Black Hole Ones
🛑 ALL INFORMATION CLICK HERE 👈🏻👈🏻👈🏻
Black Hole Ones
From Wikipedia, the free encyclopedia
Astronomical object that has a no-return boundary
G
μ
ν
+
Λ
g
μ
ν
=
κ
T
μ
ν
{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}
Simple illustration of a non-spinning black hole
Artistic depiction of a black hole and its features
Far away from the black hole, a particle can move in any direction, as illustrated by the set of arrows. It is restricted only by the speed of light.
Closer to the black hole, spacetime starts to deform. There are more paths going towards the black hole than paths moving away. [Note 3]
Inside of the event horizon, all paths bring the particle closer to the centre of the black hole. It is no longer possible for the particle to escape.
The formula for the Bekenstein–Hawking entropy ( S ) of a black hole, which depends on the area of the black hole ( A ). The constants are the speed of light ( c ), the Boltzmann constant ( k ), Newton's constant ( G ), and the reduced Planck constant ( ħ ). In Planck units, this reduces to S = A / 4 .
^ The value of cJ/GM 2 can exceed 1 for objects other than black holes. The largest value known for a neutron star is ≤ 0.4, and commonly used equations of state would limit that value to < 0.7. [76]
^ The (outer) event horizon radius scales as:
M
+
M
2
−
(
J
/
M
)
2
−
Q
2
.
{\displaystyle M+{\sqrt {M^{2}-{(J/M)}^{2}-Q^{2}}}.}
^ The set of possible paths, or more accurately the future light cone containing all possible world lines (in this diagram the light cone is represented by the V-shaped region bounded by arrows representing light ray world lines), is tilted in this way in Eddington–Finkelstein coordinates (the diagram is a "cartoon" version of an Eddington–Finkelstein coordinate diagram), but in other coordinates the light cones are not tilted in this way, for example in Schwarzschild coordinates they simply narrow without tilting as one approaches the event horizon, and in Kruskal–Szekeres coordinates the light cones do not change shape or orientation at all. [79]
^ This is true only for four-dimensional spacetimes. In higher dimensions more complicated horizon topologies like a black ring are possible. [91] [92]
^ In particular, he assumed that all matter satisfies the weak energy condition .
^ Oldham, L. J.; Auger, M. W. (March 2016). "Galaxy structure from multiple tracers – II. M87 from parsec to megaparsec scales". Monthly Notices of the Royal Astronomical Society . 457 (1): 421–439. arXiv : 1601.01323 . Bibcode : 2016MNRAS.457..421O . doi : 10.1093/mnras/stv2982 . S2CID 119166670 .
^ Wald 1984 , pp. 299–300
^ Jump up to: a b Wald, R. M. (1997). "Gravitational Collapse and Cosmic Censorship". In Iyer, B. R.; Bhawal, B. (eds.). Black Holes, Gravitational Radiation and the Universe . Dordrecht: Springer. pp. 69–86. arXiv : gr-qc/9710068 . doi : 10.1007/978-94-017-0934-7 . ISBN 978-9401709347 .
^ Overbye, Dennis (8 June 2015). "Black Hole Hunters" . NASA . Archived from the original on 9 June 2015 . Retrieved 8 June 2015 .
^ Hamilton, A. "Journey into a Schwarzschild black hole" . jila.colorado.edu . Archived from the original on 3 September 2019 . Retrieved 28 June 2020 .
^ Schutz, Bernard F. (2003). Gravity from the ground up . Cambridge University Press. p. 110. ISBN 978-0-521-45506-0 . Archived from the original on 2 December 2016.
^ Davies, P. C. W. (1978). "Thermodynamics of Black Holes" (PDF) . Reports on Progress in Physics . 41 (8): 1313–1355. Bibcode : 1978RPPh...41.1313D . doi : 10.1088/0034-4885/41/8/004 . S2CID 250916407 . Archived from the original (PDF) on 10 May 2013.
^ Jump up to: a b c Montgomery, Colin; Orchiston, Wayne; Whittingham, Ian (2009). "Michell, Laplace and the origin of the black hole concept". Journal of Astronomical History and Heritage . 12 (2): 90–96. Bibcode : 2009JAHH...12...90M .
^ Webster, B. Louise; Murdin, Paul (1972), "Cygnus X-1—a Spectroscopic Binary with a Heavy Companion?", Nature , 235 (5332): 37–38, Bibcode : 1972Natur.235...37W , doi : 10.1038/235037a0 , S2CID 4195462
^ Bolton, C. T. (1972), "Identification of Cygnus X-1 with HDE 226868", Nature , 235 (5336): 271–273, Bibcode : 1972Natur.235..271B , doi : 10.1038/235271b0 , S2CID 4222070
^ Clery D (2020). "Black holes caught in the act of swallowing stars". Science . 367 (6477): 495. Bibcode : 2020Sci...367..495C . doi : 10.1126/science.367.6477.495 . PMID 32001633 . S2CID 210984462 .
^ Jump up to: a b c d Abbott, B.P.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Phys. Rev. Lett. 116 (6): 061102. arXiv : 1602.03837 . Bibcode : 2016PhRvL.116f1102A . doi : 10.1103/PhysRevLett.116.061102 . PMID 26918975 . S2CID 124959784 .
^ Event Horizon Telescope, The (2019). "First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole". The Astrophysical Journal . 875 (1): L1. arXiv : 1906.11238 . Bibcode : 2019ApJ...875L...1E . doi : 10.3847/2041-8213/ab0ec7 . S2CID 145906806 .
^ Bouman, Katherine L. ; Johnson, Michael D.; Zoran, Daniel; Fish, Vincent L.; Doeleman, Sheperd S.; Freeman, William T. (2016). "Computational Imaging for VLBI Image Reconstruction". 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . pp. 913–922. arXiv : 1512.01413 . doi : 10.1109/CVPR.2016.105 . hdl : 1721.1/103077 . ISBN 978-1-4673-8851-1 . S2CID 9085016 .
^ Gardiner, Aidan (12 April 2018). "When a Black Hole Finally Reveals Itself, It Helps to Have Our Very Own Cosmic Reporter – Astronomers announced Wednesday that they had captured the first image of a black hole. The Times's Dennis Overbye answers readers' questions" . The New York Times . Archived from the original on 1 January 2022 . Retrieved 15 April 2019 .
^ "ESO Instrument Finds Closest Black Hole to Earth" . European Southern Observatory . 6 May 2020. Archived from the original on 6 May 2020 . Retrieved 2 April 2021 .
^ Riazuelo, Alain (2019). "Seeing relativity -- I. Ray tracing in a Schwarzschild metric to explore the maximal analytic extension of the metric and making a proper rendering of the stars". International Journal of Modern Physics D . 28 (2): 1950042. arXiv : 1511.06025 . Bibcode : 2019IJMPD..2850042R . doi : 10.1142/S0218271819500421 . S2CID 54548877 .
^ Schaffer, Simon (1979). "John Michell and black holes" . Journal for the History of Astronomy . 10 : 42–43. Bibcode : 1979JHA....10...42S . doi : 10.1177/002182867901000104 . S2CID 123958527 . Archived from the original on 22 May 2020 . Retrieved 27 August 2021 .
^ Michell, J. (1784). "On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose" . Philosophical Transactions of the Royal Society . 74 : 35–57. Bibcode : 1784RSPT...74...35M . doi : 10.1098/rstl.1784.0008 . JSTOR 106576 .
^ Jump up to: a b Thorne 1994 , pp. 123–124
^ Slayter, Elizabeth M.; Slayter, Henry S. (1992). Light and Electron Microscopy . Cambridge University Press. ISBN 978-0-521-33948-3 . Archived from the original on 30 November 2017.
^ Crass, Institute of Astronomy – Design by D.R. Wilkins and S.J. "Light escaping from black holes" . www.ast.cam.ac.uk . Archived from the original on 6 July 2019 . Retrieved 10 March 2018 .
^ Levy, Adam (11 January 2021). "How black holes morphed from theory to reality" . Knowable Magazine . doi : 10.1146/knowable-010921-1 . Retrieved 25 March 2022 .
^ Jump up to: a b Schwarzschild, K. (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie" . Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften . 7 : 189–196. Bibcode : 1916SPAW.......189S .
Translation: Antoci, S.; Loinger, A. (1999). "On the gravitational field of a mass point according to Einstein's theory". arXiv : physics/9905030 . and Schwarzschild, K. (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie" . Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften . 18 : 424–434. Bibcode : 1916skpa.conf..424S .
Translation: Antoci, S. (1999). "On the gravitational field of a sphere of incompressible fluid according to Einstein's theory". arXiv : physics/9912033 .
^ Droste, J. (1917). "On the field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field" (PDF) . Proceedings Royal Academy Amsterdam . 19 (1): 197–215. Archived from the original (PDF) on 18 May 2013 . Retrieved 16 September 2012 .
^ Kox, A. J. (1992). "General Relativity in the Netherlands: 1915–1920" . In Eisenstaedt, Jean; Kox, A. J. (eds.). Studies in the history of general relativity . Birkhäuser. p. 41. ISBN 978-0-8176-3479-7 . Archived from the original on 10 August 2016 . Retrieved 23 February 2016 .
^ 't Hooft, G. (2009). "Introduction to the Theory of Black Holes" (PDF) . Institute for Theoretical Physics / Spinoza Institute. pp. 47–48. Archived from the original (PDF) on 21 May 2009 . Retrieved 24 June 2010 .
^ Eddington, Arthur (1926). The Internal Constitution of the Stars . Science . Vol. 52. Cambridge University Press. pp. 233–40. doi : 10.1126/science.52.1341.233 . ISBN 978-0-521-33708-3 . PMID 17747682 . Archived from the original on 11 August 2016.
^ Thorne, Kip S.; Hawking, Stephen (1994). Black Holes and Time Warps: Einstein's Outrageous Legacy . W. W. Norton & Company. pp. 134 –135. ISBN 978-0-393-31276-8 . Retrieved 12 April 2019 . The first conclusion was the Newtonian version of light not escaping; the second was a semi-accurate, relativistic description; and the third was typical Eddingtonian hyperbole ... when a star is as small as the critical circumference, the curvature is strong but not infinite, and space is definitely not wrapped around the star. Eddington may have known this, but his description made a good story, and it captured in a whimsical way the spirit of Schwarzschild's spacetime curvature."
^ Venkataraman, G. (1992). Chandrasekhar and his limit . Universities Press. p. 89. ISBN 978-81-7371-035-3 . Archived from the original on 11 August 2016.
^ Detweiler, S. (1981). "Resource letter BH-1: Black holes". American Journal of Physics . 49 (5): 394–400. Bibcode : 1981AmJPh..49..394D . doi : 10.1119/1.12686 .
^ Harpaz, A. (1994). Stellar evolution . A K Peters . p. 105. ISBN 978-1-56881-012-6 . Archived from the original on 11 August 2016.
^ Jump up to: a b Oppenheimer, J. R. ; Volkoff, G. M. (1939). "On Massive Neutron Cores". Physical Review . 55 (4): 374–381. Bibcode : 1939PhRv...55..374O . doi : 10.1103/PhysRev.55.374 .
^ Bombaci, I. (1996). "The Maximum Mass of a Neutron Star". Astronomy and Astrophysics . 305 : 871–877. Bibcode : 1996A&A...305..871B .
^ Cho, A. (16 February 2018). "A weight limit emerges for neutron stars". Science . 359 (6377): 724–725. Bibcode : 2018Sci...359..724C . doi : 10.1126/science.359.6377.724 . PMID 29449468 .
^ Margalit, B.; Metzger, B. D. (1 December 2017). "Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817". The Astrophysical Journal . 850 (2): L19. arXiv : 1710.05938 . Bibcode : 2017ApJ...850L..19M . doi : 10.3847/2041-8213/aa991c . S2CID 119342447 .
^ Shibata, M.; Fujibayashi, S.; Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Tanaka, M. (22 December 2017). "Modeling GW170817 based on numerical relativity and its implications". Physical Review D . 96 (12): 123012. arXiv : 1710.07579 . Bibcode : 2017PhRvD..96l3012S . doi : 10.1103/PhysRevD.96.123012 . S2CID 119206732 .
^ Ruiz, M.; Shapiro, S. L.; Tsokaros, A. (11 January 2018). "GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass" . Physical Review D . 97 (2): 021501. arXiv : 1711.00473 . Bibcode : 2018PhRvD..97b1501R . doi : 10.1103/PhysRevD.97.021501 . PMC 6036631 . PMID 30003183 .
^ Rezzolla, L.; Most, E. R.; Weih, L. R. (9 January 2018). "Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars". Astrophysical Journal . 852 (2): L25. arXiv : 1711.00314 . Bibcode : 2018ApJ...852L..25R . doi : 10.3847/2041-8213/aaa401 . S2CID 119359694 .
^ Ruffini, R. ; Wheeler, J. A. (1971). "Introducing the black hole" (PDF) . Physics Today . 24 (1): 30–41. Bibcode : 1971PhT....24a..30R . doi : 10.1063/1.3022513 . Archived from the original (PDF) on 25 July 2011 . Retrieved 5 December 2009 .
^ Finkelstein, D. (1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". Physical Review . 110 (4): 965–967. Bibcode : 1958PhRv..110..965F . doi : 10.1103/PhysRev.110.965 .
^ Kruskal, M. (1960). "Maximal Extension of Schwarzschild Metric". Physical Review . 119 (5): 1743. Bibcode : 1960PhRv..119.1743K . doi : 10.1103/PhysRev.119.1743 .
^ Hewish, A. ; et al. (1968). "Observation of a Rapidly Pulsating Radio Source". Nature . 217 (5130): 709–713. Bibcode : 1968Natur.217..709H . doi : 10.1038/217709a0 . S2CID 4277613 .
^ Pilkington, J. D. H.; et al. (1968). "Observations of some further Pulsed Radio Sources". Nature . 218 (5137): 126–129. Bibcode : 1968Natur.218..126P . doi : 10.1038/218126a0 . S2CID 4253103 .
^ Hewish, A. (1970). "Pulsars". Annual Review of Astronomy and Astrophysics . 8 (1): 265–296. Bibcode : 1970ARA&A...8..265H . doi : 10.1146/annurev.aa.08.090170.001405 .
^ Newman, E. T. ; et al. (1965). "Metric of a Rotating, Charged Mass". Journal of Mathematical Physics . 6 (6): 918. Bibcode : 1965JMP.....6..918N . doi : 10.1063/1.1704351 .
^ Israel, W. (1967). "Event Horizons in Static Vacuum Space-Times". Physical Review . 164 (5): 1776. Bibcode : 1967PhRv..164.1776I . doi : 10.1103/PhysRev.164.1776 .
^ Carter, B. (1971). "Axisymmetric Black Hole Has Only Two Degrees of Freedom". Physical Review Letters . 26 (6): 331. Bibcode : 1971PhRvL..26..331C . doi : 10.1103/PhysRevLett.26.331 .
^ Carter, B. (1977). "The vacuum black hole uniqueness theorem and its conceivable generalisations". Proceedings of the 1st Marcel Grossmann meeting on general relativity . pp. 243–254.
^ Robinson, D. (1975). "Uniqueness of the Kerr Black Hole". Physical Review Letters . 34 (14): 905. Bibcode : 1975PhRvL..34..905R . doi : 10.1103/PhysRevLett.34.905 .
^ Jump up to: a b Heusler, M. (2012). "Stationary Black Holes: Uniqueness and Beyond" . Living Reviews in Relativity . 15 (7): 7. arXiv : 1205.6112 . Bibcode : 2012LRR....15....7C . doi : 10.12942/lrr-2012-7 . PMC 5255892 . PMID 28179837 .
^ Jump up to: a b Penrose, R. (1965). "Gravitational Collapse and Space-Time Singularities" (PDF) . Physical Review Letters . 14 (3): 57. Bibcode : 1965PhRvL..14...57P . doi : 10.1103/PhysRevLett.14.57 . S2CID 116755736 . Archived from the original (PDF) on 11 October 2020.
^ Ford, L. H. (2003). "The Classical Singularity Theorems and Their Quantum Loopholes". International Journal of Theoretical Physics . 42 (6): 1219–1227. arXiv : gr-qc/0301045 . Bibcode : 2003gr.qc.....1045F . doi : 10.1023/A:1025754515197 . S2CID 14404560 .
^ "The Nobel Prize in Physics 2020" . NobelPrize.org . Archived from the original on 24 April 2021 . Retrieved 8 October 2020 .
^ Rolston, Bruce (10 November 1997), The First Black Hole , University of Toronto, archived from the original on 7 March 2008 , retrieved 11 March 2008
^ Shipman, H. L.; Yu, Z; Du, Y.W (1975), "The implausible history of triple star models for Cygnus X-1 Evidence for a black hole", Astrophysical Letters , 16 (1): 9–12, Bibcode : 1975ApL....16....9S , doi : 10.1016/S0304-8853(99)00384-4
^ Bardeen, J. M. ; Carter, B. ; Hawking, S. W. (1973). "The four laws of black hole mechanics" . Communications in Mathematical Physics . 31 (2): 161–170. Bibcode : 1973CMaPh..31..161B . doi : 10.1007/BF01645742 . MR 0334798 . S2CID 54690354 . Zbl 1125.83309 . Archived from the original on 16 May 2020 . Retrieved 4 June 2021 .
^ Jump up to: a b c Hawking, S. W. (1974). "Black hole explosions?". Nature . 248 (5443): 30–31. Bibcode : 1974Natur.248...30H . doi : 10.1038/248030a0 . S2CID 4290107 .
^ Mills, Virginia (4 June 2019). "Black holes: who didn't see them first?" . The Royal Society . Retrieved 21 July 2022 .
Michell, John (1784). "On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose. By the Rev. John Michell, B. D. F. R. S. In a Letter to Henry Cavendish, Esq. F. R. S. and A. S." Philosophical Transactions of the Royal Society of London . 74 : 35–57. Bibcode : 1784RSPT...74...35M . JSTOR 106576 . Retrieved 21 July 2022 .
^ Jump up to: a b "MIT's Marcia Bartusiak On Understanding Our Place In The Universe" . www.wbur.org . Archived from the original on 12 April 2019 . Retrieved 12 April 2019 .
^ Jump up to: a b Siegfried, Tom (23 December 2013). "50 years later, it's hard to say who named black holes" . Science News . Archived from the original on 9 March 2017 . Retrieved 24 September 2017 . It seems that the "black hole" label was also bandied about in January 1964 in Cleveland at a meeting of the American Association for the Advancement of Science. Science News Letter reporter Ann Ewing reported from that meeting, describing how an intense gravitational field could cause a star to collapse in on itself. "Such a star then forms a 'black hole' in the universe," Ewing wrote
^ Brown, Emma (3 August 2010). "Ann E. Ewing, journalist first reported black holes" . Boston.com . Archived from the original on 24 September 2017 . Retrieved 24 September 2017 .
^ "Pioneering Physicist John Wheeler Dies at 96" . Scientific American .
Funny Sex Positions
Glamour Sex Hd
Gagged Lesbian Bondage