при рішенні наступного рівняння:
Рішення. Скористаємося властивістю показової функції
Склавши по членне ці нерівності будемо мати
Отже ліва частина даного рівняння дорівнює тоді й тільки тоді, коли виконуються дві рівності
т. е. може приймати значення , , , а може приймати значення , .
Рішення. Позначимо , тоді з визначення зворотної тригонометричної функції маємо й .
Тому що , те з рівняння треба нерівність , тобто . Оскільки й , те й . Однак і тому .
Якщо й , то . Тому що раніше було встановлено, що , те .
Рішення. Областю припустимих значень рівняння є .
при будь-яких може приймати тільки позитивні значення.
Отже, для доказу нерівності , необхідно показати, що
Із цією метою зведемо в куб обидві частини даної нерівності, тоді
Отримана чисельна нерівність свідчить про те, що . Якщо при цьому ще врахувати, що , то ліва частина рівняння ненегативна.
Розглянемо тепер праву частину рівняння .
тобто права частина рівняння не перевершує . Раніше було доведено, що ліва частина рівняння ненегативна, тому рівність у може бути тільки в тому випадку, коли обидві його частини рівні , а це можливо лише при .
Застосовуючи нерівність Коші-Буняковського, одержуємо
Рішення. Перепишемо рівняння у вигляді
Функціональні методи рішення тригонометричних і комбінованих рівнянь
Не всяке рівняння в результаті перетворень може бути зведене до рівняння того або іншого стандартного виду, для якого існує певний метод рішення. У таких випадках виявляється корисним використовувати такі властивості функцій і , як монотонність, обмеженість, парність, періодичність і ін. Так, якщо одна з функцій убуває, а друга зростає на проміжку , то при наявності в рівняння кореня на цьому проміжку, цей корінь єдиний, і тоді його, наприклад, можна знайти підбором. Якщо ж функція обмежена зверху, причому , а функція обмежена знизу, причому , то рівняння рівносильне системі рівнянь
Рішення. Перетворимо вихідне рівняння до виду
і вирішимо його як квадратне відносно . Тоді одержимо
Вирішимо перше рівняння сукупності. Урахувавши обмеженість функції , доходимо висновку, що рівняння може мати корінь тільки на відрізку . На цьому проміжку функція зростає, а функція убуває. Отже, якщо це рівняння має корінь, то він єдиний. Підбором знаходимо .
тоді вихідне рівняння можна записати у вигляді функціонального рівняння
У такому випадку одержуємо рівняння
Рішення. На підставі теореми про похідну складну функцію ясно, що функція убутна (функція убутна, зростаюча, убутна). Звідси зрозуміло, що функція певна на , що убуває. Тому дане рівняння має не більше одного кореня. Тому що , те
Рішення. Розглянемо рівняння на трьох проміжках.
а) Нехай . Тоді на цій множині вихідне рівняння рівносильне рівнянню . Яке на проміжку рішень не має, тому що , , а . На проміжку вихідне рівняння так само не має корінь, тому що , а .
б) Нехай . Тоді на цій множині вихідне рівняння рівносильне рівнянню
коріннями якого на проміжку є числа , , , .
в) Нехай . Тоді на цій множині вихідне рівняння рівносильне рівнянню
Яке на проміжку рішень не має, тому що , а . На проміжку рівняння так само рішень не має, тому що
Метод симетрії зручно застосовувати, коли у формулюванні завдання присутня вимога одиничності рішення рівняння, нерівності, системи й т.п. або точна вказівка числа рішень. При цьому варто виявити яку-небудь симетрію заданих виражень.
Потрібно також ураховувати різноманіття різних можливих видів симетрії.
Не менш важливим є чітке дотримання логічних етапів у міркуваннях із симетрією.
Звичайно симетрія дозволяє встановити лише необхідні умови, а потім потрібна перевірка їхньої достатності.
Приклад Знайти всі значення параметра , при яких рівняння
Рішення. Помітимо, що й --- парні функції, тому ліва частина рівняння є парна функція.
Значить якщо --- рішення рівняння, тобто також рішення рівняння. Якщо --- єдине рішення рівняння, те, необхідно, .
Відберемо можливі значення , зажадавши, щоб було коренем рівняння.
Відразу ж відзначимо, що інші значення не можуть задовольняти умові задачі.
Але поки не відомо, чи всі відібрані в дійсності задовольняють умові задачі.
Отже, останнє рівняння рівносильне системі:
Тим самим, ми довели, що при , рівняння має єдине рішення.
тригонометричний рівняння комбінований графічний
Приклад Доведіть, що всі рішення рівняння
Рішення. Основний період вихідного рівняння дорівнює . Тому спочатку досліджуємо це рівняння на відрізку
За допомогою мікрокалькулятора одержуємо
Якщо , то з попередніх рівностей одержуємо
Вирішивши отримане рівняння, одержимо
Виконані обчислення представляють можливість припустити, що коріннями рівняння, що належать відрізку
Безпосередня перевірка підтверджує цю гіпотезу. Таким чином, доведено, що коріннями рівняння є тільки цілі числа
Рішення. Знайдемо основний період рівняння. У функції основний період дорівнює . Основний період функції дорівнює . Найменше загальне кратне чисел і дорівнює . Тому основний період рівняння дорівнює . Нехай .
Очевидно, є рішенням рівняння. На інтервалі . Функція негативна. Тому інших корінь рівняння варто шукати тільки на інтервалах
За допомогою мікрокалькулятора спочатку знайдемо наближені значення корінь рівняння. Для цього становимо таблицю значень функції
З таблиці легко вбачаються наступні гіпотези: коріннями рівняння, що належать відрізку , є числа: ; ; . Безпосередня перевірка підтверджує цю гіпотезу.
Рішення тригонометричних нерівностей за допомогою одиничної окружності
При рішенні тригонометричних нерівностей виду
де --- одна із тригонометричних функцій, зручно використовувати тригонометричну окружність для того, щоб найбільше наочно представити рішення нерівності й записати відповідь. Основним методом рішення тригонометричних нерівностей є відомість їх до найпростіших нерівностей типу . Розберемо на прикладі, як вирішувати такі нерівності.
Рішення. Намалюємо тригонометричну окружність і відзначимо на ній крапки, для яких ордината перевершує
Ясно також, що якщо деяке число буде відрізнятися від якого-небудь числа із зазначеного інтервалу на , те також буде не менше . Отже, до кінців знайденого відрізка рішення потрібно просто додати . Остаточно, одержуємо, що рішеннями вихідної нерівності будуть усе
Для рішення нерівностей з тангенсом і котангенсом корисне поняття про лінію тангенсів і котангенсів. Такими є прямі й відповідно (на малюнку (1) і (2)), що стосуються тригонометричної окружності.
Легко помітити, що якщо побудувати промінь із початком на початку координат, що становить кут з позитивним напрямком осі абсцис, то довжина відрізка від крапки до крапки перетинання цього променя з лінією тангенсів у точності дорівнює тангенсу кута, що становить цей промінь із віссю абсцис. Аналогічне спостереження має місце й для котангенса.
Позначимо , тоді нерівність прийме вид найпростішого: . Розглянемо інтервал довжиною, рівної найменшому позитивному періоду (НПП) тангенса. На цьому відрізку за допомогою лінії тангенсів установлюємо, що . Згадуємо тепер, що необхідно додати , оскільки НПП функції . Отже,
Вертаючись до змінного , одержуємо, що
Нерівності зі зворотними тригонометричними функціями зручно вирішувати з використанням графіків зворотних тригонометричних функцій. Покажемо, як це робиться на прикладі.
Рішення тригонометричних нерівностей графічним методом
Помітимо, що якщо --- періодична функція, то для рішення нерівності необхідно знайти його рішення на відрізку, довжина якого дорівнює періоду функції . Всі рішення вихідної нерівності будуть складатися зі знайдених значень , а також всіх , що відрізняються від знайдених на будь-яке ціле число періодів функції .
Оскільки , те при нерівність рішень не має. Якщо , то множина рішень нерівності --- множина всіх дійсних чисел.
Нехай . Функція синус має найменший позитивний період , тому нерівність можна вирішити спочатку на відрізку довжиною , наприклад, на відрізку
На відрізку функція синус зростає, і рівняння , де , має один корінь . На відрізку функція синус убуває, і рівняння має корінь . На числовому проміжку графік функції розташована вище графіка функції . Тому для всіх із проміжку ) нерівність виконується, якщо . У силу періодичності функції синус всі рішення нерівності задаються нерівностями виду:
Аналогічно вирішуються нерівності , , і т.п.
і виберемо із проміжку на осі значення аргументу , яким відповідають крапки графіка, що лежать вище осі . Таким проміжком є інтервал . З огляду на періодичність функції всі рішення нерівності можна записати так:
Рішення. Намалюємо графік функції . Знайдемо крапку перетинання цього графіка з горизонтальної прямої .
Це крапка з абсцисою . За графіком видно, що для всіх графік функції лежить нижче прямій . Отже, ці й становлять:
Проблема відбору корнів, відсівання зайвих корнів при рішенні тригонометричних рівнянь досить специфічна й звичайно виявляється більше складної, чим це мало місце для рівнянь алгебраїчних. Приведемо рішення рівнянь, що ілюструють типові випадки появи сторонніх корнів і методи <<боротьби>> з ними.
Приклад Знайти найближчий до числа корінь рівняння
замість змінної виписані вище серії рішень рівнянь, відшукаємо для кожної з них , а потім зрівняємо отримані мінімальні між собою
Виберемо мінімальне із чисел , . Відразу ясно, що й що . Залишилося зрівняти й . Припустимо, що
Остання нерівність --- вірне, а всі зроблені переходи --- рівносильні. Тому вірно вихідна нерівність. Обґрунтуємо рівносиль переходів (*) і (**) (рівносиль інших переходів треба із загальних властивостей числових нерівностей). У випадку перетворення (*), досить помітити, що числа й розташований на ділянці монотонного зростання функції . У випадку переходу (**) формула справедлива, тому що
Рішення цього рівняння розпадається на два етапи: 1) рішення рівняння, що виходить із даного піднесенням у квадрат обох його частин; 2) відбір тих корінь, які задовольняють умові . При цьому піклується про умову немає необхідності. Всі значення , що задовольняють зведеному у квадрат рівнянню, цій умові задовольняють.
Перший крок нас приводить до рівняння , звідки
Тепер треба визначити, при яких буде
Для цього досить для розглянути значення , , , тобто <<обійти один раз коло>>, оскільки далі значення косинуса почнуть повторюватися, що вийшли кути будуть відрізнятися від уже розглянутих на величину, кратну
Отже, основна схема відбору корнів полягає в наступному. Перебуває найменший загальний період всіх тригонометричних функцій вхідних у рівняння. На цьому періоді відбираються коріння, а потім, що залишилися коріння, періодично тривають.
Рішення. Рівняння рівносильне змішаній системі
Розкриваючи знак модуля одержуємо більше громохке рішення. А відповідь у цьому випадку приймає вид:
Тест по темі <<Тригонометричні рівняння>>
* Об'єднання яких множин , , , є рішенням рівняння
* Серед множин , знайдіть рішення рівняння
і вкажіть ті, які не є підмножинами один одного.
* Серед множин , знайдіть рішення рівняння
* Сума корінь рівняння на відрізку дорівнює:
У відповіді записати кількість корінь рівняння, що належать відрізку
Знайдіть найбільший негативний корінь рівняння
Відповіді 1а 2б 3б 4г 5б 6б 7а 8б 9г 10б 11а 12б 13в або г 14а 15в 16в 17в 18а або б 19г 20в
У даній роботі були розглянуті методи рішення тригонометричних рівнянь і нерівностей, як найпростіших, так і рівня олімпіади. Були розглянуті основні методи рішення тригонометричних рівнянь і нерівностей, причому, як специфічні -і- характерні тільки для тригонометричних рівнянь і нерівностей,-і- так і загальні функціональні методи рішення рівнянь і нерівностей, стосовно до тригонометричних рівнянь.
У дипломній роботі наведені основні теоретичні відомості: визначення й властивості тригонометричних і зворотних тригонометричних функцій; вираження тригонометричних функцій через інші тригонометричні функції, що дуже важливо для перетворення тригонометричних виражень, що особливо містять зворотні тригонометричні функції; крім основних тригонометричних формул, добре відомих зі шкільного курсу, наведені формули вираження, що спрощують, утримуючі зворотні тригонометричні функції. Розглянуто рішення елементарних тригонометричних рівнянь, метод розкладання на множники, методи відомості тригонометричних рівнянь до алгебраїчного. Через те, що рішення тригонометричних рівнянь можна записати декількома способами, і вид цих рішень не дозволяє відразу встановити, чи є ці рішення однаковими або різними, розглянута загальна схема рішення тригонометричних рівнянь і докладно розглянуте перетворення груп загальних рішень тригонометричних рівнянь. Докладно розглянуті методи рішення елементарних тригонометричних нерівностей, як на одиничній окружності, так і графічним методом. Описано процес рішення неелементарних тригонометричних нерівностей через елементарні нерівності й уже добре відомий школярам метод інтервалів. Наведено рішення типових завдань на відбір корнів. Наведено необхідні теоретичних відомості для відбору корнів: розбивка множини цілих чисел на непересічні підмножини, рішення рівнянь у цілих числах.
Результати даної дипломної роботи можуть бути використані як навчальний матеріал при підготовці курсових і дипломних робіт, при складанні факультативів для школярів, так само робота може застосовуватися при підготовці учнів до вступних іспитів зовнішнього оцінювання.
Вигодський Я.Я., Довідник по елементарній математиці. - К., 2003
Ігудисман О., Математика на усному іспиті. - К., 2001.
Литвиненко В.Н., Практикум по елементарній математиці. - К., 2000
Шаригін І.Ф., Факультативний курс по математиці: рішення задач. - К., 2000
Бардушкин В., Тригонометричні рівняння. Відбір корнів. - К., 2005
Василевський А.Б., Завдання для позакласної роботи з математики. - К., 2005
Сапунів П. І., Перетворення й об'єднання груп загальних рішень тригонометричних рівнянь. - К., 2003
[9]Самусенко А.В., Математика: Типові помилки абітурієнтів. - К., 1991.
Ознайомлення з нестандартними методами рішення рівнянь і нерівностей. Відомості з історії математики про рішення рівнянь. Розгляд та застосування на практиці методів рішення рівнянь і нерівностей, заснованих на використанні властивостей функції. дипломная работа [1,4 M], добавлен 26.01.2011
Системи лінійних рівнянь з двома змінними з параметром. Тригонометричні рівняння та системи тригонометричних рівнянь з параметрами. Лінійні та квадратні нерівності. Застосування графічних методів паралельного переносу в розв’язанні задач з параметрами. дипломная работа [1,3 M], добавлен 16.06.2013
Розгляд властивостей абсолютних величин і теорем про рівносильні перетворення рівнянь і нерівностей, що містять знак модуля. Формулювання маловідомих тверджень, що істотно спрощ
Дослідження проблеми тригонометричних рівнянь дипломная работа. Математика.
Реферат по теме Система видов освобождения от наказания
Реферат: Female Bodybuilding Essay Research Paper In this
Курсовая работа: Получение синтетических красителей реакцией азосочетания на примере синтеза 3-окси-4-карбоксиазобензола. Скачать бесплатно и без регистрации
Реферат: Понятия и Законы электростатики. Скачать бесплатно и без регистрации
Автореферат На Тему Розвиток Інфраструктури Охорони Здоров’Я В Донбасі У 20-Х Рр. Хх Ст.: Історичний Аспект
Внеурочная Деятельность Реферат
Контрольная Работа По Химии 12 Букв
Отчет По Учебной Практике В Магазине Одежды
Повесть О Горе Злочастии Сочинение
Реферат: Для чего нужна агрессия?. Скачать бесплатно и без регистрации
Курсовая работа по теме Международные финансово-кредитные организации
Сочинение Петра И Февронии Муромских 7
Контрольная работа: Розвиток програм підготовки соціальних працівників у США
Сочинение по теме Художественная концепция петербургского периода русской истории в стихотворении В.Брюсова "Три кумира"
Курсовая работа по теме Создание зоновых и магистральных цифровых линейных трактов
Изложение: Ивэйн, иди Рыцарь со львом. Кретьен де Труа
Темы Курсовых Работ Медицинских Колледжей
Дипломная работа по теме Формування мотивів природоохоронної діяльності у молодших школярів
Контрольная работа по теме Принципы логики
Японии Реферат
Клонирование - Биология и естествознание реферат
Переход от дарвинизма к синтетической теории эволюции - Биология и естествознание контрольная работа
Монархия как форма правления - Государство и право курсовая работа