Численные Методы Решения Нелинейных Уравнений Реферат

Численные Методы Решения Нелинейных Уравнений Реферат



>>> ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ <<<






























Численные Методы Решения Нелинейных Уравнений Реферат
Copyright © 2005-2020 BestReferat.ru support@bestreferat.ru
реклама на сайте
Основной целью реферата является изучение и сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений; реализация этих методов в виде машинных программ на языке высокого уровня и практическое решение уравнений на ЭВМ.
При разработке алгоритмов, входящих в состав математического обеспечения САПР, часто возникает необходимость в решении нелинейных уравнений вида
где функция f(x) определена и непрерывна на некотором конечном или бесконечном интервале a< x 0. Тогда уравнение хорды, проходящей через точки A0 и B, имеет вид
Приближение корня x = x1, для которого y = 0, определяется как
Аналогично для хорды, проходящей через точки A1 и B, вычисляется следующее приближение корня
В общем случае формула метода хорд имеет вид:
Если первая и вторая производные имеют разные знаки, т.е.
то все приближения к корню x* выполняются со стороны правой границы отрезка [a, b], как это показано на рис. 2, и вычисляются по формуле:
Выбор формулы в каждом конкретном случае зависит от вида функции f(x) и осуществляется по правилу: неподвижной является граница отрезка [a, b] изоляции корня, для которой знак функции совпадает со знаком второй производной. Формула (2) используется в том случае, когда f(b)f "(b) >0. Если справедливо неравенство f(a)f "(a) >0, то целесообразно применять формулу (3).
Итерационный процесс метода хорд продолжается до тех пор, пока не будет получен приближенный корень с заданной степенью точности. При оценке погрешности приближения можно пользоваться соотношением:
Тогда условие завершения вычислений записывается в виде:
где e - заданная погрешность вычислений. Необходимо отметить, что при отыскании корня метод хорд нередко обеспечивает более быструю сходимость, чем метод половинного деления.
Пусть уравнение (1) имеет корень на отрезке [a, b], причем f '(x) и f "(x) непрерывны и сохраняют постоянные знаки на всем интервале [a, b].
Геометрический смысл метода Ньютона состоит в том, что дуга кривой y = f(x) заменяется касательной. Для этого выбирается некоторое начальное приближение корня x0 на интервале [a, b] и проводится касательная в точке C0(x0, f(x0)) к кривой y = f(x) до пересечения с осью абсцисс (рис. 3). Уравнение касательной в точке C0 имеет вид
Далее за приближение корня принимается абсцисса x1, для которой y = 0:
Затем проводится касательная через новую точку C1(x1, f(x1)) и определяется точка x2 ее пересечения с осью 0x и т.д. В общем случае формула метода касательных имеет вид:
В результате вычислений получается последовательность приближенных значений x1, x2, ..., xi, ..., каждый последующий член которой ближе к корню x*, чем предыдущий. Итерационный процесс обычно прекращается при выполнении условия (4).
Начальное приближение x0 должно удовлетворять условию:
В противном случае сходимость метода Ньютона не гарантируется, так как касательная будет пересекать ось абсцисс в точке, не принадлежащей отрезку [a, b]. На практике в качестве начального приближения корня x0, обычно выбирается одна из границ интервала [a, b], т.е. x0 = a или x0 = b, для которой знак функции совпадает со знаком второй производной.
Метод Ньютона обеспечивает высокую скорость сходимости при решении уравнений, для которых значение модуля производной ½f ¢(x)½вблизи корня достаточно велико, т.е. график функции y = f(x) в окрестности корня имеет большую крутизну. Если кривая y = f(x) в интервале [a, b] почти горизонтальна, то применять метод касательных не рекомендуется.
Существенным недостатком рассмотренного метода является необходимость вычисления производных функции для организации итерационного процесса. Если значение f ¢(x) мало изменяется на интервале [a, b], то для упрощения вычислений можно пользоваться формулой
т.е. значение производной достаточно вычислить только один раз в начальной точке. Геометрически это означает, что касательные в точках Ci(xi, f(xi)), где i = 1, 2, ..., заменяется прямыми, параллельными касательной, проведенной к кривой y = f(x) в начальной точке C0(x0, f(x0)), как это показано на рис. 4.
В заключение необходимо отметить, что все изложенное справедливо в том случае, когда начальное приближение x0 выбрано достаточно близким к истинному корню x* уравнения. Однако это не всегда просто осуществимо. Поэтому метод Ньютона часто используется на завершающей стадии решения уравнений после работы какого-либо надежно сходящегося алгоритма, например, метода половинного деления.
Чтобы применить этот метод для решения уравнения (1) необходимо преобразовать его к виду . Далее выбирается начальное приближение и вычисляется x1, затем x2 и т.д.:
x1 = j(x0); x2 = j(x1); …; xk = j(xk-1); ...
нелинейный алгебраический уравнение корень
Полученная последовательность сходится к корню при выполнении следующих условий:
1) функция j(x) дифференцируема на интервале [a, b].
2) во всех точках этого интервала j¢(x) удовлетворяет неравенству:
При таких условиях скорость сходимости является линейной, а итерации следует выполнять до тех пор, пока не станет справедливым условие:
может использоваться только при 0 £ q £ ½. Иначе итерации заканчиваются преждевременно, не обеспечивая заданную точность. Если вычисление q затруднительно, то можно использовать критерий окончания вида
Возможны различные способы преобразования уравнения (1) к виду . Следует выбирать такой, который удовлетворяет условию (8), что порождает сходящийся итерационный процесс, как, например, это показано на рис. 5, 6. В противном случае, в частности, при ½j¢(x)½>1, итерационный процесс расходится и не позволяет получить решение (рис. 7).
Проблема повышения качества вычислений нелинейных уравнений при помощи разнообразных методов, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов – сред и языков программирования.
1. Алексеев В. Е., Ваулин А.С., Петрова Г. Б. - Вычислительная техника и программирование. Практикум по программированию :Практ .пособие/ -М.: Высш. шк. , 1991. - 400 с.
2. Абрамов С.А., Зима Е.В. - Начала программирования на языке Паскаль. - М.: Наука, 1987. -112 с.
3. Вычислительная техника и программирование: Учеб. для техн. вузов/ А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др. - М.: Высш. шк., 1990 - 479 с.
4. Гусев В.А., Мордкович А.Г. - Математика: Справ. материалы: Кн. для учащихся. - 2-е изд. - М.: Просвещение, 1990. - 416 с.
Банк рефератов содержит более 364 тысяч рефератов , курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.










Название: Решение нелинейных уравнений
Раздел: Рефераты по информатике, программированию
Тип: реферат
Добавлен 06:28:00 08 марта 2011 Похожие работы
Просмотров: 1278
Комментариев: 14
Оценило: 3 человек
Средний балл: 4.7
Оценка: неизвестно     Скачать

Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Реферат : Решение нелинейных уравнений - BestReferat.ru
Численные методы решения нелинейных уравнений
Численные методы решения нелинейных уравнений ...
Численные методы решения систем нелинейных уравнений
Численные методы решения нелинейных уравнений
Детективная Коллекция Мисс Эсс
Реферат На Тему Образование Луны По Астрономии
Я Люблю И Значит Я Живу Сочинение
Входная Контрольная Работа Тест По Литературе
Выделительные Ткани Внешней Секреции Реферат

Report Page