Десять наиболее важных научных открытий

Десять наиболее важных научных открытий

Будни учёного

Сегодня мы хотим рассказать вам, наши читатели, о десяти научных открытиях, которые если и не изменили ход развития нашей цивилизации, то хотя бы упростили нам жизнь.

Пенициллин

Первый в мире антибиотик

В 1928 году Александр Флеминг проводил рядовой эксперимент в ходе многолетнего исследования, посвященного изучению борьбы человеческого организма с бактериальными инфекциями. Вырастив колонии культуры Staphylococcus, он обнаружил, что некоторые из чашек для культивирования заражены обыкновенной плесенью Penicillium — веществом, из-за которого хлеб при долгом лежании становится зеленым. Вокруг каждого пятна плесени Флеминг заметил область, в которой бактерий не было. Из этого он сделал вывод, что плесень вырабатывает вещество, убивающее бактерии. В последствии он выделил молекулу, ныне известную как «пенициллин». Это и был первый современный антибиотик.

Принцип работы антибиотика состоит в торможении или подавлении химической реакции, необходимой для существования бактерии. Пенициллин блокирует молекулы, участвующие в строительстве новых клеточных оболочек бактерий — похоже на то, как наклеенная на ключ жевательная резинка не дает открыть замок. (Пенициллин не оказывает влияния на человека или животных, потому что наружные оболочки наших клеток коренным образом отличаются от клеток бактерий.)

В течение 1930-х годов предпринимались безуспешные попытки улучшить качество пенициллина и других антибиотиков, научившись получать их в достаточно чистом виде. Первые антибиотики напоминали большинство современных противораковых препаратов — было неясно, убьет ли лекарство возбудителя болезни до того, как оно убьет пациента. И только в 1938 году двум ученым Оксфордского университета, Говарду Флори (Howard Florey, 1898–1968) и Эрнсту Чейну (Ernst Chain, 1906–79), удалось выделить чистую форму пенициллина. В связи с большими потребностями в медикаментах во время Второй мировой войны массовое производство этого лекарства началось уже в 1943 году. В 1945 году Флемингу, Флори и Чейну за их работу была присуждена Нобелевская премия.

Благодаря пенициллину и другим антибиотикам было спасено бесчисленное количество жизней. Кроме того, пенициллин стал первым лекарством, на примере которого было замечено возникновение устойчивости микробов к антибиотикам.


Механические часы

Вы можете себе представить жизнь без часов?

Измерять, сверять, отсчитывать время нам приходится в жизни в самых разных сферах деятельности — технике, науке, в быту. Помогают нам в этом всевозможные приборы, общее название которым — часы. Время изобретения механических часов точно неизвестно. Существует версия, что их изобрел монах Герберт из Оверни, ставший впоследствии папой Римским Сильвестром II. И было это в конце X века, однако ничего конкретного об устройстве созданных им башенных часов для Магдебурга неизвестно, т.к. часы эти не сохранились. Первые упоминания о механических часах в Европе приходятся на рубеж XIII и XIV веков. Появление древнейших часовых механизмов в Англии относят ко 2-й половине XIII века, изобретателем первых часов в Париже считают Пьера Пипенара (около 1300 г.), но начало непрерывному изготовлению механических часов было положено в Италии лишь в начале XIV века. В России первые башенные часы установлены в Московском Кремле в 1404 году монахом Лазарем Сербиным.

Конструкция всех часов была примерно одинаковая. Главными узлами часового механизма были: двигатель; система зубчатых колес, являющаяся передаточным механизмом; регулятор для создания равномерного движения; распределитель или спусковой механизм; стрелочный механизм, а также механизм, предназначенный для заводки и перевода часов. Первые механические часы приводились в движение опускающимся грузом. В качестве приводного механизма был гладкий деревянный горизонтальный вал с намотанным на него канатом, к концу которого крепили каменную, а позже — металлическую гирю. Под тяжестью гири канат постепенно разматывался и начинал вращать вал, на котором было закреплено большое зубчатое колесо. Это колесо было в непосредственном сцеплении с колесами передаточного механизма. Вращение от вала через систему колес с зубцами передавалось основному (храповому) колесу, которое было соединено со стрелками, указывающими время. Для правильного измерения времени стрелка часов должна совершать обороты с одинаковой периодичностью. Если гиря будет опускаться свободно, то вал начнет вращаться ускоренно, а значит, каждый следующий оборот стрелка будет совершать быстрее.

С течением времени производство часов становилось сложнее. В них появилось много стрелок, дополнительные промежуточные колеса в передаточном механизме, разнообразная система боя. В 1657 году Х. Гюйгенс впервые собрал механические часы, используя маятник как регулятор хода часов. Суточная погрешность таких часов не превышала 10 секунд. Гюйгенса по праву считают создателем современных механических часов. Позже веревку с грузом заменит пружина, маятник сменился маленьким маховым колесом, колеблющимся около положения равновесия в одну и другую стороны. Так были изобретены карманные, а позже и наручные часы.


Винтовой насос

Замечательное детище Архимеда

Архимед, великий ученый древности, изобрел винтовое водоподъемное устройство, позже названное в его честь. Целью изобретения Архимеда было орошение земель. Это устройство поднимало воду с помощью вращающегося внутри трубы винта, но некоторое количество воды всегда стекало обратно, т. к. в те времена небыли известны эффективные уплотнения вала. В результате, была выведена зависимость между наклоном винта и подачей. При работе можно было выбрать между большим объемом поднимаемой воды или большей высотой подъема. Чем больше наклон винта, тем больше высота подачи при уменьшении производительности

При этом принцип работы механизма был очень похож на тот, по которому работают современные центробежные насосы. Характеристика насоса имеет аналогичную зависимость между напором и подачей. Из исторических источников мы знаем, что такие винтовые насосы работали при углах наклона от 37° до 45°. Они обеспечивали подъем воды на высоту от 2 до 6 м и имели максимальную подачу около 10 м3/ч.


Сила тяжести

F = gm, или сила тяжести, действующая на тело, прямо пропорциональна массе этого тела.

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он прогуливался яблоневым садом в имении своих родителей и вдруг увидел Луну в дневном небе. И вдруг на его глазах от ветки оторвалось и упало на землю яблоко.

Поскольку Ньютон в это время как раз работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, а значит, на него влияет какая-то сила, удерживающая его от того, чтобы сорваться с орбиты и полететь вдаль, в открытый космос. Здесь ему и пришло в голову, что, возможно, это одна и та же сила заставляет яблоко падать на землю, а Луна оставаться на околоземной орбите.

Результаты расчетов Ньютона теперь называют законом всемирного тяготения Ньютона.


Пастеризация

Метод предложен Луи Пастером в 1860-е годы и назван в его честь. Много лет Пастер занимался изучением процессов брожения и болезней вина, поскольку Франция является одним из крупнейших производителей вина в мире, эти вопросы были очень актуальными. В ходе исследований ученый установил, что болезни вина вызываются различными микроорганизмами. Для обезвреживания возбудителей болезней он предложил нагревать вино до 56 ° С, вкусовые свойства вина при такой температуре не терялись. Кроме виноделов эффективность этого метода в тогдашней Франции быстро оценили пивовары, которые начали применять его, чтобы увеличить срок годности пива. Таким образом возникла пастеризация, благодаря которой пищевая промышленность поднялась на качественно новый уровень, сейчас она является незаменимой при производстве некоторых продуктов.

Применяется в основном в пищевой промышленности, чтобы предотвращать преждевременную порчу продуктов, которые при нагревании до температуры кипения теряют свои свойства (молоко, пиво, вино, соки и т.д.). При этом погибают вегетативные формы бактерий, но споры бактерий такое нагревание выдерживают. После пастеризации такие продукты рекомендуется хранить при низких температурах, с целью предотвращения прорастанию бактериальных спор. Показатели температуры и времени пастеризации зависят от продукта, обрабатывается, и оборудования. Пастеризацией должен обеспечиваться надлежащий бактерицидный эффект (примерно 99,98%), кроме того, нужно максимально сохранить свойства продукта. Целью пастеризации является:

  • Уничтожение нежелательной микрофлоры, получение продукта, безопасного для употребления в санитарно-гигиеническом отношении
  • Разрушение ферментов сырого продукта, которые могут вызвать его преждевременное порчи
  • Изменение физико-химических свойств продукта для получения определенных свойств (органолептические свойства, вязкость и т.д.)

В зависимости от времени нагрева различают длительную пастеризацию (при 63 — 65 ° С в течение 30 минут), кратковременной (при 72 — 75 ° С с выдержкой 15 — 20 секунд), мгновенную (при 85 — 90 ° С без выдержки).


Паровой двигатель

Первое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии. Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться.

Реальная паровая турбина была изобретена намного позже, в средневековом Египте, турецким астрономом, физиком и инженером XVI века Такиюддином аш-Шами. Он предложил метод вращения вертела посредством потока пара, направляемого на лопасти, закреплённые по ободу колеса.

Паровая машина была создана испанским изобретателем Иеронимо Аянсом де Бомонт, изобретения которого повлияли на патент Т. Севери (см. ниже). Принцип действия и применение паровых машин были описаны также в 1655 году англичанином Эдвардом Сомерсетом. В 1663 году он опубликовал проект и установил приводимое в движение паром устройство для подъёма воды на стену Большой башни в замке Реглан (углубления в стене, где двигатель был установлен, были ещё заметны в 19-м столетии). Однако никто не был готов рисковать деньгами для этой новой революционной концепции, и паровая машина осталась неразработанной.

Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х в Париже он в сотрудничестве с голландским физиком Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нём. Видя неполноту вакуума, создаваемого при этом, Папен после приезда в Англию в 1680 году создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив. Система работала только как демонстрационная модель: для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Поэтому Папен считается изобретателем парового котла, проложив таким образом путь к паровому двигателю Ньюкомена. Однако конструкцию действующей паровой машины он не предложил. Папен также проектировал лодку, приводимую в движение колесом с реактивной силой в комбинации концепций Таки ад-Дина и Севери; ему также приписывают изобретение множества важных устройств, например, предохранительного клапана.

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Севери в 1698 году. На своё устройство Севери в 1698 году получил патент. Это был паровой насос без поршня, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы насоса иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт, изобретатель назвал его «другом рудокопа»


Электричество

А вы можете представить нашу жизнь без электричества?

Впервые электрический заряд обнаружил Фалес Милетский еще 600 лет до н. э. Он заметил, что янтарь, потёртый о кусочек шерсти, приобретает удивительные свойства притягивать легкие не электризованные предмета(пушинки и куски бумаги). Термин «электричество» впервые ввел английский ученый Тюдор Гилберт, в своей книге «О магнитных свойствах, магнитных телах и о большом магните — Земле». В своей книге он доказал, что свойством наэлектризовываться обладает не только янтарь, но и другие вещества. А в середине 17 века всем известный ученый Отто фон Герике создал электростатическую машину, в которой обнаружил свойство заряженных предметов отталкиваться друг от друга. Так начали проявляться основные понятия в разделе электричество. Об истории электричества.

Уже в 1729 г. Французский физик Шарль Дюфе установил существование двух типов зарядов. Он назвал такие заряды «стеклянным» и «смоляным», но вскоре, немецкий ученый Георг Лихтенберг, ввел в обиход понятие отрицательно и положительно заряженных зарядов. А в 1745 году был изготовлен первый в истории электрический конденсатор — так называемая Лейденская банка.

Но возможность сформулировать основные понятия и открытия в науке об электричестве удалось лишь только тогда, когда появились количественные исследования. Тогда началось время открытия основных законов электричества. Закон взаимодействия электронных зарядов был открыт в 1785 г. Французским ученым Шарлем Кулоном с помощью созданной им системы крутильных весов.

Практически в это же время, 1800 г., итальянский экспериментатор Вольт изобрёл первый в жизни человека источник постоянного тока — элементарный гальванический элемент. Стали известны великие открытия, связанные с работами Джоуля, Ома и Ленца, изучающие проявление электрического тока в цепи. Фарадей в 1831 и 1834 годах открывает электромагнитную индукцию и знаменитые законы электролиза.


ДНК

ДНК - основополагающее открытие в мире науки

ДНК как химическое вещество была выделена Иоганном Фридрихом Мишером в 1869 году из остатков клеток, содержащихся в гное. Он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты Освальда Эвери, Колина Маклауда и Маклина Маккарти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечает выделенная из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (эксперимент Херши — Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

В результате работы группы биохимика Эрвина Чаргаффа в 1949—1951 гг. были сформулированы так называемые правила Чаргаффа. Чаргаффу и сотрудникам удалось разделить нуклеотиды ДНК при помощи бумажной хроматографии и определить точные количественные соотношения нуклеотидов разных типов. Соотношение, выявленное для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказалось следующим: количество аденина равно количеству тимина, а гуанина — цитозину: А=Т, Г=Ц. Эти правила, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и правил Чаргаффа. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени от рака Розалинд Франклин, так как премия не присуждается посмертно.


Периодическая система химических элементов Д.И.Менделеева

Химия – без нее мы никуда

К середине XIX века было открыто 63 химических элемента, и ученые всего мира не раз предпринимали попытки объединить все существовавшие элементы в единую концепцию. Элементы предлагали разместить в порядке возрастания атомной массы и разбить на группы по сходству химических свойств. 

В 1863 году свою теорию предложил химик и музыкант Джон Александр Ньюленд, который предложил схему размещения химических элементов, схожую с той, что открыл Менделеев, но работа ученого не была принята всерьез научным сообществом из-за того, что автор увлекся поисками гармонии и связью музыки с химией. 

В 1869 году Менделеев опубликовал свою схему периодической таблицы в журнале Русского химического общества и разослал извещение об открытии ведущим ученым мира. В дальнейшем химик не раз дорабатывал и улучшал схему, пока она не приобрела привычный вид. 

Суть открытия Менделеева в том, что с ростом атомной массы химические свойства элементов меняются не монотонно, а периодически. После определенного количества разных по свойствам элементов, свойства начинают повторяться. Так, калий похож на натрий, фтор - на хлор, а золото схоже с серебром и медью. 

В 1871 году Менделеев окончательно объединил идеи в периодический закон. Ученые предсказал открытие нескольких новых химических элементов и описал их химические свойства. В дальнейшем расчеты химика полностью подтвердились - галлий, скандий и германий полностью соответствовали тем свойствам, которые им приписал Менделеев. 


Рентгеновское излучение

Рентгеновские лучи были обнаружены случайно в 1895 г. немецким физиком Вильгельмом Конрадом Рентгеном.

Трудно представить современную медицину без рентгеновского аппарата. И о рентгеновском излучении знает практически каждый из нас. Но были времена, когда о нём ничего не было известно.

8 ноября 1895 г. профессор физики и ректор Вюрцбургского университета Вильгельм Конрад Рентген проводил эксперимент по прохождению электрического разряда сквозь разреженные газы. На обоих концах закрытой стеклянной трубки, из которой был удалён практически весь воздух, располагались электроды, на которые подавалось высокое напряжение. Отрицательно заряженный электрод (катод) испускал в трубке электроны. Под действием разности потенциалов между электродами электроны ускорялись и ударялись о второй электрод. И всякий раз, когда электрический разряд проскакивал через трубку, вспыхивал зеленоватым светом находящийся поблизости экран из синеродистого бария. Отключив напряжение от трубки, Рентген увидел, что свечение также исчезло. Значит, источником неизвестных лучей являлась электронная трубка.

Неизвестные лучи оказались всепроникающими. Между трубкой и экраном Рентген помещал различные предметы: книгу, доску, лист бумаги. Неизвестные лучи легко проходили через них. Когда на пути лучей оказалась рука учёного, на световом экране он увидел силуэты костей своей руки. Более того, фотоматериалы, упакованные в светонепроницаемую бумагу и лежавшие неподалёку от электронной трубки, оказались засвеченными.

Природа открытых лучей была неизвестна, поэтому Рентген назвал их Х-лучами. Х-лучи были описаны им в рукописи «О новом виде лучей». А сама рукопись отправлена в Вюрцбургское Физико-медицинское общество. И уже 23 января 1896 г. Рентген делал научный доклад перед его членами. И после доклада под аплодисменты собравшихся 80-летний анатом Альберт фон Кёлликер предложил называть Х-лучи рентгеновскими лучами.

Нужно заметить, что ещё при жизни Рентгена удалось выяснить, что рентгеновские лучи представляют собой электромагнитное волновое излучение.

10 декабря 1901 г Вильгельму Конраду Рентгену, первому из учёных-физиков, была вручена Нобелевская премия «в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей, названных впоследствии в его честь». Денежную сумму Рентген завещал университету, в стенах которого он сделал своё величайшее открытие.


Report Page