Что такое информация?

Что такое информация?

@stupidhomo

Согласно распространённым представлениям, информация – это сведения независимо от формы их представления или решение проблемы неопределённости. В физике информация – это мера упорядоченности системы. В теории информации, определение этого термина следующее: информация – это данные, биты, факты или понятия, набор значений. Все эти понятия размыты и неточны, более того, я считаю, что немного ошибочны. 

В доказательство этого выдвинем тезис — информация сама по себе бессмысленна. Что такое число “3”? Или что такое буква “А”? Символ без приписанного значения. Но что такое число “3” в графе группы крови? Это значение, которое спасет жизнь. Оно уже влияет на стратегию поведения. Пример, доведенный до абсурда, но не теряющий своей значимости. Дуглас Адамс написал “Путеводитель для путешествующих автостопом по галактике”. В этой книге, созданный квантовый компьютер должен был ответить на главный вопрос жизни и Вселенной. В чем смысл жизни и Вселенной? Ответ был получен спустя семь с половиной миллионов лет непрерывных вычислений. Компьютер заключил, многократно проверив значение на правильность, что ответ был “42”.

Приведённые примеры дают понять, что информация без внешней среды, в которой она находится (контекста), ничего не значит. Число “2” может означать количество денежных единиц, больных эболой, счастливых детей или быть показателем эрудированности человека в каком-то вопросе.

набор значений дает смысл только в тесной связке с внешней средой

Для дальнейшего доказательства перейдем в мир биологии: листья растений часто имеют форму полукруга и сперва как бы поднимаются вверх, расширяясь, но после определенной точки преломления, тянутся вниз, сужаясь. В ДНК, как в главном носители информации или значений, нет гена, который кодировал бы их такую тягу вниз, после определенной точки. То, что лист растения тянется вниз, проделки гравитации. 

Сама по себе ДНК, что у растений, что у млекопитающих, что уже у упомянутого Homo Sapiens, несет мало информации, если вообще это делает. ДНК — это набор значений в определенной среде. ДНК, в основном, несет факторы транскрипции, то что должно быть активировано определенной внешней средой. Помести ДНК растения/человека в среду с другой атмосферой или гравитацией, и на выходе получится другой продукт. Поэтому передавать инопланетным формам жизни нашу ДНК для исследовательских целей — довольно глупое занятие. Вполне возможно, в их среде, ДНК человека вырастет в нечто, что более ужасающе, чем двуногий прямоходящий примат с оттопыренным большим пальцем и идеями о равенстве.

Их две, а ты один

Информация — это значения/данные/биты/материя в любой форме и в непрерывной связи с окружающей средой, системой или контекстом. Информация не существует без факторов внешней среды, системы или контекста. Только в неразрывной связке с этими условиями, информация способна передавать смыслы. Говоря языком математики или биологии, информация не существует без внешней среды или систем, на переменные которых она оказывает влияние. Информация всегда является придатком тех обстоятельств, в которых она перемещается. В этой статье будут рассмотрены основные идеи теории информации. Труды интеллектуальной деятельности Клода Шеннона, Ричарда Фейнмана. 

Отличительной особенностью вида является способность создавать абстракции и выстраивать закономерности. Представлять одни явления через другие. Мы кодируем. Фотоны на сетчатке глаза создают картинки, колебания воздуха преобразовываются в звуки. Определенный звук мы связываем с определенной картинкой. Химический элемент в воздухе, своими рецепторами в носу, мы интерпретируем, как запах. Через рисунки, картинки, иероглифы и звуки мы можем связывать события и передавать информацию. 

вот он собственно говоря и кодирует твою реальность

Подобное кодирование и абстракции не стоит недооценивать, достаточно только вспомнить, насколько сильно оно влияет на людей. Кодировки способны одержать верх над биологическими программами, человек ради идеи (картинки в голове, которая определяет стратегию поведения) отказывается от передачи копий своих генов дальше. Или вспомнить всю мощь физических формул, позволивших отправить представителя вида в космос. Химические уравнения, которые помогают лечить людей и так далее. Более того, мы можем кодировать то, что уже закодировано. Простейшим примером может послужить перевод с одного языка на другой. Один код представляется в форме другого. Простота трансформации, как главный фактор успешности этого процесса, позволяет делать его бесконечным. Можно перевести выражение с японского на русский, с русского на испанский, с испанского на двоичную систему, с нее в азбуку Морзе, после представить это в виде шрифта Брайля, потом в форме компьютерного кода, а после в виде электрических импульсов пустить это прямо в мозг, где он декодирует сообщение. Совсем недавно сделали обратный процесс и декодировали активность мозга в речь.

зафигачили в картинку выше электроды и считали всю твою уникальность

В период от сорока до двадцати тысяч лет назад первобытные люди начали активно кодировать информацию в виде речевых или жестовых кодов, наскальных живописей. Современные люди, наблюдая первые наскальные рисунки, пытаются определить (декодировать) их смысл, поиск смыслов — это еще одна отличительная черта вида. Воссоздавая контекст по определённым маркерам или остаткам информации, современные антропологи пытаются понять быт первобытных людей. Квинтэссенция процесса кодирования воплотилась в виде письменности.

Письменность, разрешила проблему потери информации при ее передаче не только в пространстве, но и во времени. Иероглифы цифр позволяют кодировать вычисления, слова предметы и т.д. Однако, если с точностью проблема решена более-менее эффективно, если конечно же оба участника процесса коммуникации используют одинаковые условные соглашения на трактовку и процесс декодирования одних и тех же символов (иероглифов), то со временем и скоростью передачи печатная письменность потерпела неудачу. Для решения проблемы скорости были изобретены системы радио и телекоммуникаций. Ключевым этапом развития передачи информации можно считать две идеи. Первая — цифровые каналы связи, а вторая — развитие математического аппарата. Цифровые каналы связи решили проблему в скорости передачи информации, а математический аппарат в его точности. 

Любой канал имеет определенный уровень шумов и помех, благодаря которым информация приходит с помехами (набор значений и иероглифов искажен, теряется контекст) или вообще не приходит. По мере развития технологий, количество шумов в цифровых каналах связи уменьшалось, но никогда не сводилось к нулю. По мере увеличения расстояния вообще увеличивалось. Ключевая проблема, которую необходимо решить при потере информации в цифровых каналах связи, была обозначена и решена Клодом Шенноном в 1948 году, а также придуман термин бит.

Звучит она следующим образом: - “Пусть источник сообщений имеет энтропию (Н) на одну секунду, а (С) — пропускная способность канала. Если H<С или Н=С, то возможно такое кодирование информации, при котором данные источника будут переданы через канал со сколь угодно малым количеством ошибок”.

а тебя играть в эту игру не позвали

Данная формулировка проблемы является причиной бурного развития теории информации. Основные проблемы, которые она решает и пробует решить, сводятся к тому, что цифровые каналы, как уже упоминалось выше, имеют шумы. Или сформулируем следующим образом – “ отсутствует абсолютная надежность канала в передачи информации». Т.е. информация может теряться, искажаться, наполняться ошибками из-за воздействия окружающей среды на канал передачи информации.

Клод Шеннон, выдвинул ряд тезисов, из которых следует, что возможность передачи информации без потерь и изменений в ней, т.е. с абсолютной точностью, существует в большинстве каналов с шумами. По сути он разрешил Homo Sapiens не тратить усилия на улучшение каналов коммуникации. Вместо этого он предложил разрабатывать более эффективные схемы кодирования и декодирования информации. Представлять информацию в виде 0 и 1. Идею можно расширить до математических абстракций или языкового кодирования.

Продемонстрировать эффективность идеи можно на примере. Ученый наблюдает за поведением кварков на адронном коллайдере, свои данные он заносит в таблицу и анализирует, выводит закономерность в виде формул, формулирует основные тенденции в виде уравнений или записывает в виде математических моделей, факторы влияющие на поведение кварков. Ему необходимо передать эти данные без потерь.

Перед ним встает ряд вопросов. Цифровой канал связи использовать или передать через своего помощника или позвонить и лично все рассказать? Времени остается критически мало, а передать информацию необходимо срочно, поэтому электронная почта отметается. Помощник — абсолютно ненадежный канал связи с вероятностью возникновения шумов, близкой к бесконечности. В качестве канала связи он выбирает позвонить. 

там в середине точка, это атом, до фотки кварка Homo пока не дошли

Насколько точно он сможет воспроизвести данные таблицы? Если в таблице одна строка и два столбца, то довольно точно. А если там десять тысяч строк и пятьдесят столбцов? Вместо этого он передает закономерность, закодированную в виде формулы. Если бы он был в ситуации, когда может передать таблицу без потерь и был уверен, что другой участник процесса коммуникации придет к тем же закономерностям, а также время не являлось бы фактором, оказывающим влияние, то вопрос был бы лишен смысла. Однако, выведенная в качестве формулы закономерность, уменьшает количество времени на декодирование, меньше подвержена трансформациям и шумам при передаче информации.

Примеров подобных кодировок по ходу будет приведено многократное количество раз. Каналом связи можно считать диск, человека, бумагу, спутниковую антенну, телефон, кабель, по которому протекают сигналы. Кодировка не только устраняет проблему потери информации, но и проблему ее объемов. С помощью кодирования можно сокращать размерность, уменьшать количество информации. После прочтения книги, вероятность пересказать книгу без потерь информации стремится к нулю, при отсутствии синдрома саванта. Закодировав (сформулировав) основную идею книги в форме определенного высказывания, мы представляем ее краткий обзор.

Основная задача кодирования заключается в укороченном формулировании исходного сигнала без потери информации для его передачи на большое расстояние вне времени другому участнику коммуникации, таким образом, что участник смог его эффективно декодировать. Веб-страница, формула, уравнение, текстовый файл, цифровое изображение, оцифрованная музыка, видеоизображение — это все яркие примеры кодировок.

Проблемы точности передачи, расстояния, времени, процесса кодирования были решены в той или иной степени и это позволило создавать информации в разы больше, чем человек способен воспринять, находить закономерности, которые будут еще долгое время незамеченными. Появился ряд других проблем. Где хранить такой объем информации? Как хранить? Современное кодирование и математический аппарат, как оказалось, не совсем решает проблемы с хранением. Есть предел укорачивания информации и предел ее кодировки, после которой декодировать значения обратно не представляется возможным.

Как было уже упомянуто выше, набор значений без контекста или внешней среды, информации уже не несет. Можно однако кодировать по отдельности информацию о внешней среде и наборе значений, а после совмещать в форме определенных индексов и декодировать сами индексы, однако первоначальные значения о наборе значений и внешней среды, все равно нужно где-то хранить. Были предложены замечательные идеи, которые и сейчас используются повсеместно, но они будут рассмотрены в другой статье. 

Забегая вперед, можно привести пример того, что не обязательно описывать всю внешнюю среду, можно формулировать только условия ее существования в виде законов и формул. Что такое наука? Наука – это высшая степень мимикрии над природой. Научные достижения – это абстрактное воплощение реально существующих явлений. Одно из решений проблемы хранения информации было описано в очаровательной статье Ричарда Фейнмана “Там внизу полным-полно места: приглашение в новый мир физики”.

Эта статья часто считается тем трудом, который положил начало развитию нанотехнологиям. В ней, физик предлагает обратить внимание на удивительные особенности биологических систем, как хранилищ информации. В миниатюрных и крошечных системах заключено невероятно много данных о поведении — то, как они хранят и используют информацию, ничего кроме восхищения вызвать не может. Если говорить о том, насколько много могут хранить информации биологические системы, то журнал Nature произвел оценку, что всю информацию, значения, данные и закономерности мира, можно записать в ДНК-хранилище весом до одного килограмма. Вот и весь вклад во вселенную, один килограмм материи. ДНК — чрезвычайно эффективная структура по части хранения информации, которая позволяет хранить и использовать наборы значений в огромных объемах.

Если кому-то интересно, то вот статья, которая рассказывает, как записать в ДНК-хранилище фотографии котов и вообще любую информацию, даже песни Скриптонита (крайне глупое использование ДНК).

Здесь закодировано то, что ты слушаешь херню

Фейнман, обращает внимание на то, какое количество информации закодировано в биологических системах, что в процессе существования, они не только кодируют информацию, но и меняют структуру материи на основе этого. Если до этого момента все предложенные идеи основывались только на кодировки набора значений или информации, как таковой, то после этой статьи вопрос стоял уже в кодировке внешней среды в пределах отдельных молекул. Кодировать и изменять материю на уровне атомов, заключать в них информацию и так далее.

Например, он предлагает создавать соединительные провода диаметром в несколько атомов. Это в свою очередь позволит увеличить количество составных частей ЭВМ в миллионы раз, подобное увеличение элементов качественно улучшит вычислительные мощности будущих разумных машин. Фейнман, как создатель квантовой электродинамики и человек, участвовавший в разработке атомной бомбы, прекрасно понимал, что кодировка материи не является чем-то фантастическим, а представляется нормальным процессом в наблюдаемой реальности. 

Он делает акцент на том, что физика не запрещает создавать объекты атом за атомом. В статье, он прибегает к сравнению деятельности человека и машины, обращая внимание на тот факт, что любой представитель вида без труда распознает лица людей, в отличие от ЭВМ, для которых в то время это была задача за пределами вычислительных мощностей. Задает ряд важных вопросов от “что мешает создать сверхмалую копию чего-либо?” до “отличие ЭВМ от человеческого мозга только в количестве составных элементов?”, так же он описывает механизмы и основные проблемы при создании чего-либо атомного размера. 

Современники оценили количество нейронов мозга в примерно 86 миллиардов, естественно, что ни одна ЭВМ и тогда и сейчас, к этому значению не приблизилась, как оказалось это и не нужно. Однако, работа Ричарда Фейнмана начала двигать идею о информации в сторону уменьшения, туда где много места. Статья вышла в 1960 году, уже после появления работы Алана Тьюринга “Вычислительные машины и разум” одной из самых цитируемых работ вида. Поэтому сравнение деятельности человека и ЭВМ было трендом, который отразился и в статье Ричарда Фейнмана.

Благодаря непосредственному вкладу физика, стоимость хранения данных с каждым годом падает, облачные технологии развиваются сумасшедшими темпами, создан квантовый компьютер, мы записываем данные в ДНК-хранилища и занимаемся генной инженерией, что еще раз доказывает, материю можно изменять и кодировать. В следующей статье поговорим о хаосе, энтропии, квантовых компьютерах, пауках, муравьях, скрытых моделях Маркова и теории категорий. Будет больше математики, панк рока, днк и ты даже поймешь, что значит картинка внизу.

она значит, что твои куриные мозги, как кубики maggi


Report Page