Dead Spreading 4pda

Dead Spreading 4pda




πŸ”ž ALL INFORMATION CLICK HERE πŸ‘ˆπŸ»πŸ‘ˆπŸ»πŸ‘ˆπŸ»

































Dead Spreading 4pda


Dashboard
Publications
Account settings
Log out







Journal List



Front Bioeng Biotechnol



v.10; 2022



PMC9019734






Published online 2022 Apr 6. doi:Β 10.3389/fbioe.2022.854693
Ziyang Yang ,
1
,
2
Li Xie ,
2
, * Boqing Zhang ,
3
Gang Zhang ,
1
Fangjun Huo ,
2
Changchun Zhou ,
3
Xi Liang ,
2
Yujiang Fan ,
3
Weidong Tian ,
2
, * and Yinghui Tan
1
, *

1
Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China


2
State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China


3
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China


Edited by:
Roman Surmenev , Tomsk Polytechnic University, Russia
*Correspondence: Yinghui Tan, moc.kooltuo@2691hynat ; Li Xie, moc.361@1210leumas ; Weidong Tian, moc.anis@dwtrd

This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology
Received 2022 Jan 14; Accepted 2022 Feb 16.
Copyright Β© 2022 Yang, Xie, Zhang, Zhang, Huo, Zhou, Liang, Fan, Tian and Tan.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
GUID:Β 1860B6C2-902C-4561-953D-79627BF7C864
GUID:Β 9652FAFA-CE8D-4CC4-B1A0-3F18C3956213
GUID:Β C208553C-9346-4414-B841-F3F959806244
GUID:Β D4840F09-42B7-451B-939F-4FB84ABF8957
GUID:Β 6E73162D-064C-43F5-AEA2-8C274825C5C0
GUID:Β 0AE3F2AB-E62F-485A-941F-BD64D9F9721C
GUID:Β 08DAAE46-9B2B-41CE-B857-56028E601AEA
GUID:Β 783E2658-3D9D-4ED9-9370-DDEF451AB248
GUID:Β 3BB023AB-5C55-487C-90D5-86381774F61C
Keywords: bone regeneration, DLP 3D printing, biphasic calcium phosphate, polydopamine, bone morphogenetic protein-2 (BMP-2)

Aghali A. (2021). Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy . Cells
10 ( 11 ), 2993. 10.3390/cells10112993
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Boregowda S. V., Krishnappa V., Phinney D. G. (2016). Isolation of Mouse Bone Marrow Mesenchymal Stem Cells . Methods Mol. Biol.
1416 , 205–223. 10.1007/978-1-4939-3584-0_11
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Charbonnier B., Hadida M., Marchat D. (2021). Additive Manufacturing Pertaining to Bone: Hopes, Reality and Future Challenges for Clinical Applications . Acta Biomater.
121 , 1–28. 10.1016/j.actbio.2020.11.039
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Cheng C.-H., Chen Y.-W., Kai-Xing Lee A., Yao C.-H., Shie M.-Y. (2019). Development of Mussel-Inspired 3D-Printed Poly (Lactic Acid) Scaffold Grafted with Bone Morphogenetic Protein-2 for Stimulating Osteogenesis . J. Mater. Sci. Mater. Med.
30 , 78. 10.1007/s10856-019-6279-x
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Feng C., Wu Y., Cao Q., Li X., Zhu X., Zhang X. (2021). Effect of Hydrothermal Media on the In-Situ Whisker Growth on Biphasic Calcium Phosphate Ceramics . Ijn
16 , 147–159. 10.2147/ijn.s280130
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Feng P., Peng S., Shuai C., Gao C., Yang W., Bin S., et al. (2020).
In Situ Generation of Hydroxyapatite on Biopolymer Particles for Fabrication of Bone Scaffolds Owning Bioactivity . ACS Appl. Mater. Inter.
12 , 46743–46755. 10.1021/acsami.0c13768
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Fu Y., Cui S., Luo D., Liu Y. (2021). Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration . Nanomaterials (Basel)
11 ( 3 ), 789. 10.3390/nano11030789
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Gong L., Li J., Zhang J., Pan Z., Liu Y., Zhou F., et al. (2020). An Interleukin-4-Loaded Bi-layer 3D Printed Scaffold Promotes Osteochondral Regeneration . Acta Biomater.
117 , 246–260. 10.1016/j.actbio.2020.09.039
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Green D. W., Ben-Nissan B., Yoon K. S., Milthorpe B., Jung H.-S. (2017). Natural and Synthetic Coral Natural and Synthetic Coral Biomineralization for Human Bone Revitalization . Trends Biotechnol.
35 , 43–54. 10.1016/j.tibtech.2016.10.003
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Hauser D., Septiadi D., Turner J., Petri-Fink A., Rothen-Rutishauser B. (2020). From Bioinspired Glue to Medicine: Polydopamine as a Biomedical Material . Materials (Basel)
13 ( 7 ), 1730. 10.3390/ma13071730
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Hong H., Seo Y. B., Kim D. Y., Lee J. S., Lee Y. J., Lee H., et al. (2020). Digital Light Processing 3D Printed Silk Fibroin Hydrogel for Cartilage Tissue Engineering . Biomaterials
232 , 119679. 10.1016/j.biomaterials.2019.119679
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Jo S., Kang S. M., Park S. A., Kim W. D., Kwak J., Lee H. (2013). Enhanced Adhesion of Preosteoblasts inside 3DPCL Scaffolds by Polydopamine Coating and Mineralization . Macromol. Biosci.
13 , 1389–1395. 10.1002/mabi.201300203
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Kaushik N., Nhat Nguyen L., Kim J. H., Choi E. H., Kumar Kaushik N. (2020). Strategies for Using Polydopamine to Induce Biomineralization of Hydroxyapatite on Implant Materials for Bone Tissue Engineering . Int. J. Mol. Sci.
21 ( 18 ), 6544. 10.3390/ijms21186544
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Kim J. W., Yang B. E., Hong S. J., Choi H. G., Byeon S. J., Lim H. K., et al. (2020). Bone Regeneration Capability of 3D Printed Ceramic Scaffolds . Int. J. Mol. Sci.
21 ( 14 ), 4837. 10.3390/ijms21144837
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Kim S. E. S. E., Park K. (2020). Recent Advances of Biphasic Calcium Phosphate Bioceramics for Bone Tissue Regeneration . Adv. Exp. Med. Biol.
1250 , 177–188. 10.1007/978-981-15-3262-7_12
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Lee G. H., Makkar P., Paul K., Lee B. (2017). Development of BMP-2 Immobilized Polydopamine Mediated Multichannelled Biphasic Calcium Phosphate Granules for Improved Bone Regeneration . Mater. Lett.
208 , 122–125. 10.1016/j.matlet.2017.05.017
[ CrossRef ] [ Google Scholar ]
Lee H. A., Park E., Lee H. (2020). Polydopamine and its Derivative Surface Chemistry in Material Science: A Focused Review for Studies at KAIST . Adv. Mater.
32 ( 35 ), e1907505. 10.1002/adma.201907505
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Lee J. B., Maeng W. Y., Koh Y. H., Kim H. E. (2018). Porous Calcium Phosphate Ceramic Scaffolds with Tailored Pore Orientations and Mechanical Properties Using Lithography-Based Ceramic 3D Printing Technique . Materials (Basel)
11 ( 9 ), 1711. 10.3390/ma11091711
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Lee S. J., Lee D., Yoon T. R., Kim H. K., Jo H. H., Park J. S., et al. (2016). Surface Modification of 3D-Printed Porous Scaffolds via Mussel-Inspired Polydopamine and Effective Immobilization of rhBMP-2 to Promote Osteogenic Differentiation for Bone Tissue Engineering . Acta Biomater.
40 , 182–191. 10.1016/j.actbio.2016.02.006
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Lee W.-H., Loo C.-Y., Rohanizadeh R. (2014). A Review of Chemical Surface Modification of Bioceramics: Effects on Protein Adsorption and Cellular Response . Colloids Surf. B: Biointerfaces
122 , 823–834. 10.1016/j.colsurfb.2014.07.029
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Li Y., Shi Y., Duan S., Shan D., Wu Z., Cai Q., et al. (2014). Electrospun Biodegradable Polyorganophosphazene Fibrous Matrix with Poly(dopamine) Coating for Bone Regeneration . J. Biomed. Mater. Res.
102 , 3894–3902. 10.1002/jbm.a.35065
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Li Y., Wu R., Yu L., Shen M., Ding X., Lu F., et al. (2021). Rational Design of Nonstoichiometric Bioceramic Scaffolds via Digital Light Processing: Tuning Chemical Composition and Pore Geometry Evaluation . J. Biol. Eng.
15 , 1. 10.1186/s13036-020-00252-3
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Lin K., Sheikh R., Romanazzo S., Roohani I. (2019). 3D Printing of Bioceramic Scaffolds-Barriers to the Clinical Translation: From Promise to Reality, and Future Perspectives . Materials (Basel)
12 ( 17 ), 2660. 10.3390/ma12172660
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Liu Y., Ai K., Lu L. (2014). Polydopamine and its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical fields . Chem. Rev.
114 , 5057–5115. 10.1021/cr400407a
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Lynge M. E., Schattling P., StΓ€dler B. (2015). Recent Developments in Poly(dopamine)-Based Coatings for Biomedical Applications . Nanomedicine
10 , 2725–2742. 10.2217/nnm.15.89
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Ma H., Luo J., Sun Z., Xia L., Shi M., Liu M., et al. (2016). 3D Printing of Biomaterials with Mussel-Inspired Nanostructures for Tumor Therapy and Tissue Regeneration . Biomaterials
111 , 138–148. 10.1016/j.biomaterials.2016.10.005
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Meng X., Zhang J., Chen J., Nie B., Yue B., Zhang W., et al. (2020). KR-12 Coating of Polyetheretherketone (PEEK) Surface via Polydopamine Improves Osteointegration and Antibacterial Activity In Vivo
. J. Mater. Chem. B
8 , 10190–10204. 10.1039/d0tb01899f
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Morgan E. F., Unnikrisnan G. U., Hussein A. I. (2018). Bone Mechanical Properties in Healthy and Diseased States . Annu. Rev. Biomed. Eng.
20 , 119–143. 10.1146/annurev-bioeng-062117-121139
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Panagopoulos G. N., Mavrogenis A. F., Mauffrey C., LesenskΓ½ J., Angelini A., Megaloikonomos P. D., et al. (2017). Intercalary Reconstructions after Bone Tumor Resections: a Review of Treatments . Eur. J. Orthop. Surg. Traumatol.
27 , 737–746. 10.1007/s00590-017-1985-x
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Qiu W.-Z., Yang H.-C., Xu Z.-K. (2018). Dopamine-assisted Co-deposition: An Emerging and Promising Strategy for Surface Modification . Adv. Colloid Interf. Sci.
256 , 111–125. 10.1016/j.cis.2018.04.011
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Ricciardi B. F., Bostrom M. P. (2013). Bone Graft Substitutes: Claims and Credibility . Semin. Arthroplasty
24 , 119–123. 10.1053/j.sart.2013.07.002
[ CrossRef ] [ Google Scholar ]
Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., et al. (2017). Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives . Mater. Sci. Eng. C
78 , 1246–1262. 10.1016/j.msec.2017.05.017
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Ryu J. H., Messersmith P. B., Lee H. (2018). Polydopamine Surface Chemistry: A Decade of Discovery . ACS Appl. Mater. Inter.
10 , 7523–7540. 10.1021/acsami.7b19865
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Schmidleithner C., Malferrari S., Palgrave R., Bomze D., Schwentenwein M., Kalaskar D. M. (2019). Application of High Resolution DLP Stereolithography for Fabrication of Tricalcium Phosphate Scaffolds for Bone Regeneration . Biomed. Mater.
14 , 045018. 10.1088/1748-605x/ab279d
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Shang F., Yu Y., Liu S., Ming L., Zhang Y., Zhou Z., et al. (2021). Advancing Application of Mesenchymal Stem Cell-Based Bone Tissue Regeneration . Bioactive Mater.
6 , 666–683. 10.1016/j.bioactmat.2020.08.014
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Shao H., Ke X., Liu A., Sun M., He Y., Yang X., et al. (2017). Bone Regeneration in 3D Printing Bioactive Ceramic Scaffolds with Improved Tissue/material Interface Pore Architecture in Thin-wall Bone Defect . Biofabrication
9 ( 2 ), 025003. 10.1088/1758-5090/aa663c
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Shen C., Witek L., Flores R. L., Tovar N., Torroni A., Coelho P. G., et al. (2020). Three-Dimensional Printing for Craniofacial Bone Tissue Engineering . Tissue Eng. A
26 , 1303–1311. 10.1089/ten.tea.2020.0186
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Tan B., Tang Q., Zhong Y., Wei Y., He L., Wu Y., et al. (2021). Biomaterial-based Strategies for Maxillofacial Tumour Therapy and Bone Defect Regeneration . Int. J. Oral Sci.
13 , 9. 10.1038/s41368-021-00113-9
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Tang Q., Hu Z., Jin H., Zheng G., Yu X., Wu G., et al. (2019). Microporous Polysaccharide Multilayer Coated BCP Composite Scaffolds with Immobilised Calcitriol Promote Osteoporotic Bone Regeneration Both In Vitro and In Vivo
. Theranostics
9 , 1125–1143. 10.7150/thno.29566
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Wang P., Yu T., Lv Q., Li S., Ma X., Yang G., et al. (2019). Fabrication of Hydroxyapatite/hydrophilic Graphene Composites and Their Modulation to Cell Behavior toward Bone Reconstruction Engineering . Colloids Surf. B: Biointerfaces
173 , 512–520. 10.1016/j.colsurfb.2018.10.027
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Wang X., Peng X., Yue P., Qi H., Liu J., Li L., et al. (2020). A Novel CPC Composite Cement Reinforced by Dopamine Coated SCPP Fibers with Improved Physicochemical and Biological Properties . Mater. Sci. Eng. C
109 , 110544. 10.1016/j.msec.2019.110544
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Wen Y., Xun S., Haoye M., Baichuan S., Peng C., Xuejian L., et al. (2017). 3D Printed Porous Ceramic Scaffolds for Bone Tissue Engineering: a Review . Biomater. Sci.
5 , 1690–1698. 10.1039/c7bm00315c
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Wu C., Han P., Liu X., Xu M., Tian T., Chang J., et al. (2014). Mussel-inspired Bioceramics with Self-Assembled Ca-P/polydopamine Composite Nanolayer: Preparation, Formation Mechanism, Improved Cellular Bioactivity and Osteogenic Differentiation of Bone Marrow Stromal Cells . Acta Biomater.
10 , 428–438. 10.1016/j.actbio.2013.10.013
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Wu L., Zhou C., Zhang B., Lei H., Wang W., Pu X., et al. (2020). Construction of Biomimetic Natural Wood Hierarchical Porous-Structure Bioceramic with Micro/Nanowhisker Coating to Modulate Cellular Behavior and Osteoinductive Activity . ACS Appl. Mater. Inter.
12 , 48395–48407. 10.1021/acsami.0c15205
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Xie C., Ye J., Liang R., Yao X., Wu X., Koh Y., et al. (2021). Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration . Adv. Healthc. Mater.
10 ( 14 ), e2100408. 10.1002/adhm.202100408
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Xu M., Zhai D., Xia L., Li H., Chen S., Fang B., et al. (2016). Hierarchical Bioceramic Scaffolds with 3D-Plotted Macropores and Mussel-Inspired Surface Nanolayers for Stimulating Osteogenesis . Nanoscale
8 , 13790–13803. 10.1039/c6nr01952h
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Zeng Y., Yan Y., Yan H., Liu C., Li P., Dong P., et al. (2018). 3D Printing of Hydroxyapatite Scaffolds with Good Mechanical and Biocompatible Properties by Digital Light Processing . J. Mater. Sci.
53 , 6291–6301. 10.1007/s10853-018-1992-2
[ CrossRef ] [ Google Scholar ]
Zhang J., Huang D., Liu S., Dong X., Li Y., Zhang H., et al. (2019). Zirconia Toughened Hydroxyapatite Biocomposite Formed by a DLP 3D Printing Process for Potential Bone Tissue Engineering . Mater. Sci. Eng. C
105 , 110054. 10.1016/j.msec.2019.110054
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Zhang J., Jiang Y., Shang Z., Zhao B., Jiao M., Liu W., et al. (2021). Biodegradable Metals for Bone Defect Repair: A Systematic Review and Meta-Analysis Based on Animal Studies . Bioactive Mater.
6 , 4027–4052. 10.1016/j.bioactmat.2021.03.035
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Zhang L., Yang G., Johnson B. N., Jia X. (2019). Three-dimensional (3D) Printed Scaffold and Material Selection for Bone Repair . Acta Biomater.
84 , 16–33. 10.1016/j.actbio.2018.11.039
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Zhang M. M., Lin R., Wang X., Xue J., Deng C., Feng C., et al. (2020). 3D Printing of Haversian Bone-Mimicking Scaffolds for Multicellular Delivery in Bone Regeneration.
Sci. Adv.
6 ( 12 ), eaaz6725. 10.1126/sciadv.aaz6725
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Zhao D., Zhu T., Li J., Cui L., Zhang Z., Zhuang X., et al. (2021). Poly(lactic-co-glycolic Acid)-Based Composite Bone-Substitute Materials . Bioactive Mater.
6 , 346–360. 10.1016/j.bioactmat.2020.08.016
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Zhou P., Wu J., Xia Y., Yuan Y., Zhang H., Xu S., et al. (2018). Loading BMP-2 on Nanostructured Hydroxyapatite Microspheres for Rapid Bone Regeneration . Ijn
13 , 4083–4092. 10.2147/ijn.s158280
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Zhu G., Zhang T., Chen M., Yao K., Huang X., Zhang B., et al. (2021). Bone Physiological Microenvironment and Healing Mechanism: Basis for Future Bone-Tissue Engineering Scaffolds . Bioactive Mater.
6 , 4110–4140. 10.1016/j.bioactmat.2021.03.043
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
Zhu Y., Zhang K., Zhao R., Ye X., Chen X., Xiao Z., et al. (2017). Bone Regeneration with Micro/nano Hybrid-Structured Biphasic Calcium Phosphate Bioceramics at Segmental Bone Defect and the Induced Immunoregulation of MSCs . Biomaterials
147 , 133–144. 10.1016/j.biomaterials.2017.09.018
[ PubMed ] [ CrossRef ] [ Google Scholar ]
Articles from Frontiers in Bioengineering and Biotechnology are provided here courtesy of Frontiers Media SA

Green D. W., Ben-Nissan B., Yoon K. S., Milthorpe B., Jung H.-S. (2017). Natural and Synthetic Coral Natural and Synthetic Coral Biomineralization for Human Bone Revitalization . Trends Biotechnol.
35 , 43–54. 10.1016/j.tibtech.2016.10.003
[ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]

Aghali A. (2021). Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy . Cells
10 ( 11 ), 2993. 10.3390/cells10112993
[ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]

Panagopoulos G. N., Mavrogenis A. F., Mauffrey C., LesenskΓ½ J., Angelini A., Megaloikonomos P. D., et al. (2017). Intercalary Reconstructions after Bone Tumor Resections: a Review of Treatments . Eur. J. Orthop. Surg. Traumatol.
27 , 737–746. 10.1007/s00590-017-1985-x
[ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]

Shang F., Yu Y., Liu S., Ming L., Zhang Y., Zhou Z., et al. (2021). Advancing Application of Mesenchymal Stem Cell-Based Bone Tissue Regeneration . Bioactive Mater.
6 , 666–683. 10.1016/j.bioactmat.2020.08.014
[ PMC free article ]
Pussy Spread Hole
Lesbian Strapon Films
Sex Massage Dad

Report Page