Динамическое поведение мембран - Биология и естествознание курсовая работа

Динамическое поведение мембран - Биология и естествознание курсовая работа




































Главная

Биология и естествознание
Динамическое поведение мембран

Характерные частоты мембранных движений. Модели, использующиеся для анализа поступательного движения молекул внутри мембранного бислоя. Поступательное движение липидных и белковых молекул. Текучесть мембран и применение зондов. Латеральная диффузия.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пензенский государственный педагогический университет
на тему: Динамическое поведение мембран
Все биоструктуры по своей природе динамичны, и при изучении их функций нужно учитывать подвижность компонентов, из которых эти структуры состоят. Это относится к энзимам, нуклеотидам и, конечно, к липидным мембранам. В жидкостномозаичной модели, в центре которой находится представление о подвижности мембранных компонентов, мембрана рассматривается как некое липидное море, в котором свободно плавают глобулярные белки. За последние два десятилетия было опубликовано множество работ, посвященных количественным и качественным аспектам динамики мембранных компонентов. Во многих из них использовались спектральные методы и спектроскопия магнитного резонанса. В результате была создана весьма полезная физическая картина мембран, иллюстрирующая способы перемещения мембранных белков и липидов и их взаимодействия. Кроме того, были разработаны специальные методики, направленные на изучение динамических свойств мембран. Многое в этой области остается неясным, но уже определены основные направления будущих исследований.
Главным побудительным мотивом в изучении мембранной динамики служит ее связь с биологическими функциями мембран. Необходимым условием протекания одних ферментативных процессов является свободная диффузия мембраносвязанных компонентов в плоскости бислоя, другие же процессы могут осуществляться лишь при ограниченной подвижности мембранных компонентов. Между шероховатым и гладким эндоплазматическими ретикулумами, комплексом Гольджи и плазматической мембраной происходит быстрый обмен различными веществами, и тем не менее их состав и функции различаются. Чтобы понять суть этих и многих других биологических феноменов, необходимо прежде всего выяснить фундаментальные аспекты динамических свойств мембран. Поперечная асимметрия в распределении липидов, а возможно, и пассивная проницаемость бислоев очевидным образом связаны со скоростью трансмембранного флип-флоп-переноса липидов. Биогенез мембран зависит от скорости обмена липидов между различными мембранами. Скорость ферментативных реакций, протекающих с участием мембраносвязанных компонентов, зависит от скорости латеральной диффузии компонентов мембран. Наконец, липидно-белковые взаимодействия зависят от скорости, с которой происходит обмен липидами между ближайшим окружением белков и остальным объемом мембраны.
Диапазон движений, происходящих в мембране, весьма широк: от молекулярных колебаний с частотой порядка 10~ 14 с до трансмембранного флип-флоп-переноса липидов, характерное время которого может достигать несколько суток. На рис.1 в общем виде представлены некоторые из этих процессов, а также указаны временные пределы чувствительности различных биофизических методов. Величины, приведенные на рисунке, различаются на 20 порядков, поэтому термины «быстрый» и «медленный» не могут адекватно характеризовать различные типы движений. Из рисунка видно также, что одни методы позволяют получить статичную картину мембраны, поскольку характерное время соответствующих движений больше, чем время измерений, в то время как другие методы дают усредненную по времени картину, поскольку время перемещения молекул гораздо меньше, чем время измерения.
Рассмотрим два главных типа экспериментов. Первые основаны на использовании внутримембранных зондов для изучения текучести мембраны. Индикаторами физического состояния мембраны, а также характера липидно-белковых взаимодействий могут служить низкомолекулярные ЭПР-метки и флуоресцентные зонды.
Второй тип экспериментов направлен на прямое измерение латеральной диффузии мембранных белков или липидов и вращательной способности белков внутри бислоя. Исследуются также молекулярные взаимодействия в бислое, поскольку они влияют на динамику изучаемых молекул.
рис.1. - Характерные частоты мембранных движений.
рис.2 Типы движений молекул в мембране.
1 . П ростые модели движения мембранных компонентов
На рис. 2 представлены некоторые модели, использующиеся для анализа поступательного движения молекул внутри мембранного бислоя. Такие модели необходимы для интерпретации экспериментальных данных с точки зрения молекулярного движения.
1. Модель изотропного вращения предполагает, что молекула вращается с одинаковой вероятностью во всех направлениях и выделенная ось вращения отсутствует. Подобное вращение будет совершать сферическая частица в непрерывной жидкой среде. Эта концепция применялась при анализе движения малых растворимых в мембране гидрофобных меток, таких, как TEMPO (рис .2). Изотропная трехмерная диффузия сферической частицы рассматривается как случайное блуждание и характеризуется коэффициентом вращательной диффузии D Bp . Этот параметр определяется как среднеквадратичное угловое отклонение за время t :
2. Модель вращения в конусе описывает движение амфифильных меток, например производных жирных кислот. Эти молекулы можно представить в виде жестких стержней, один конец которых закреплен на поверхности мембраны. Их движение ограничивается конусом, который они описывают относительно некой оси, перпендикулярной плоскости мембраны.
3. Модель вращения в конусе используется в некоторых работах для описания движения ДФГ (см. рис.2) -- гидрофобного флуоресцентного зонда, представляемого в виде жесткого стержня. В данном случае эта модель, постулирующая существование предпочтительной ориентации для ДФГ, является, безусловно, слишком упрощенной, поэтому были предложены альтернативные модели.
4. В простейшей модели вращения белков белковая молекула представляется в виде цилиндра, закрепленного в мембране и способного вращаться только вокруг оси, перпендикулярной плоскости мембраны. Такое вращение анизотропно. Время релаксации, характеризующее это движение, обычно представляется в виде Ф\ = l /[ D Bp ]. Знак «II» указывает на то, что вращение происходит параллельно оси цилиндра.
5 и 6. Поступательное движение липидных и белковых молекул описывается как двумерная диффузия. Особый интерес представляет скорость обмена липидов, связанных с мембранными белками и находящихся в основном объеме мембраны. Изотропная двумерная диффузия характеризуется среднеквадратичным перемещением, происходящим за время t:
Табл. 1. Метки используемые при анализе движений в мембране.
2 .Текучесть мембран и применение мембранных зондов
Для обычной жидкости, какой является, например, вода, текучесть определяется как величина, обратная вязкости -- понятному и легко измеряемому физическому параметру. Вязкость характеризует трение, возникающее между соседними слоями жидкости, которые движутся с разными скоростями. Вязкость жидкости можно оценить, измерив скорость, с которой падает мраморный шарик в жидкости. В случае мембран термин «текучесть» обычно носит скорее качественный характер: имеется в виду сопротивление, которое оказывает мембрана различным типам перемещений в ней. Как правило, для измерения текучести наблюдают за движением спиновых или флуоресцентных зондов, включенных в мембрану. Зондами обычно являются небольшие молекулы, сравнимые по размерам с мембранными фосфолипидами. Некоторые из них представлены в табл .1. Теоретические основы использования спектроскопических методов для изучения молекулярных движений описаны в последующих разделах. Поскольку эти методы позволяют измерять как скорость движения, так и сопротивление этому движению, сведения о динамике и молекулярной упорядоченности даются вместе. Укажем некоторые моменты, существенные для количественной интерпретации данных по движению зондов внутри мембран.
1. Липидный бислой не является простой вязкой трехмерной гомогенной жидкостью, а представляет собой жидкую среду с низкой вязкостью, у которой состав и динамические свойства в центральной области сильно отличаются от состава и свойств периферических полярных участков.
2. Вращение зондов изотропно, как это имеет место в случае сферических частиц, не обладающих выделенной осью вращения. Часто зонды внутри мембраны имеют предпочтительную ориентацию и их движения ограничены определенными рамками (см., например, рис.2). Интерпретация экспериментальных данных зависит от модели, используемой для описания молекулярного движения.
3. Локализация зондов в мембране может различаться. Например, зонд может быть связан с белковой молекулой или белковыми агрегатами, располагаться внутри липидного домена, который может находиться в различных физических состояниях.
Для оценки текучести определяют спектроскопические параметры низкомолекулярных зондов. К таким параметрам относятся:
1) время вращательной корреляции спиновых меток или флуоресцентных зондов; 2) параметр упорядоченности; 3) стационарная анизотропия (или поляризация) флуоресцентных зондов; 4) коэффициент распределения зондов между мембранной и водной фазами. Ясно, что текучесть мембраны, оцененная только по одному параметру, не может служить достаточно полной характеристикой физического состояния мембраны. И все же измерение отдельных параметров весьма полезно, особенно для характеристики изменений физического состояния мембраны, обусловленных, например, изменениями температуры, давления, содержания холестерола, фосфолипидного или ионного состава. Обычно текучесть, измеряемая с помощью спиновых меток и флуоресцентных зондов, однозначно связана с упаковкой липидов в мембране (по крайней мере в модельных системах). Воздействия, приводящие к уменьшению площади, приходящейся на одну липидную молекулу, такие, как увеличение гидростатического давления, понижение температуры или добавление холестерола к фосфолипидам в жидкокристаллическом состоянии, вызывают уменьшение текучести. Это согласуется с теорией свободного объема, согласно которой текучесть и плотность связаны между собой обратной зависимостью. Чем более плотная упаковка характерна для мембраны, тем более ограниченным будет движение зонда. Такой подход приемлем при рассмотрении текучести большинства неассоциированных жидкостей.
3. Ф изиологическое значение текучести мембран
мембрана движение текучесть диффузия
Обычно биомембраны находятся в жидкокристаллическом состоянии, и, по-видимому, поддержание такого состояния очень важно для их функционирования. При переходе мембраны из жидкокристаллической фазы в фазу геля текучесть уменьшается примерно на два порядка. Структурные и динамические свойства бислоя, находящегося в фазе геля, совершенно несовместимы с организацией и правильным функционированием белковых компонентов в мембране. Впрочем, из этого правила имеются несколько исключений. Это, например, полукристаллические области пурпурных мембран (так называемые бляшки) Н. halobium , содержащие бактериородоп-син.
Возможно, наиболее яркое доказательство того, что текучесть, измеряемая с помощью спиновых меток или флуоресцентных зондов, играет важную физиологическую роль, получено в исследованиях по адаптации различных организмов к внешним экстремальным воздействиям. Подобные явления наблюдаются чаще всего при изучении термического стресса, когда микроорганизмы, растения, пойкилотермные или зимующие животные подвергаются воздействию низких температур. Адаптация заключается в изменении липидного состава мембран, а именно -- в увеличении содержания ненасыщенных липидов или уменьшении средней длины ацильной цепи. Подобные изменения ведут к уменьшению плотности упаковки липидов в мембране и, таким образом, поддерживают текучесть мембраны. Текучесть мембран может быть критичной для одной или более мембранных функций, но каков механизм этого феномена на молекулярном уровне -- неизвестно.
Коэффициент вращательной диффузии мембранного белка, находящегося в плоскости бислоя, D,, можно найти, представив белковую молекулу в виде цилиндра, который вращается вокрут одной оси (рис. 2). Пусть мембрана имеет вязкость г\ и толщину h , a радиус цилиндра равен а.
Часто наряду с <Ј к применяется время вращательной релаксации 0, = l/[Ј)j]. Для белковой молекулы радиусом 25 А, находящейся в мембране толщиной 40 А и вязкостью 5 пуаз, величина ф, по оценкам составляет около 35 мкс. С количественной точки зрения это уравнение, описывающее вращение белка в бислое, не вполне строго, но зависимость времени вращательной релаксации от эффективного радиуса вращающейся белковой молекулы сомнений не вызывает. Это оказалось весьма полезным для исследования процессов агрегации белков внутри мембраны. Методы, применяемые для изучения вращения белков в бислое, должны быть способны регистрировать времена вращения от 10 ~ 5 до 10 ~ 3 с. Обычный метод измерения деполяризации флуоресценции в этом случае непригоден, поскольку время жизни молекул в возбужденном состоянии составляет около 10 ~ 8 с, и в таком временном масштабе молекулы белков представляются неподвижными. Успешно использовались три метода.
1. К исследуемому белку присоединяют зонд, время жизни которого в возбужденном триплетном состоянии достаточно велико . Если метка жестко связана с белком, то для регистрации вращения белка можно использовать измерение анизотропии фосфоресценции. Для таких измерений оказались пригодными производные эозина (табл.1), поскольку время жизни эозина в триплетном состоянии составляет примерно 2 мс.
2. Известны случаи, когда сами молекулы белка содержат группы, переходящие при флеш-фотолизе в долгоживущее возбужденное состояние, параметры которого можно оценить с помощью дихроизма поглощения. В качестве примера можно привести родопсин и бактериородопсин, где используются возбужденное состояние связанного ретиналя и возбужденные состояния, наблюдающиеся при фотолизе комплексов цитохром--СО с использованием цитохром с- оксидазы и цитохрома Р450. Измерения можно проводить in situ (например, в митохондриальной мембране) или с очищенным белком, встроенным в фосфолипидные везикулы.
3. С помощью обычной ЭПР-спектроскопии не удается регистрировать вращения, характерная частота которых равна частоте вращения мембранных белков. Однако разработан специальный метод -- ЭПР с переносом насыщения, диапазон чувствительности которого очень широк -- от 10 ~ 7 до 10 " J с. Этот метод применялся при изучении вращения нескольких мембранных белков с ковалентно пришитыми к ним спиновыми метками. Недостаток метода состоит в том, что в случае анизотропного молекулярного движения спектры с трудом поддаются интерпретации.
Внутримембранные белки характеризуются широким спектром времен вращательной релаксации. На одном конце временной шкалы находится родопсин, который, по-видимому, свободно вращается в мембране наружного сегмента палочки сетчатки (0, = 20 мкс), а на другом -- бактериородописин, который образует в пурпурной мембране упорядоченную кристаллическую решетку и неподвижен. Для нескольких очищенных белков, встроенных в фосфолипидные везикулы, ф 1 зависит от концентрации. Это позволяет предположить, что при уменьшении соотношения липид/белок происходит самоагрегация этих белков. Такая картина характерна для бактериородопсина , цитохром с-оксидазы , белка полосы 3 , Са 2 + -АТРазы и цитохрома Р450. Возможно, именно с самоагрегацией связана гетерогенность, наблюдаемая, в частности, для белка полосы 3 в тенях эритроцитов и Са 2 + -АТРазы из саркоплазматического ретикулума. Вообще говоря, мембранные белки, по-видимому, вращаются в плоскости мембраны и скорость вращения согласуется с величиной, ожидаемой исходя из простой гидродинамической модели.
6. Модели описывающие латеральную дифузию
Для описания поступательной диффузии мембранных белков часто применяется гидродинамическая модель Саффмана и Дельбрюка. В этой модели рассматривается диффузия белка в тонком вязком слое; при этом считается, что растворитель является сплошной средой, т. е. молекулы растворителя малы по сравнению с диффундирующими молекулами. В рамках этой модели выполняется следующее соотношение:
где и з в -- вязкости мембранной и водной фаз соответственно, а -- радиус белковой молекулы, имеющей форму цилиндра, h -- толщина мембраны. Из модели следует, что скорость поступательной диффузии слабо зависит от размера молекулы, что подтверждается полученными к настоящему времени экспериментальными данными (табл2.).
Таблица коэффициенты латеральной диффузии
Липидные метки (ди1, NBD-PE) 1--5 100
Липидные метки 0,2--2 100 Рецептор для фактора роста нервов
Рецептор lgE (тучные клетки крысы) 0,03 50--80
В принципе подобные упругие деформации могут индуцировать специфические взаимодействия липидов с определенными белками для уменьшения искажений в структуре бислоя путем подгонки формы и размера этих молекул, а не за счет специфических химических взаимодействий. Однако эксперментальные данные на этот счет отсутствуют. Кроме того, простирающиеся на большие расстояния деформации могут влиять на белок-белковые ассоциаты. Экспериментальные подтверждения этому были получены в результате наблюдения с помощью электронной микроскопии за распределением бактериородопсина и родопсина в реконструированных фосфолипидных везикулах при разной толщине мембраны. Адаптированный к темноте родопсин действительно агрегировал в результате изменения наклона ацильных цепей липидов при внедрении фермента в бислой, слишком толстый для идеальной упаковки вокруг белка.
Чтобы до конца установить функции биологических мембран, необходимо изучить динамические свойства их компонентов. Для измерения скорости вращения липидов и белков внутри мембраны и скорости латеральной диффузии этих компонентов в плоскости мембраны были разработаны специальные спектроскопические методы. Они основаны на использовании спиновых или флуоресцентных зондов, которые встраиваются в мембрану или связываются с конкретными белками. Как правило, мембранные липиды могут свободно диффундировать в плоскости мембраны со скоростью, сравнимой со скоростью их диффузии в модельных мембранах. Напротив, латеральное движение интегральных белков в биологических мембранах часто ограничено. Это может быть связано с их ассоциацией с другими мембранными белками или с элементами цитоскелета либо внеклеточного матрикса. Многие белки способны свободно вращаться в плоскости мембраны, но это вращение также может быть затруднено из-за образования белковых агрегатов.
В любой момент времени с белком в биологической мембране соседствует значительная доля липидов. Слой липидов, непосредственно прилегающих к белку, называется пограничным. Эти липиды очень быстро (~ 10 7 с ~') обмениваются с основной массой липидов бислоя, и обычно вероятность нахождения тех или иных липидов по соседству с белком или в основной липидной фракции почти одинакова. Правда, для некоторых белков характерна определенная избирательность в связывании с липидами, но для всех известных случаев различие в связывании, измеряемое сродством липидов к пограничному слою, не превышает пяти. И даже такая слабая избирательность может приводить к тому, что липидный состав пограничного слоя будет отличаться от состава основной липидной фазы.
1. Р. Геннис «Биомембраны, молекулярная структура и функции» Москва «Мир» 1997 г.
2. В.К. Рубальченко «Структура и функции мембран» Киев 1988г.
3. Болдырев А.А. Лекции по биохимии мембран.
4. Финдлей Дж. Биохимия мембран .Методы. «Мир » 1999
Функции биологических мембран и их компонентов. Спектроскопические методы измерения скорости вращения липидов и белков внутри мембраны и скорости латеральной диффузии этих компонентов в плоскости мембраны. Использование спиновых или флуоресцентных зондов. реферат [1,6 M], добавлен 01.08.2009
Разнообразие и роль мембран в функционировании прокариотических и эукариотических клеток. Морфология мембран, их выделение. Дифракция рентгеновских лучей, электронная микроскопия. Разрушение клеток, разделение мембран. Критерии чистоты мембранных фракций. курсовая работа [1,2 M], добавлен 30.07.2009
Процесс образования мембран. Особенности экзоцитозного пути. Характерные особенности биосинтеза мембранных белков. Сигналы для сортировки белков в эукариотических клетках. Изменения липидного состава мембран в ответ на изменения условий окружающей среды. реферат [3,6 M], добавлен 03.08.2009
Основные факты о строении клеточной мембраны. Общие представления о проницаемости. Перенос молекул через мембрану. Облегченная диффузия, пассивный и активный транспорт. Уравнение Фика. Сущность понятия "селективность". Строение и функции ионных каналов. презентация [323,1 K], добавлен 19.10.2014
Белки и липиды как основные компоненты мембран. Фосфолипидный состав субклеточных мембран печени крысы. Длинные углеводородные цепи. Мембраны грамположительных бактерий. Пути биосинтеза мембранных липидов и механизмы их доставки к местам назначения. реферат [1,3 M], добавлен 30.07.2009
Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем. реферат [19,1 K], добавлен 20.12.2009
Методы изучения клетки: микроспектромериз, цитофотометрия, флуоресцентная и ультрафиолетовая микроскопия. Способы деления клеток, их сходство и различия. Функции биологических мембран, диффузия (пассивная и облегченная) и активный транспорт молекул. контрольная работа [39,9 K], добавлен 01.06.2010
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Динамическое поведение мембран курсовая работа. Биология и естествознание.
Сочинение Может Ли Человек Противостоять Окружающему Обществу
Почему Нужно Быть Толерантным Сочинение Аргументы
Сочинение по теме Сборный город всей темной стороны
Сочинение Моя Семья На Аварском Языке
Курсовая работа по теме Расчёт эффективности коротковолновой радиолинии на группе частот
Реферат: Организация учета основных средств
Сочинение Описание На Тему Лиса
Название Лабораторной Работы
Реферат по теме Системно-деятельностный подход: понятия, организация в учебном процессе
Курсовая работа: Управление человеческими ресурсами
Контрольная Работа На Тему Особенности Оформления И Оборудования Бара
Курсовая работа: Географическая характеристика Приморского края
Курсовая Уголовное Дело
Социальное Управление Курсовая
Сочинение по теме Михаил Булгаков. "Собачье сердце"
Реферат: Баланс интересов участников корпоративного управления
Реферат: Из опыта создания универсальных тестовых редакторов. Скачать бесплатно и без регистрации
Преступления Родиона Раскольникова Сочинение
Курсовая работа: политико-правовое развитие России в 1905-1907 гг.
Сочинение Отзыв По Репродукции Картины
Дыхание - Биология и естествознание творческая работа
Почва и здоровье населения - Безопасность жизнедеятельности и охрана труда реферат
Общая характеристика эмбрионального развития - Биология и естествознание курсовая работа


Report Page