Динамика биологических мембран. Подвижность белков и липидов - Биология и естествознание реферат

Динамика биологических мембран. Подвижность белков и липидов - Биология и естествознание реферат




































Главная

Биология и естествознание
Динамика биологических мембран. Подвижность белков и липидов

Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
на тему: « Динамика биологических мембран. Подвижность липидов и белков »
Структурная основа биологических мембран - билипидный слой. В продольной плоскости биологическая мембрана представляет собой сложную мозаику из разнообразных липидов и белков, причем их распределение по поверхности биологической мембраны неоднородно. В некоторых биологических мембранах имеются обширные участки билипидного слоя, практически свободные от белков (напр., в эритроцитах белки занимают только 35% площади поверхности всей мембраны биологической, в микросомах-23%). При высоком содержании белка в биологических мембранах липиды не образуют сплошной бислой, а располагаются в виде отдельных вкраплений между белковыми молекулами. Сам билипидный слой в мембране может иметь доменную структуру в результате, напр., сосуществования несмешиваемых липидных фаз, находящихся в двух различных физ. состояниях - гелевом и жидкокристаллическом. Часть липидов в биологических мембранах может находиться также в составе так называемых небислойных фаз (мицеллярная фаза, гексагон. фаза и др.).
Липиды - основной строительный материал, из которого формируются клеточные мембраны. Сложность, многообразие и изменчивость липидного состава мембран позволяет предположить, что они участвуют также в регуляции важнейших мембранных процессов. Основные липидные компоненты биологических мембран - фосфолипиды, гликолипиды и стерины. Каждая группа этих липидов представлена большим числом разнообразных соединений. Так, в мембране эритроцитов человека содержится не менее 20 различных представителей основного фосфолипида этой мембраны - фосфатидилхолина; в целом же в мембране эритроцитов идентифицировано ок. 200 различных липидов.
Мембранные белки. Молекулярная масса мембранных белков обычно варьирует в пределах от 10 тыс. до 240 тыс. Они значительно различаются между собой по прочности связывания с мембраной. Белки, наз. периферическими или поверхностными, сравнительно слабо связаны с мембраной и отделяются от нее в мягких условиях, напр. в растворах, имеющих высокую ионную силу или содержащих комплексоны. Намного прочнее связаны с мембраной так называемые интегральные, или внутримембранные, белки . Чтобы их выделить, требуется, как правило, предварительно разрушить мембрану с помощью ПАВ или орг. растворителей.
Мембранные белки наряду с липидами играют важную структурную роль, кроме этого они ответственны за выполнение подавляющего большинства специализированных функций отдельных мембран. Они служат катализаторами протекающих в мембранах и на их поверхности реакций (дыхание), участвуют в рецепции гормональных и антигенных сигналов и т.п. (аденилатциклаза), выполняют транспортные функции, обеспечивают пиноцитоз (захват клеточной поверхностью и поглощение клеткой жидкости), хемотаксис (перемещение клетки, обусловленное градиентом концентраций вещества в среде) и т.п. Многие из периферических белков-компоненты цитоскелета (совокупность филаментов и микротрубочек цитоплазмы) и связанных с ним сократитительных элементов, которые обусловливают форму клетки и ее движение.
Динамические свойства биологических мембран обусловлены текучестью билипидного слоя, гидрофобная область которого в жидкокристаллическом состоянии имеет микровязкость, сравнимую с вязкостью легкой фракции машинного масла. Поэтому молекулы липидов, находящиеся в бислое, обладают довольно высокой подвижностью и могут совершать разнообразные движения - поступательные, вращательные и колебательные.
В случае липидов большой вклад в подвижность дают внутримолекулярные движения углеводородных цепей. Они происходят путем гош-транс-поворотов смежных звеньев углеводородной цепи вокруг связи С--С. Благодаря высокой конформационной подвижности цепей в них постоянно возникают изгибы и изломы, что приводит к нарушению регулярного расположения липидных молекул в бислое и к появлению в нем дефектов упаковки, называемых "кинки" и "джогги".
Внутримолекулярная подвижность различных участков липидной молекулы, находящейся в бислое, неодинакова. Наименьшей подвижностью обладает глицериновый остов молекулы, который служит как бы жестким "якорем", ограничивающим движения близлежащих участков углеводородных цепей. По направлению к середине бислоя подвижность цепей возрастает и становится максимальной в области концевых метильных групп. Довольно высокой недвижностью обладает также полярная головка липидной молекулы.
Помимо движений отдельных участков липидной молекулы относительно друг друга в жидкокристаллическом бислое происходят также движения всей молекулы как единого целого. Они включают: аксиальное вращение молекулы вокруг ее длинной оси, перпендикулярной к плоскости бислоя, маятниковые и поплавочные колебания молекулы относительно ее равновесного положения в бислое, перемещение молекулы вдоль бислоя (латеральная диффузия) и перескок ее с одной стороны бислоя на другой. Все эти движения совершаются с разными скоростями.
Аксиальное вращение липидных молекул происходит очень быстро с частотой порядка 107-108с-1, тогда как латеральная диффузия осуществляется гораздо медленнее. Тем не менее при среднем коэффициенте латеральной диффузии липидов ок. 10-8см, измеренном для многих биологических мембран, липидной молекуле потребуется всего 1 с, чтобы промигрировать от одного конца клетки до другого. Очень медленно протекает в липидном бислое флип-флоп. Обычно полупериод флип-флопа составляет величины порядка нескольких часов или даже дней. Однако в некоторых мембранах скорость флип-флопа может быть значительно выше (полупериод 1-2 мин), что объясняется участием определенных интегральных белков в переносе липидных молекул через мембрану.
Иммобилизация липидов может происходить в результате латерального фазового разделения, приводящего к образованию гелевой фазы, или при их взаимодействии с белками. Предполагается, что интегральные белки окружены пограничным слоем липидных молекул , подвижность которых ограничена или, по крайней мере, нарушена в результате контакта с неровной поверхностью белковой глобулы.
Внутримолекулярная динамика мембранных белков изучена меньше, чем липидов. Известно лишь, что боковые заместители на тех участках полипептидной цепи, которые погружены в билипидный слой, в значительной мере иммобилизованы. Многие мембранные белки способны легко диффундировать вдоль мембраны и обладают довольно высокой вращательной подвижностью. Но даже в случае самых подвижных белков измеряемые коэффициентом диффузии примерно на порядок ниже, чем для липидных молекул. Времена вращательной релаксации для интегральных белков лежат в диапазоне от 20 до 500 мкс, а коэф. латеральной диффузии (вдоль бислоя) варьирует от 7.10-9 до 10-12см2.с-1.
Для объяснения наиболее общих механизмов функционирования и регуляции живой клетки предлагается новый принцип - принцип жизненной динамики или динамики всех физико-химических процессов в ней. Принцип может быть сформулирован следующим образом: "Существование живой клетки невозможно без непрерывного, саморегулирующегося процесса распада и образования связей самой различной природы (ионных, ковалентных, водородных, а также ион-дипольных, ориентационных, индукционных, дисперсионных и гидрофобных взаимодействий) в системе биологических мембран, включающей и мембраны клеточных органелл".
Учитывая центральную роль биологических мембран в регуляции клеточного метаболизма, жизненная динамика должна включать всю совокупность процессов возникновения и распада внутри- и межмолекулярных взаимодействий и вызываемых ими движений молекул, сложных молекулярных комплексов и надмолекулярных образований в живой клетке. Сюда входят реакции свободнорадикального окисления липидов биологических мембран, которые вместе с процессами гидролиза богатых энергией соединений могут вызывать структурные и конформационные изменения в мембранах и приводить к латеральным (в плоскости мембраны) и трансферальным (перпендикулярно к ней) автоколебательным движениям структурных компонентов биомембран.
Такие автоколебательные движения обеспечивают трансмембранный транспорт биологически важных веществ и продуктов их взаимодействия с соединениями и ионами из окружающей клетку среды и с метаболитами, образующимися на обеих поверхностях биомембран, а также синхронизируют во времени и пространстве функционирование мембраносвязаных и свободных ферментов, находящихся в околомембранном пространстве.
Следует подчеркнуть особое значение автоколебаний биологических мембран для транспорта молекул, их ассоциатов и ионов. Колеблющиеся участки мембран могут выполнять при этом роль своеобразного насоса, в основании действия которого лежит в среднем направленное вибрационное перемещение частиц под действием в среднем ненаправленных периодических сил.
В целом, описанное выше сочетание процессов может обеспечивать их пространственно-временную упорядоченность, т. е., организацию живой клетки как целостной, открытой (непрерывно обменивающейся веществом, энергией и информацией с внешней средой), неоднородной, динамической системы, которая саморегулируется и самовоспроизводится. В такой системе компартментализация играет роль важнейшего фактора регуляции, с помощью которого осуществляется координация функций всех других регуляторных систем, включая генетические, и обеспечивается динамический порядок: все необходимое доставляется в соответствующее место, в определенное время и в необходимом количестве.
Значение организации для биологических систем А. Сент-Дьерди определил следующим образом: "Один из основных принципов биологии организация; это означает, что две системы, составленные вместе определенным образом, образуют новую единицу - систему, свойства которой не аддитивны и не могут быть описаны посредством свойств составляющих ее частей". Именно образование и поддержание организации живой клетки, как целостной, открытой, неоднородной, динамической системы, способной к саморегуляции и самовоспроизводству, представляет собой фундаментальное отличие жизненной динамики от любой другой совокупности физико-химических процессов. В ходе эволюции от одноклеточных к многоклеточным организмам со специализацией клеточных функций динамика отдельных клеток определила (и в этом объяснение термина "жизненная") динамику поведения образований более высоких уровней - тканей, органов и целостных организмов, как открытых целостных систем иерархического строения. При этом важнейшим связующим звеном в динамике всех систем организма являются процессы, которые протекают на плазматической мембране, отделяющей клетку от внешней среды. По словам Т. Уотермена: "Свойства плазматической мембраны лежат в основе специфического потока веществ и энергии в организм и из него, а, следовательно, и в основе характеристик организма, как открытой системы". При таком подходе генному аппарату клетки неизбежно остается роль фактора стабильности при ее самовоспроизводстве и функционировании или, говоря другими словами, роль нот, по которым исполняется "музыка жизни", характерная для данного организма. Следует особо подчеркнуть, что столь радикальный пересмотр взаимоотношений в системе "ядро-цитоплазма" в пользу главенства цитоплазмы не противоречит законам современной генетики, поскольку касается лишь механизмов экспрессии генов в клетках высших организмов и во многом углубляет представления целостной картины живого. Принцип жизненной динамики можно рассматривать как современный, конкретизированный для живых клеток, с учетом особенностей их состава и пространственного строения, вариант основного принципа термодинамического объяснения функционирования живых систем - принципа устойчивого неравновесия, сформулированного Э.С. Бауэром. В разработке этого варианта использован концептуальный аппарат термодинамики сильно неравновесных сложных открытых динамических систем, а также синергетики - науки о самоорганизации таких систем. Непрерывные физико-химические изменения молекул в процессах жизненной динамики приводят к изменению их дипольных моментов и, как следствие, к неравновесной поляризации структурных компонентов мембранной системы клеток (диэлектриков по своей физической природе). Это может обусловливать так называемый "биоэлектретный эффект", который проявляется в виде электростатических микрополей живых клеток. Генерируемые таким образом поля достаточны по своей величине для того, чтобы влиять в свою очередь на протекание процессов жизненной динамики. В результате возникает единый комплекс взаимосвязанных изменений химического и электрического состояния вещества, образующего живую клетку, так что воздействие на одну из составляющих комплекса неизбежно приводит к перестройке других составляющих, а следовательно, и комплекса в целом.
Виды биологических мембран и их функции. Мембранные белки. Виды и функции мембранных белков. Структура биологических мембран. Искусственные мембраны. Липосомы. Методы исследования структуры мембран. Физическое состояние и фазовые переходы в мембранах. презентация [9,0 M], добавлен 21.05.2012
Ультраструктура биологических и молекулярное строение цитоплазматических мембран, их основные функции. Физическая природа сил взаимодействия белков и липидов в их структурах. Методы изучения и исследования искусственных моделей цитоплазматических мембран. презентация [68,6 K], добавлен 06.06.2013
Назначение и характеристика функции мембран как невидимых пленок, окружающих клетки живых организмов. Изучение строения и анализ химического состава биологических мембран. Описание систем трансмембранного переноса веществ и мембранной передачи сигналов. реферат [110,5 K], добавлен 10.12.2015
Разнообразие и роль мембран в функционировании прокариотических и эукариотических клеток. Морфология мембран, их выделение. Дифракция рентгеновских лучей, электронная микроскопия. Разрушение клеток, разделение мембран. Критерии чистоты мембранных фракций. курсовая работа [1,2 M], добавлен 30.07.2009
Изобилие и сложность строения внутренних мембран как одна из основных особенностей всех эукариотических клеток. Понятие, свойства и функции мембран: барьерная, транспортная. Сущность и назначение ионных и кальциевых каналов, способы из исследования. реферат [207,1 K], добавлен 19.10.2014
Функции биологических мембран и их компонентов. Спектроскопические методы измерения скорости вращения липидов и белков внутри мембраны и скорости латеральной диффузии этих компонентов в плоскости мембраны. Использование спиновых или флуоресцентных зондов. реферат [1,6 M], добавлен 01.08.2009
Процесс образования мембран. Особенности экзоцитозного пути. Характерные особенности биосинтеза мембранных белков. Сигналы для сортировки белков в эукариотических клетках. Изменения липидного состава мембран в ответ на изменения условий окружающей среды. реферат [3,6 M], добавлен 03.08.2009
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Динамика биологических мембран. Подвижность белков и липидов реферат. Биология и естествознание.
Курсовая работа по теме Основы прикладной механики
Предмет и задачи археологии как учебной дисциплины
Петерсон 3 Класс 1 Часть Контрольные Работы
Реферат: Descartes Origins Of Knowledge Essay Research Paper
Понятие И Виды Терминов В Законодательстве Реферат
Дипломная работа по теме Сучасні напрямки природоохоронної пропаганди
Экономическая Оценка Приложения Диссертация
Реферат: Lung Cancer Essay Research Paper Lung cancer 2
Контрольная работа: по Экологии 16
Курсовая работа: Расчёт ректификационной колонны непрерывного действия
Курсовая работа по теме Механизация лесокультурных работ
Отчет по практике по теме Управление деятельностью организации ОАО 'Технопромэкспорт'
Реферат по теме BIOS: назначение и настройка
Контрольная работа по теме Общественный и государственный строй Киевской Руси
Реферат по теме Взаимоотношения политики с религией,наукой и искусством
Курсовая работа по теме Отчетность некоммерческих организаций
Контрольная Работа 10 Класс Логарифмические Уравнения
Курсовая Работа На Тему Принцип Межпредметных Связей При Решении Химических Задач. Разбор Основных Способов Решения Расчетных Задач
Курсовая Работа На Тему Принципы Библиотечного Дела
Сочинение На Тему Творчество Тургенева 10 Класс
Биологические процессы в живых организмах - Биология и естествознание контрольная работа
Вселенная и человек - Биология и естествознание реферат
Чрезвычайные ситуации природного характера - Безопасность жизнедеятельности и охрана труда контрольная работа


Report Page