Дидактические игры в процессе формирования математических знаний у детей 4-5 лет - Педагогика курсовая работа

Дидактические игры в процессе формирования математических знаний у детей 4-5 лет - Педагогика курсовая работа




































Главная

Педагогика
Дидактические игры в процессе формирования математических знаний у детей 4-5 лет

Особенности развития математических способностей, преимущества использования дидактических игр в процессе занятий. Методика обучения детей старшего дошкольного возраста основам математики посредством дидактических игр и задач, оценка их эффективности.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Дидактические игры в процессе формирования математических знаний у детей 4-5 лет
1. Дидактическая игра как средство формирования элементарных математических представлений
1.1 Специфика развития математических способностей
1.2 Дидактическая игра как метод обучения
1.3 Современные требования к математическому развитию детей дошкольного возраста
1.1 Специфика развития математических способностей
В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности - сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.
Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.
Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.
Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.
Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А.Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики. [6]
Крутецкий В.А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):
1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;
2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;
3) Способность к оперированию числовой и знаковой символикой;
4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;
5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;
6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);
7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;
8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;
9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.
1.2 Дидактическая игра как метод обучения
Н.А. Виноградова отметила, что вследствие возрастных особенностей детей дошкольного возраста в целях их обучения следует широко использовать дидактические игры, настольно-печатные игры, игры с предметами (сюжетно-дидактические и игры-инсценирования), словесные и игровые приемы, дидактический материал /10, 100/.
У истоков разработки современных дидактических игр и материалов стоят М. Монтессори и Ф. Фребель. М. Монтессори создала дидактический материл, построенный по принципу автодидактизма, который служил основой самовоспитания и самообучения детей на занятиях в детском саду с использованием специального дидактического материала («даров Фребеля»), систему дидактических игр по сенсорному воспитанию и развитию в продуктивной деятельности (лепка, рисование, складывание и вырезание из бумаги, плетение, вышивание). [8]
По замечанию А.К. Бондаренко, требование дидактики помогают отделить от общего хода воспитательного процесса то, что в образовательной работе связано с обучением /11, 12/. По классификации А.К. Бондаренко дидактические средства образовательной работы делятся на две группы: первая группа характеризуется тем, что обучение ведет взрослый, во второй группе обучающее воздействие передается дидактическому материалу, дидактической игре, построенной с учетом образовательных задач. [2]
Л.Н. Толстой, К.Д. Ушинский, в связи с критикой занятий по фребелевской системе, говорили, что там, где в ребенке видят лишь объект воздействия, а не существо, способное в меру своих детских возможностей мыслить самостоятельно, иметь свои суждения, способное что-то выполнить своими силами, воздействие взрослого теряет свою ценность; там же, где эти способности ребенка принимаются во внимание и на них опирается взрослый, эффект получается иной. [11]
В дидактической игре наиболее популярное средство дошкольного обучения, ребенок учится счету, речи и т.п., выполняя правила игры, игровые действия. В дидактических играх есть возможность формировать новые знания, знакомить детей со способами действий, каждая из игр решает конкретную дидактическую задачу по совершенствованию представлений детей.
Дидактические игры включаются непосредственно в содержание занятий как одно из средств реализации программных задач. Место дидактической игры в структуре занятия определяется возрастом детей, целью, назначением, содержанием занятия. Она может быть использована в качестве учебного задания, упражнения, направленного на выполнение конкретной задачи формирования представлений.
В младшей группе, особенно в начале года, все занятия должно быть проведено в форме игры. Дидактические игры уместны и в конце занятия с целью воспроизведения, закрепление ранее изученного. Так, в средней группе на занятиях по формированию элементарных математических представлений после ряда упражнений на закрепление названия основных свойств (наличие сторон, углов). Геометрических фигур может быть использована игра. Часто в практике обучения дошкольников дидактическая игра приобретает форму игрового упражнения. В этом случае игровые действия детей, результаты их направляются и контролируются педагогом.
Дидактические игры оправдывают себя в решении задач индивидуальной работы с детьми или с подгруппой в свободное от занятий время.
По словам Сорокиной А.И. ценность игры как воспитательного средства заключается в том, что, оказывая воздействие на каждого из детей в игре, воспитатель формирует не только привычки и нормы поведения детей в разных условиях и вне игры. [10]
Игра является и средством первоначального обучения, усвоения детьми и науки до науки. Руководя игрой, педагог воспитывает активное стремление детей что-то узнавать, искать, проявлять усилие и находить, обогащает духовный мир детей.
По словам Сорокиной А.И., дидактическая игра - это игра познавательная, направленная на расширение, усугубление, систематизацию представлений детей об окружающем, воспитание познавательных интересов, развитие познавательных способностей. [20] По словам Усовой А.П., дидактические игры, игровые задания и приемы позволяют повысить восприимчивость детей, разнообразить учебную деятельность ребенка, вносят занимательность.
Теорию и практику дидактической игры разрабатывали А.П. Усова, Е.И. Радина, Ф.Н. Блехер, Б.И. Хачапуридзе, З.М. Богуславская, Е.Ф. Иваницкая, А.И. Сорокина, Е.И. Удальцева, В.Н. Аванесова, А.Н. Бондаренко, Л.А. Венгер, установившие взаимосвязь обучения и игры, структуру игрового процесса, основные формы и методы руководства.
Дидактическая игра ценна только в том случае, если она содействует лучшему пониманию сущности вопроса, уточнению и формированию знаний детей. Таким образом, дидактическая игра - это целенаправленная творческая деятельность, в процессе которой обучаемые глубже и ярче постигают и явления окружающей действительности и познают мир. Благодаря играм удается сконцентрировать внимание и привлечь интерес даже у самых несобранных детей дошкольного возраста. Вначале увлекают только игровые действия, а затем и то, чему учит та или иная игра. Постепенно у детей пробуждается интерес к самому предмету обучения.
1.3 Современные требования к математическому разв итию детей дошкольного возраста
Дети четырёх лет активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.
Объём представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребёнка будет затруднительно. Активность ребёнка, направленная на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх.
Взрослый создаёт условия и обстановку, благоприятные для вовлечения ребёнка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развёртывании игры, действия принадлежит ребёнку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс её развития, способствует получению результата.
Ребёнка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: "Логические кубики", "Уголки", "Составь куб" и другие; из серии: "Кубики и цвет", "Сложи узор", "Куб-хамелеон" и другие.
Нельзя обойтись и без дидактических пособий. Они помогают ребёнку вычленить анализируемый объект, увидеть его во всём многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счётные палочки (палочки Кюизенера), модели и другие.
Играя и занимаясь с детьми, воспитатель способствует развитию у них умений и способностей:
- оперировать свойствами, отношениями объектов, числами; выявлять простейшие изменения и зависимости объектов по форме, величине;
- сравнивать, обобщать группы предметов, соотносить, вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;
- проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;
- рассказывать о выполняемом или выполненном действии, разговаривать со взрослыми, сверстниками по поводу содержания игрового (практического) действия.
Основные представления, познавательные и речевые умения, которые осваиваются детьми 4-5 лет в процессе овладения математическими представлениями:
Размер предметов: по длине (длинный, короткий); по высоте (высокий, низкий); по ширине (широкий, узкий); по толщине (толстый, тонкий) ; по массе (тяжёлый, лёгкий); по глубине(глубокий, мелкий); по объёму (большой, маленький).
Геометрические фигуры и тела: круг, квадрат, треугольник, овал, прямоугольник, шар, куб, цилиндр.
Структурные элементы геометрических фигур: сторона, угол, их количество.
Форма предметов: круглый, треугольный, квадратный. Логические связи между группами величин, форм: низкие, но толстые; найти общее и различное в группах фигур круглой, квадратной, треугольной форм.
Связи между изменениями(сменой) основания классификации (группировки) и количеством полученных групп, объектов в них.
Познавательные и речевые умения. Целенаправленно зрительно и осязательно двигательным способом обследовать геометрические фигуры, предметы с целью определения формы. Попарно сравнивать геометрические фигуры с целью выделения структурных элементов: углов, сторон, их количества. Самостоятельно находить и применять способ определения формы, размера предметов, геометрических фигур. Самостоятельно называть свойства предметов, геометрических фигур; выражать в речи способ определения таких свойств, как форма, размер; группировать их по признакам.
Отношения групп предметов: по количеству, по размеру и т.д. Последовательное увеличение (уменьшение) 3-5 предметов.
Пространственные отношения в парных направлениях от себя, от других объектов, в движении в указанном направлении; временные - в последовательности частей суток, настоящем, прошедшем и будущем времени: сегодня, вчера и завтра.
Обобщение 3-5 предметов, звуков, движение по свойствам - размеру, количеству, форме и др.
Познавательные и речевые умения. Сравнивать предметы на глаз, путём наложения, приложения. Выражать в речи количественные, пространственные, временные отношения между предметами, пояснить последовательное увеличение и уменьшение их по количеству, размеру.
Обозначение количества числом и цифрой в пределах 5-10. Количественное и порядковое назначение числа. Обобщение групп предметов, звуков и движений по числу. Связи между числом, цифрой и количеством: чем больше предметов, тем большим числом они обозначаются; сосчитывание как однородных, так и разнородных предметов, в разном расположении и т.д.
Сосчитывать, сравнивать по признакам, количеству и числу; воспроизводить количество по образцу и числу; отсчитывать.
Называть числа, согласовывать слова-числительные с существительными в роде, числе, падеже.
Отражать в речи способ практического действия. Отвечать на вопросы: "Как ты узнал, сколько всего?"; "Что ты узнаешь, если сосчитаешь?"
СОХРАНЕНИЕ (НЕИЗМЕННОСТЬ) КОЛИЧЕСТВА И ВЕЛИЧИН. Представления.
Независимость количества числа предметов от их расположения в пространстве, сгруппированности.
Неизменность размеров, объёма жидких и сыпучих тел, отсутствие или наличие зависимости от формы и размера сосуда.
Обобщение по размеру, числу, по уровню наполненности одинаковых по форме сосудов и т.д.
Познавательные и речевые умения зрительно воспринимать величины, количества, свойства предметов, сосчитывать, сравнивать с целью доказательства равенства или неравенства.
Выражать в речи расположение предметов в пространстве. Пользоваться предлогами и наречиями: справа, сверху, от..., рядом с..., около, в, на, за и др.; пояснить способ сопоставления, обнаружения соответствия.
Обозначение последовательности и этапности учебно-игрового действия, зависимости порядка следования объектов символом (стрелкой). Использование простейших алгоритмов разных типов (линейных и разветвленных).
Познавательные и речевые умения. Зрительно воспринимать и понимать последовательность развития, выполнения действия, ориентируясь на направление, указанное стрелкой.
Отражать в речи порядок выполнения действий:
Пятилетки проявляют высокую познавательную активность, они буквально забрасывают старших разнообразными вопросами об окружающем мире. Исследуя предметы, их свойства и качества, дети пользуются разнообразными обследовательскими действиями: умеют группировать объекты по цвету, форме, величине, назначению, количеству; умеют составить целое из 4-6 частей; осваивают счёт.
Дети радуются своим достижениям и новым возможностям. Они нацелены на творческие проявления и доброжелательное отношение к окружающим. Индивидуальный подход воспитателя поможет каждому ребёнку проявить свои умения и склонности в разнообразной увлекательной деятельности.
Специфика развития математических способностей. Формирование математических способностей детей дошкольного возраста. Логическое мышление. Роль дидактических игр. Методика обучения счету и основам математики дошкольников через игровую деятельность. реферат [58,0 K], добавлен 04.03.2008
Особенности дидактических средств дошкольного учреждения в процессе формирования математической подготовки. Роль дидактических игр в процессе математического развития детей. Методика обучения счету и основам математики через игровую деятельность. курсовая работа [51,3 K], добавлен 15.02.2014
Психофизиологические особенности детей старшего дошкольного возраста. Мышление как познавательный психический процесс. Специфика его развития у детей в онтогенезе. Формирование элементарных математических способностей дошкольников в процессе воспитания. дипломная работа [112,9 K], добавлен 05.11.2013
Психолого-педагогический аспект изучения в литературе использования дидактических игр в процессе обучения. Понятие дидактической игры. Особенности использования дидактических игр при обучении детей дошкольного возраста изобразительному искусству. контрольная работа [29,0 K], добавлен 21.12.2014
Характеристика музыкальных способностей детей старшего дошкольного возраста. Определение музыкально-дидактических игр. Изучение музыкальных способностей у детей дошкольного возраста в ходе музыкальных занятий с применением музыкально-дидактических игр. курсовая работа [31,8 K], добавлен 28.04.2013
Дидактические игры как форма воспитания и обучения дошкольников, их своеобразие, классификация и структура. Психолого-педагогические особенности произвольного внимания у детей старшего дошкольного возраста, его развитие в процессе дидактических игр. курсовая работа [67,0 K], добавлен 17.04.2014
Психологические особенности обучения детей элементарных математическим представлениям через дидактическую игру. Экспериментальная работа по формированию элементарных представлений у дошкольников в дидактических играх. Методика обучения основам математики. курсовая работа [80,8 K], добавлен 15.06.2017
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Дидактические игры в процессе формирования математических знаний у детей 4-5 лет курсовая работа. Педагогика.
Реферат: Нормандское завоевание
Сочинение: Сочинения по литературе шпаргалка
Курс Лекций На Тему Социология
Реферат: Грошова оцінка земель 4
Курсовая работа: История и последствия сельскохозяйственного освоения России. Скачать бесплатно и без регистрации
Курсовая работа по теме Исследование организационной структуры муниципального бюджетного образовательного учреждения дополнительного образования детей
Реферат: Иван Алексеевич Бунин. Скачать бесплатно и без регистрации
Реферат: Основные вехи социологии XIX века
Реферат: Бунт Родиона Раскольникова. Скачать бесплатно и без регистрации
Курсовая работа: Социальная стратификация
Реферат по теме Удивительный мир звука
Чувашская Республика Реферат
Экологические Проблемы В Строительстве Реферат
Отчет по практике по теме Организация процесса приготовления и приготовление горячей сложной кулинарной продукции
Сочинение Веселая Семейка
Контрольная Работа 2 По Алгебре 8
Реферат Установка Замедленного Коксования
Как Оформить Список Источников В Курсовой Работе
Дипломная работа по теме Учет и анализ расчетов с отчетными лицами
Контрольная работа по теме Характеристика общественного строя Галицко-Волынского княжества
Арабо-исламская культура - Культура и искусство контрольная работа
Привилегированные виды убийства - Государство и право курсовая работа
Женщины в древней Руси - История и исторические личности курсовая работа


Report Page