Creusement de culs

Creusement de culs




🛑 TOUTES LES INFORMATIONS CLIQUEZ ICI đŸ‘ˆđŸ»đŸ‘ˆđŸ»đŸ‘ˆđŸ»

































Creusement de culs
Volume 16, Issue 5 , July 1974 , Pages M71-M77
2004, Journal of Volcanology and Geothermal Research
2004, Journal of Volcanology and Geothermal Research
2004, Earth and Planetary Science Letters
2003, Journal of Volcanology and Geothermal Research
2001, Earth and Planetary Science Letters
Copyright © 1974 Published by Elsevier B.V.
Ore Geology Reviews, Volume 77, 2016, pp. 82-96
Geochemistry, Volume 80, Issue 1, 2020, Article 125594
Ore Geology Reviews, Volume 141, 2022, Article 104592
A detailed mapping and data from borings support the conclusion that there is a late lava flow inside the Papenoo valley, the main valley of Tahiti island. This last volcanic manifestation which took place 400,000 years ago came after the phase of erosion corresponding to the Illinoian glacial period. It is one of the four phases of erosion followed by filling observed in the cross section of the Papenoo valley.
Une cartographie de détail ainsi que les données de sondage montrent une coulée de vallée comblant le lit de la Papenoo, principale riviÚre de Tahiti. Cette manifestation volcanique tardive s'est produite il y a 400 000 ans et a interrompu une phase d'érosion correspondant à l'épisode glaciaire de l'Illinoian. Au total, 4 phases d'érosion suivies de remblaiements sont observées dans l'étude du profil transversal de la vallée de la Papenoo.
A quantitative geomorphological study has been made on 27 river basins in Tahiti-Nui volcanic island (French Polynesia) to reconstruct the erosional evolution of a young oceanic island subjected to heavy tropical rainfall. Tahiti-Nui is composed of a main shield volcano cut by two huge landslides on each side of a main E–W rift zone. The northern landslide depression was rapidly buried by the construction of a second shield, the late activity of which overflowed the crest and then filled the southern landslide depression. The island is now volcanically inactive and is deeply dissected by erosion. The present geometries of the river basins are first compared using dimensionless parameters derived from a digital elevation model. The original volcanic surfaces are then reconstructed to estimate the volumes removed by erosion and determine the average rates of long-term erosion. The basins developed on the flanks of the main shield are wider, shallower, and gentler than the basins incising the post-landslide second shield, indicating a higher degree of evolution. Rainfall concentration on the windward (eastern) side of the island also contributed to increase the vertical lowering of the volcanic relief and the enlargement of the valleys. The magnitude of erosion, however, is neither directly linked with the age of the units incised nor with the differential amounts of rainfall. Erosion rates determined over the last 1 Myr range between 10 − 3 km 3 kyr − 1 and 0.25 km 3 kyr − 1 . The highest values occur in the basins incising the main E–W rift zone and/or the lateral rims of the northern and southern landslide depressions. Long-term dissection has thus been enhanced along the geological discontinuities of the eruptive system. Deep erosion was first constrained along the axis of the main E–W rift zone, where numerous dykes compartmentalize the volcanic structure into large unstable blocks. Dykes most probably acted as mechanical discontinuities along which shallow gravitational landslides recurrently occurred. Such mass-wasting episodes produced significant amounts of debris, partly preserved as highly indurated sedimentary breccias of various ages exposed at various locations. Subsequent dissection of Tahiti-Nui was enhanced to the north and to the south, leading to the rapid evolution of the Papenoo and Taharuu drainage systems over the last 500 kyr. Long-term dissection on Tahiti-Nui has been responsible for the removal of at least 350 km 3 of volcanic material from the surface, and for the partial exhumation of a shallow intrusive complex partly composed of coarse-grained plutonic rocks (gabbros and syenites) in the central part of the eruptive system. Structurally controlled erosion is thus a key component of landscape evolution on such high-relief oceanic tropical islands.
Gillot at al. (2004) question the conclusions of ClĂ©ment et al. (2002) about the occurrence of a recent debris avalanche event in Tahiti Nui volcano, together with their interpretation of the central depression of the island as the scar of a huge landslide. We show in this reply that this latter process is the only one capable of forming such a “horseshoe-shaped” depression. In addition, the brecciated deposits which cover the flat floor of this structure cannot be generated through another mechanism, such as fluviatile erosion.
Errors are quoted at 1σ. The ages measured in this study (Table 11, Fig. 3) generally confirm the previous radiometric data from Tahiti-Nui (e.g. [7,9,14,29]). The K/Ar determinations obtained on flows from the main shield volcano are in agreement with the available stratigraphic control (Fig. 4).
Geological mapping, accurate K/Ar dating and geochemical analyses of lavas allow a detailed reconstruction of the geological history of Tahiti-Nui Island (French Polynesia). The exposed volcanic activity is first characterized by the construction of a main shield from 1.4 Ma to 870 ka, with a maximum aerial eruptive rate around 2 km 3 /kyr. Lavas from this early building stage are alkaline, slightly silica-undersaturated, with 87 Sr/ 86 Sr and 143 Nd/ 144 Nd compositions rather constant and close to the enriched mantle II type. Vent locations were first concentrated along a main E–W rift zone, which was responsible for the lateral collapse of the northern and southern flanks of the main shield, around 0.87 Ma ago. The subsequent activity was first restricted to the northern depression, corresponding to an eruptive rate of about 5 km 3 /kyr in the period 850–760 ka. Significant variations in La/Sm, 87 Sr/ 86 Sr and 143 Nd/ 144 Nd occur in lavas erupted immediately after the main northern landslide, indicating a sudden increase in the extent of partial melting likely caused by the decompression subsequent to collapse. However, the later activity declined, and the lavas exhibit a gradual change toward strongly silica-undersaturated basanites, likely indicating a decreasing extent of partial melting of the upper mantle. The evolution of radiogenic isotope ratios over time indicates a change in the source toward more depleted compositions, until around 500 ka. Post-erosion volcanic activity, following an apparent hiatus of 240 kyr, exhibits similar major and trace element and isotope compositions. The volcano-structural and geochemical evolution of Tahiti-Nui and the overall alkaline character of the lavas from other eruptive complexes of the Society alignment suggest a relative weakness (low temperature and low eruptive rate) of the Society plume compared to the Hawaiian hot-spot.
Occurrences of debris avalanche deposits newly identified in Tahiti (Society Islands) and Ua Huka (Marquesas Archipelago) are described and interpreted here. In both islands, the breccias are located within horseshoe-shaped residual calderas. In Tahiti, the epiclastic formations, up to 500 m thick, lie on the floor of the central depression and in the valley of the northwards running Papenoo River. In Ua Huka, the breccias crop out within a depression limited by a semicircular crest in four bays along the southern coast. Their thickness is ca. 100 m. A few clasts collected in the Tahitian breccias and some rocks forming their substratum have been dated (K–Ar datings) and analysed (major and trace elements, Sr–Nd isotopes) for this study. Using these data, we show that the debris avalanche(s) occurred in Tahiti Nui at the end of the growth of the shield volcano (between 570 000 and 390 000 years ago), maybe in consequence of the emplacement of the plutonic body which occupies the central part of the caldera. In Ua Huka, the collapse took place nearly 3 Ma ago, between the construction of the shield volcano and that of the inner one. The southwards orientation of the caldera, like that of the neighbouring island Nuku Hiva, might reflect a preferential direction of weakness in the substratum of the central Marquesas.
In previous contributions [31,35], we have shown that azimuthal anisotropy can be strongly perturbed in the vicinity of hotspot structures; indeed, no clear seismic anisotropy has been observed to date at active ocean island hotspots. The ‘normal’ APM-parallel result at KOS is then particularly interesting since this very young island (1.4 Ma [16]) might have been expected to feature no azimuthal anisotropy, as is the case for Tahiti (∌1 Ma [36]) and the southern part of the Big Island of Hawaii [31,35]. The measurement at KOS suggests that any possible active member of the Caroline chain (yet to be discovered) is so distant and/or weak that the plume flow does not affect asthenospheric mantle fabrics beneath KOS.
Shear wave splitting measurements, in conjunction with studies of shear wave velocity structure, indicate that the Ontong–Java Plateau (OJP) large igneous province (LIP) has a thick, compositionally distinct root that diverts asthenospheric mantle flow beneath the Pacific plate. The OJP, the largest of Earth’s LIPs, stands 2 km above adjacent Pacific abyssal plains and is composed of mantle plume derived volcanics erupted at 122 and 90 Ma. Surface wave tomography of the Plateau reveals a seismically slow upper mantle root that extends approximately to 300 km depth. The thickness and juxtaposition of the Plateau and the mantle root imply that the OJP is the preserved ‘head’ of a rising mantle plume formed in situ when the LIP erupted. Thus, it is a far-traveled body currently moving northwestwards with the Pacific plate. Shear wave splitting at four seismic stations along the northern margin of the OJP varies systematically: the fast axis of seismic anisotropy at three stations on the NE OJP margin trend NW, parallel to hotspot-defined Pacific absolute plate motion; at a fourth station, on the NW margin of the Plateau, the fast shear wave trend is NE. Upper mantle flow directions delineated by the shear wave splitting could thus represent mantle flow diverted around the leading, northwestern face of the rheologically strong, chemically distinct OJP root. In sum, the Plateau and its deep root appear to be similar to continental tectosphere, except for contrasting seismic velocities.
We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the use of cookies .
Copyright © 2022 Elsevier B.V. or its licensors or contributors. ScienceDirectŸ is a registered trademark of Elsevier B.V.
ScienceDirectÂź is a registered trademark of Elsevier B.V.

People also downloaded these free PDFs
People also downloaded these free PDFs
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Download Free PDF Download PDF Download Free PDF View PDF
Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser .
Enter the email address you signed up with and we'll email you a reset link.
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

Travaux de la SociĂ©tĂ© d’orthopĂ©die et de traumatologie de l’Ouest (SOO). RĂ©union de Nantes, juin 2015. MĂ©moire original
Revue de Chirurgie Orthopédique et Traumatologique, Volume 103, Issue 6, 2017, p. 663
Journal of Surgical Research, Volume 202, Issue 1, 2016, pp. 188-195
Revue de Chirurgie Orthopédique et Traumatologique, Volume 104, Issue 5, 2018, pp. 415-419
Revue de Chirurgie Orthopédique et Traumatologique, Volume 103, Issue 3, 2017, pp. 227-230
Revue du Rhumatisme Monographies, Volume 86, Issue 2, 2019, pp. 84-91
Revue de Chirurgie Orthopédique et Traumatologique, 2021
© 2016 Elsevier Masson SAS. All rights reserved.
La position over the top du tunnel mĂ©taphysaire fĂ©moral lors de ligamentoplastie extra-physaire de LCA selon Clocheville semblerait ĂȘtre responsable d’une anisomĂ©trie nĂ©gative. Jusqu’à prĂ©sent, le suivi des enfants opĂ©rĂ©s selon cette technique pĂ©diatrique se limitait au dĂ©pistage d’une Ă©piphysiodĂšse iatrogĂšne et Ă  la recherche d’une instabilitĂ© clinique postopĂ©ratoire. L’objectif de cette Ă©tude Ă©tait de mesurer la laxitĂ© rĂ©siduelle par des tests objectifs, de quantifier la rĂ©cupĂ©ration musculaire, ainsi que d’évaluer la qualitĂ© de vie et la reprise des activitĂ©s sportives de ces patients.
Onze patients d’ñge moyen de 13,5 ans ont Ă©tĂ© revus au recul moyen de 2,1 ans. Ils ont Ă©tĂ© soumis Ă  des tests cliniques objectifs (arthromĂštre GnRB Âź et dynamomĂštre CON-TREX Âź ), ainsi qu’à des questionnaires subjectifs (IKDC et KOOS).
Aucune diffĂ©rence significative n’a Ă©tĂ© retrouvĂ©e entre genou sain et genou opĂ©rĂ©, que ce soit pour le GNRB Âź Ă  134 N ( p = 0,79), ou celui Ă  200 N ( p = 0,98). Le systĂšme Con-Trex Âź a permis de mesurer un pourcentage mĂ©dian de rĂ©cupĂ©ration du quadriceps de 80,7 % (52,2–114,5) concernant la puissance musculaire (60°/s) et de 81,2 % (51,6–109,6) pour la rĂ©ponse musculaire (180°/s). Le score IKDC subjectif mĂ©dian Ă©tait de 94,73/100 (73,68–98,93). Parmi nos patients, 72,7 % ont repris le sport en compĂ©tition.
Le manque de puissance de cette Ă©tude n’a pas permis de montrer de diffĂ©rence significative en termes de laxitĂ© rĂ©siduelle en position de dĂ©tente des transplants sur GnRB Âź , alors qu’un diffĂ©rentiel moyen de +0,4 mm Ă©tait observĂ©. Bien que des techniques pĂ©diatriques de ligamentoplasties transphysaires soient de plus en plus proposĂ©es, la technique de Clocheville reste pour nous une alternative chirurgicale sĂ©duisante chez les sujets les plus jeunes, sans risque majeur d’épiphysiodĂšse iatrogĂšne malgrĂ© son caractĂšre thĂ©oriquement anisomĂ©trique.
L’incidence des ruptures de ligaments croisĂ©s antĂ©rieurs (LCA) chez l’enfant aux cartilages de croissance ouverts est estimĂ©e Ă  350 à 400 nouveaux cas par an en France [1]. Le dĂ©veloppement de nouvelles activitĂ©s sportives et le niveau d’exigence du sport de haut niveau pourraient ĂȘtre Ă  l’origine de cette augmentation [2]. Le dĂ©terminisme de la lĂ©sion du LCA est fonction de l’ñge avec 90 % des lĂ©sions intra-corporĂ©ales du LCA survenant aprĂšs l’ñge de 12 ans [1], [3]. Alors que la place du traitement conservateur reste encore discutĂ©e [4], [5], la prĂ©sence d’une instabilitĂ© subjective, d’une laxitĂ© clinique et/ou d’une lĂ©sion mĂ©niscale imposent une chirurgie prĂ©coce [6], [7]. Depuis plus de 15 ans, de nombreuses Ă©quipes proposent des reconstructions par techniques transphysaires dont les modalitĂ©s pĂ©diatriques consistent en la rĂ©alisation de tunnels centrĂ©s [8], [9], verticaux [10], [11] et de petits diamĂštres [12]. Ils retrouvent des troubles de croissance faibles Ă  modĂ©rĂ©s, mais sur de petits effectifs [13], [14], [15], [16]. Aucune Ă©tude n’a cherchĂ© Ă  Ă©valuer objectivement et trĂšs prĂ©cisĂ©ment les laxitĂ©s rĂ©siduelles antĂ©ro-postĂ©rieures de ces ligamentoplasties, facteur pronostique majeur de survenue de lĂ©sions cartilagineuses et mĂ©niscales irrĂ©versibles. Le but de cette Ă©tude Ă©tait d’évaluer la rĂ©cupĂ©ration fonctionnelle des patients opĂ©rĂ©s d’une ligamentoplastie de Clocheville Ă  l’aide de questionnaires subjectifs, de mesurer leur laxitĂ© rĂ©siduelle et quantifier la rĂ©cupĂ©ration musculaire avec l’hypothĂšse que la laxitĂ© des genoux opĂ©rĂ©s Ă©tait supĂ©rieure Ă  celle des genoux sains controlatĂ©raux du fait de l’anisomĂ©trie du transplant.
Onze patients ont Ă©tĂ© inclus dans cette Ă©tude rĂ©trospective sur 12 opĂ©rĂ©s entre janvier 2008 à dĂ©cembre 2013. Pendant cette pĂ©riode, tous les enfants prĂ©sentant une rupture du LCA Ă  cartilages de croissance ouverts ont Ă©tĂ© opĂ©rĂ©s selon la technique de ligamentoplastie extra-physaire de Clocheville [17]. Les suites opĂ©ratoires Ă©taient marquĂ©es par une immobilisation plĂątrĂ©e par cruro-pĂ©dieux de 45 jours, permettant la consolidation de la tranchĂ©e tibiale Ă©piphysaire garante d’une bonne stabilitĂ©
La cohorte comportait 10 garçons pour une fille d’un Ăąge moyen de 13,5 ans (11,5–16,2). Le recul moyen aprĂšs la chirurgie Ă©tait de 2 ans et 1 mois (9 mois–5 ans 11 mois). Les enfants ont Ă©tĂ© opĂ©rĂ©s entre la 9 e et la 20 e semaine suivant une rupture du LCA.
Sur les IRM au moment du diagnostic, les lésions méniscales rencontrées étaient au nombre de 4 sur les 11 patients (36,4 %), trois portant sur le ménisque médial et une sur le ménisque latéral. Un seul cas a nécessité une suture par la technique
L’évaluation fonctionnelle subjective a permis de rapporter un score IKDC subjectif mĂ©dian trĂšs satisfaisant de l’ordre de 94,7 %. Ce rĂ©sultat est semblable aux 94 % que Bonnard et al. [20] ont retrouvĂ© sur une sĂ©rie de 57 cas de ligamentoplasties de Clocheville au recul moyen de 2 ans. Une seule autre Ă©tude de plus de 40 enfants [1] rapportait un IKDC moyen en dessous de nos rĂ©sultats de l’ordre de 92 % sur un total de 102 enfants dont 63 ont Ă©tĂ© opĂ©rĂ©s selon la technique de Clocheville.
Le GnRB Âź a permis de m
Échangistes amateurs en plan à trois
Partouze brésilienne en pleine nature
Une blonde se prend une grosse

Report Page