Биогеохимия: история и современность - Биология и естествознание реферат

Биогеохимия: история и современность - Биология и естествознание реферат




































Главная

Биология и естествознание
Биогеохимия: история и современность

Биогеохимия как научная дисциплина. Изучение жизни и геохимической среды в их единстве как системы организованности развития, строения и функций биосферы. Участие живого вещества в биогеохимических процессах. Современные представления о биогеохимии.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сибирское отделение Российской Академии наук
Биогеохимия: история и современность
(к.ф.н., ученый секретарь, Бобров Виктор Васильевич
д.б.н., профессор, зав. лабораторией фитохимии Высочина Галина Ивановна
1. Биогеохимия как научная дисциплина
2. История формирования предмета биогеохимии
3. Современные представления о биогеохимии
Живое вещество биосферы есть совокупность ее живых организмов /4,56/. При великом разнообразии размеров, морфологии и физиологии живых организмов общим условием их существования является обмен веществ со средой обитания. Несмотря на то, что живые организмы составляют ничтожную часть массы наружных оболочек Земли, суммарный эффект их геохимической деятельности с учетом фактора времени имеет важное планетарное значение. Организмы, поглощая химические элементы селективно, в соответствии с физиологическими потребностями, вызывают в окружающей среде биогенную дифференциацию элементов. Не менее существенное значение имеет геохимия метаболизма. Газообразные метаболиты, поступая в газовую оболочку, постепенно изменяют ее состав. Жидкие метаболиты и продукты отмирания влияют на кислотно-щелочные и окислительно-восстановительные условия природных вод, которые закономерно преобразуют верхнюю часть литосферы: извлекают из нее определенные химические элементы, вовлекают их в водную миграцию и в итоге способствуют формированию химического состава Мирового океана и осадочных горных пород.
Индивидуальный организм смертен, но жизнь в форме продолжающихся поколений бесконечна. Воздействие организмов на окружающую среду, не прерываясь ни на мгновение, продолжалось около 4 млрд. лет, на протяжении всей геологической истории. Поэтому постоянно существующая планетарная совокупность организмов с позиций геохимии может рассматриваться как особая форма материи - живое вещество. Его главное свойство - постоянный и непрерывный массообмен химических элементов с окружающей средой. По этой причине живое вещество играет роль ведущего фактора геохимической эволюции наружной части Земли.
Учение о живом веществе - одна из областей соприкосновения естествознания и философии. В феномене живого вещества много неясного и загадочного. Образование живого только из живого не получило пока научного объяснения и дает основание рассматривать жизнь не только как земное, но и как космическое явление. Опираясь на труды Л. Пастера и П. Кюри, В.И. Вернадский считал, что живое вещество существует в особом пространстве, геометрия которого отличается от геометрии земных небиогенных тел. В.И. Вернадский был близок к взглядам другого выдающегося ученого и мыслителя XX в. - П. Тейяра де Шардена и разделял его идею о том, что «наличие жизни предполагает существование до беспредельно простирающейся преджизни». Не углубляясь в эти проблемы, можно уверенно констатировать весьма важное значение живого вещества для существующего химического состава наружных оболочек нашей планеты /7, 5/.
Биосфера. Термин «биосфера» был введён в биологии Жаном-Батистом Ламарком в начале XIX в., а в геологии предложен австрийским геологом Эдуардом Зюссом в 1875 году. Этим термином Э. Зюсс обозначил сферу обитания организмов. В.И. Вернадский разработал представление о биосфере как о наружной оболочке Земли, охваченной геохимической деятельностью живого вещества.
В современном понимании биосфера не среда жизни, а глобальная система, где в неразрывной связи существуют, с одной стороны, инертное вещество в твердой, жидкой и газовой фазах, а с другой - разнообразные формы жизни и их метаболиты. Биосфера представляет собой единство живого вещества и пронизанной им наружной части земного шара. Живое вещество так же немыслимо без биосферы, как последняя без живого вещества /7, 6/.
Биогеохимические процессы. Ответственное место в изложенной системе представлений занимают процессы взаимодействия между живым веществом и инертной материей Земли. Это взаимодействие происходит в форме массообмена химических элементов между живыми организмами и окружающей средой. Именно процессы массообмена элементов объективно характеризуют геохимическую деятельность организмов, благодаря им биосфера имеет и поддерживает определенную, как ее называл В.И. Вернадский, «геохимическую организованность». Эти процессы, геохимические по существу (как закономерные миграции химических элементов), но осуществляемые не под воздействием геологических факторов, а в результате жизнедеятельности организмов, были названы Вернадским биогеохимическими. Очевидно, что биогеохимические процессы и их результаты должны служить главным предметом изучения биогеохимии /5, 98/.
Цикличность биогеохимических процессов. С момента научного изучения взаимодействия живых организмов с окружающей средой было обнаружено, что процессы биогенного массообмена имеют циклический характер.
Исследования последних десятилетий показали, что жизненные циклы отдельных организмов и их групп сочетаются с циклическими процессами, обусловленными геофизическими и космическими причинами: вращением Земли вокруг своей оси и вокруг Солнца, закономерностями эволюции солнечного вещества, перемещением солнечной системы в Галактике и др. Циклы массообмена различной протяженности в пространстве и неодинаковой длительности во времени образуют динамическую систему биосферы.
В И. Вернадский считал, что история большинства химических элементов, образующих 99,7% массы биосферы, может быть понята лишь с учетом круговых миграций. Он специально отметил, что «эти циклы обратимы лишь в главной части атомов, часть же элементов неизбежно и постоянно выходит из круговорота. Этот выход закономерен, т.е. круговой процесс не является вполне обратимым».
Неполная обратимость мигрирующих масс и несбалансированность миграционных циклов допускают определенные пределы колебания концентрации мигрирующего элемента, к которым организмы могут адаптироваться, но в то же время обеспечивают вывод избыточного количества элемента из данного цикла /7, 7/.
Биогеохимия рассматривает не отдельные особи или виды организмов, а всю их совокупность, т. е. живое вещество, выраженное в массе, химическом составе и энергии, которую оно привносит в биогеохимические процессы. Живое вещество неравномерно распределяется по поверхности Земли. Известны области его скопления, или сгущения, например планктона в океанах и морях, лесов на суше, гумуса, торфяника в почвах; плотность населения неравномерна и в значительной степени зависит от почвенно-климатических зон. Растительные организмы составляют главную массу живого вещества (около 1% падающей солнечной энергии поглощается растениями, что эквивалентно 3?1014 кг углерода: это примерно соответствует массе живого вещества на земном шаре; см. фотосинтез). Одна масса живого вещества не даёт правильного представления об интенсивности участия его в биогеохимических процессах. Огромное значение имеет скорость размножения организмов, т. е. общая продукция органического вещества, образуемая за определённое время. Особенно это относится к низшим организмам - бактериям, грибкам, водорослям и др., обладающим высокой скоростью размножения. В состав живого вещества входят все известные химические элементы и их изотопы. Но основную массу любого организма составляет ограниченное число известных химических элементов (см. табл.), которые в условиях биосферы образуют легкоподвижные и легкорастворимые соединения, например газы CO2 или NH3, H2O, ионы Н+, OH-, NO3-, Na+, К+, Са2+, Mg2+, а также тяжёлые металлы, образующие высокоокисленные комплексные ионы /12, 151/.
Химические элементы, не образующие, подобно, например, Ti, Zr, Th, в биосфере растворимых и легкоподвижных соединений, несмотря на их заметное количество в породах земной коры, в организмах содержатся лишь в очень малых количествах. Организмы не повторяют полностью химические состава среды, а активно выбирают те или иные соединения. Нередко тот или иной вид организмов накапливает определённый химический элемент, т. е. химический состав организмов является характерным признаком для определённого вида. Т. е., организмы выполняют геохимическую функцию, участвуя в биогенной миграции того или иного химического элемента. Например, кальций издавна использовался организмами для образования скелета в виде CaCO3. Эта очень древняя геохимическая функция была характерна для многих низших организмов. Позже, наряду со скелетом из CaCO3, появились организмы со скелетом из фосфата кальция (в первую очередь среди брахиопод), который утвердился и у всех высших организмов. У многих древних низших организмов (включительно до морских губок) встречается также скелет из кремнекислоты. Это указывает на направление эволюции организмов.
Участие живого вещества в биогеохимических процессах проявляется прямо либо косвенно. Так, после гибели организмов живое вещество непосредственно участвует в образовании диатомита, известняков, углей, нефтей и др. Зелёные растения в результате фотосинтетической деятельности создают всю массу кислорода современной атмосферы Земли. Морские водоросли концентрируют значительные количества иода; после их гибели в морских илах происходят захоронение и процесс превращения органического детрита в вещество нефтей. В результате выпрессовывания из захороненных илов жидкой нефти в пористые породы (пески и другие коллекторы) выдавливаются иловые воды, содержащие большое количество йода /6, 146/.
Ещё более разнообразно косвенное влияние организмов и продуктов их жизнедеятельности на геохимические процессы. Микроорганизмы участвуют, например, в окислении соединений железа, марганца и других элементов, что ведёт к выпадению их из природных растворов и отложению в осадках. Микроорганизмы восстанавливают сульфаты, образуя биогенные месторождения серы и т.д. Под влиянием живого вещества изменяются во времени геохимические процессы. Так, когда на Земле ещё не было биосферы, уран, германий и ванадий концентрировались в осадочных железных рудах, а с её появлением уран, ванадий и германий накапливаются и в некоторых ископаемых углях и битумах.
Исключительную роль живое вещество наряду с H2O и CO2 играет в процессах выветривания и образования осадочных пород (биогенных осадков в морях и океанах). Представляет интерес участие организмов в процессах разделения близких по свойствам пар химических элементов, например Si/Ge, Fe/Mn, K/Na, Ca/Sr и т.д. В свою очередь среда обитания отражается на составе организмов. В пределах биогеохимических провинций возникают формы организмов, накапливающие иногда значительные количества химического элемента, т. е. имеет место интенсивная биогенная миграция. Известно также, что организмы участвуют в нарушении изотопного состава ряда лёгких химических элементов (углерода, кислорода, серы). Как правило, в биогенных процессах организмами поглощаются преимущественно более лёгкие изотопы.
Огромную биогеохимическую роль выполняет в результате своей геологической деятельности человек. Ежегодно из недр Земли извлекается до нескольких десятков тонн горной породы на душу населения. Человек влияет на химический и изотопный состав атмосферы, биосферы и земной коры, и это влияние с каждым столетием непрерывно растет /6, 147/.
Биогеохимия методологически тесно связана с геохимией. Эти науки изучают распределение химических элементов в пространстве и во времени, возникновение и трансформацию разных форм нахождения элементов, процессы их миграции, проявления рассеяния и аккумуляции в разных природных условиях. Различие двух наук заключается в том, что геохимия преимущественно изучает поведение элементов в природных растворах, расплавах и продуктах кристаллизации, состояние и взаимопереходы которых определяются законами термодинамики, физической химии и кристаллохимии, а биогеохимия изучает миграцию и распределение химических элементов в биосфере, где главной движущей силой является деятельность организмов. Это различие такое же глубокое, как различие между неорганической и молекулярной химией. Разумеется, существуют природные обстановки и процессы, в которых действие законов геохимии и биогеохимии тесно переплетаются. Идеи В.И.Вернадского о планетарной роли живого вещества обогатили теорию геохимии и создали основу для выяснения некоторых важных геологических процессов, в том числе процессов осадочного рудообразования /7, 13/.
Биогеохимия связана и с другими науками о Земле, особенно с теми, что изучают состав горных пород, минералов, природных вод и газов, а также развитие природной среды на протяжении геологической истории /3, 14/.
Своеобразно складывались взаимоотношения идей Вернадского с биологическими науками. В.И.Вернадский полагал, что изучение живого организма изолированно от среды обитания методологически ошибочно, ибо и то, и другое неразрывно связаны. Он считал, что, изучая живые организмы, биологи в большинстве своих работ оставляют без внимания неразрывную связь, тончайшую функциональную зависимость, существующую между окружающей средой и живым организмом, заменяют сложные явления природы упрощенными моделями.
В то же время известно критическое отношение к биогеохимии представителей физико-химической биологии, которые не видели смысла в определении содержания химического элемента в организме без изучения его конкретных органических соединений, расшифровки их молекулярной структуры, изучения типа связей данного элемента с другими. Здесь уместно еще раз вспомнить, что главной задачей биогеохимических исследований является изучение массообмена химических элементов между живыми организмами и окружающей средой. Эта задача не входит в сферу интересов комплекса наук физико-химической биологии (биохимии, молекулярной и биоорганической химии), но близка к целям биологических наук, изучающих связи между организмами и средой их обитания: геоботаники, биоценологии и особенно экологии. Идеи и подходы биогеохимии весьма перспективны для развития экологии. Изучению массообмена в экосистемах уделяется большое внимание при экологических исследованиях.
Благодаря очень непродолжительным жизненным циклам микроорганизмов геохимический эффект их деятельности наглядно свидетельствует о справедливости главного положения биогеохимии: глубокой взаимозависимости состава окружающей среды и живого вещества. По этой причине принципы биогеохимии были органично восприняты микробиологией. С одной стороны, микробиологи установили закономерное преобразование химического состава воды замкнутых бассейнов под влиянием микробиологической деятельности и важную роль микроорганизмов в глобальном газовом режиме. С другой стороны, было обнаружено, что микроорганизмы, обитающие в илах и почвах (бактерии и актиномицеты), могут адаптироваться к сильно различающимся уровням концентрации кобальта, молибдена, меди, ванадия, урана, селена и бора. Эта способность передается по наследству, благодаря чему адаптация сопровождается перестройкой популяций микроорганизмов /7, 14/.
Важное место в развитии идей В.И.Вернадского о живом веществе и биосфере занимают его работы по геохимии почв. Ясно представляя, что ни в одном из природных образований нет такого тесного взаимопроникновения и взаимодействия живых организмов и неживого вещества, как в почве, Вернадский называл ее биокосным телом. Можно предполагать, что именно углубленное изучение почвы как части биосферы, максимально насыщенной жизнью, было одним из первых шагов в разработке В. И. Вернадским концепции живого вещества. Понятие о живом веществе было впервые им изложено в статье, написанной в 1919 г. и посвященной роли организмов в почвообразовании.
В.И.Вернадский рассматривал почву как центральное звено биосферы, где сходятся разнообразные миграционные циклы химических элементов. «С каждым годом... все яснее становится значение почвы в биосфере -- не только как субстрата, на котором живет растительный и животный мир, но как области биосферы, где наиболее интенсивно идут разнообразные химические реакции, связанные с живым веществом».
В 1936 г. В. И. Вернадский ввел в науку понятие о педосфере, которое в настоящее время широко используется при глобальных геохимических построениях. Он отмечал, что химический состав Мирового океана тесно связан с мобилизацией химических элементов в педосфере и с планетарным миграционным циклом почвы -- воды рек -- воды океана. Не менее ответственную роль играет педосфера в газовом обмене. В. И. Вернадский считал, что многие химические элементы поступают в почву не столько из почвообразующих пород, сколько осаждаются из атмосферы и вновь уходят в нее, захватываясь ветром. Предположение Вернадского о циклической миграции химических элементов в системе почва -- атмосфера подтвердилось спустя несколько десятилетий при изучении динамики аэрозолей, их «времени жизни» и дальности переноса.
Принципы биогеохимии оказались весьма перспективными для генетического почвоведения. Крупный почвовед, геохимик и географ Б.Б.Полынов, опираясь на идеи В.И.Вернадского, разработал учение о геохимии ландшафта. Последователи Б. Б. Полынова геохимики-почвоведы и геохимики-ландшафтоведы своими исследованиями способствовали развитию биогеохимии. В настоящее время разграничение биогеохимических, эколого-геохимических, почвенно-геохимических и ландшафтно-геохимических исследований весьма условно /1, 7/.
Контуры биогеохимии вырисовывались постепенно на фоне общего развития естествознания и, главным образом, химии. Как показано выше, основные идеи биогеохимии ориентированы на оценку явлений жизни, деятельности живого вещества с научных позиций, т.е. «числом и мерой». Вместе с тем они невольно касались сферы исконных интересов религии, философии и, следовательно, идеологии. Это обстоятельство во все времена требовало незаурядных качеств личности исследователя. Хотя развитию идей биогеохимии способствовали работы многих ученых, наиболее заметный след в истории этих идей оставили весьма неординарные фигуры, являвшиеся не только крупными учеными, но и яркими личностями.
В конце XVIII в. благодаря открытию кислорода, азота, диоксида углерода (углекислого газа) и расшифровке химического состава воздуха в научных кругах Парижа и Лондона активно обсуждалось значение газов в жизни растений. В это время один из основателей химии Антуан Лавуазье решил задачу количественной оценки химических элементов, участвующих в реакции, и изучил явление эквивалентного обмена кислорода и углекислого газа растениями. Этими работами он заложил основу современных представлений о геохимии углерода в биосфере. Убедившись в том, что главный химический элемент органического вещества - углерод - растения получают из воздуха, а при разложении растительных остатков углерод в составе углекислого газа вновь возвращается в атмосферу, А. Лавуазье пришел к выводу об универсальности механизма круговорота при взаимодействии живых организмов с природой /7, 8/.
Незадолго до трагической гибели от революционного террора А. Лавуазье написал трактат «Кругооборот элементов на поверхности земного шара», где обосновал идею циклического обмена химических элементов между тремя царствами природы: минеральным, растительным и животным. В этом трактате он поставил вопрос, на который спустя двести лет стремится дать ответ биогеохимия: «Какими путями осуществляет природа этот изумительный круговорот веществ между тремя своими царствами?».
После работ А. Лавуазье стало очевидно, что живые организмы в основном состоят из элементов, образующих на поверхности Земли газы, и что в химии жизни исключительно важное значение имеет взаимосвязь организмов с газами атмосферы. Эта проблема продолжала оставаться в центре внимания в начале XIX в. В 1841 г. два выдающихся французских ученых - знаменитый химик, один из основателей органической химии Жан-Батист Дюма и Жан-Батист Буссенго, основатель агрохимии, путешественник и натуралист, - окончательно сформулировали идею циклического круговорота газов в системе живые организмы - атмосфера, изложив ее в яркой и несколько парадоксальной форме: «…мы видим, что первичная атмосфера Земли подразделилась на три большие части: одна из них образует современный атмосферный воздух, вторая представлена растениями, третья - животными. Таким образом, все, что воздух дает растениям, растения уступают животным, животные же возвращают воздуху; вечный круг, в котором жизнь трепещет и выявляется, но где материя только меняет свое место».
Как ни велико значение круговорота газов, этим обмен веществ между живыми организмами и окружающей средой не ограничивается. Следующий шаг в познании биогеохимических циклов на суше связан с исследованиями выдающегося немецкого химика Ю. Либиха. Он показал, что химические элементы поступают в растения двумя путями: одни как углерод из воздуха, другие - в виде водных растворов из почвы. Ю. Либих провел широкие исследования, последовательно определив состав почв и содержание минеральных веществ в разных органах растений и животных, продуктах их жизнедеятельности. По существу, он впервые применил метод сопряженного анализа, широко используемый в современной геохимии ландшафтов. Многочисленными экспериментами он доказал, что растения избирательно поглощают из почвы химические элементы. На основании этого открытия Ю. Либих разработал широко известную теорию минерального питания растений и положил начало изучению циклической миграции элементов в системе почва-растения-почва, получившей позже название биологического круговорота /7,9/.
Значение работ Ю. Либиха для биогеохимии трудно переоценить. Он наметил пути экспериментального изучения биогеохимических циклов большей части химических элементов, перевел проблему взаимодействия живых организмов и минеральной природы из области философских построений в плоскость конкретных научных исследований и практической деятельности. После его работ биологический круговорот химических элементов приобрел осязаемую реальность. Либих показал, как человек может им управлять, искусственно вводя в миграционные циклы дополнительные массы элементов. В его знаменитой книге «Химия в приложении к земледелию и физиологии растений», изданной в Германии в 1840 г., впервые была предпринята попытка рассмотреть судьбу народов и стран в связи с нарушением естественного массообмена отдельных химических элементов. Аналитическое мастерство, широкая эрудиция, научная целеустремленность покоряют и современного читателя его трудов /7,10/.
Руководствуясь фундаментальными законами физики и идеей изменения, биолог Г. Спенсер, более известного как философ, сформулировал понятие эволюции как «интеграции материи, сопровождаемой рассеянием движения, переводящей материю из неопределённой, бессвязной однородности в определённую, связную разнородность, и производящей параллельно тому преобразование сохраняемого материей движения».
Он считал, что все элементы материального мира имеют общее происхождение, но через наследование черт, приобретённых в процессе адаптации к окружающей среде, происходит их дифференциация. Когда же процесс приспособления заканчивается, то возникает связная, упорядоченная Вселенная /8, 500/.
На стыке XIX и XX столетий начала размываться видимая прежде граница традиционными естественными науками, такими как геология, химия и биология, и многие исследования стали выполняться в пограничных областях, что привело к появлению новых междисциплинарных наук.
В 80-х гг. XIX в. в России возникло генетическое почвоведение. Его основатель - яркий и оригинальный ученый, профессор Петербургского университета В.В. Докучаев рассматривал образование (генезис) почвы как результат взаимодействия многих факторов-почвообразователей: почвообразующей горной породы, растений и животных, климатических условий, форм рельефа, грунтовых вод.
Учение В.В. Докучаева углубило и конкретизировало представления великих химиков о деятельности живых организмов на примере широко распространенного природного образования - почвенного покрова суши. Одновременно впервые было показано неразрывное единство живых организмов с другими компонентами природной системы и невозможность существования этой системы без явлений жизни.
К.А. Тимирязев в своих исследованиях показал разложение под влиянием солнечной энергии атмосферной углекислоты зелёными растениями /3,12/.
Таковы основные вехи развития научной мысли о планетарном значении жизнедеятельности организмов и их тесной взаимосвязи с неживым веществом окружающей среды. Многочисленные, но разрозненные и трудно сопоставимые факты и гипотезы нуждались в обобщении на новой методологической основе. Эту основу предоставила геохимия.
Согласно принципам этой науки, любой объект можно охарактеризовать соотношением образующих его атомов химических элементов. Геохимический подход позволяет сопоставлять и сравнивать самые различные природные тела и процессы. В частности, определив средний суммарный состав живых организмов Земли и сопоставив его со средним составом земной коры, можно оценить направленность геохимической деятельности живого вещества во времени. Определив массы химических элементов, ежегодно захватываемых приростом растительности Мировой суши, и массы этих же элементов, выносимых с годовым стоком всех рек, можно получить представление о значимости каждого из планетарных процессов. Геохимический подход дает возможность объективно, на строго научной основе оценить планетарный эффект деятельности живого вещества или отдельных групп живых организмов /7,10/.
Развитие геохимии в разных странах шло различными путями. В США было положено начало статистическому изучению распределения химических элементов в геологических породах. Химик геологической службы США Ф.У. Кларк с целью установления средних значений концентрации десяти главных химических элементов в основных типах горных пород, природных водах и других объектах в 80-х гг. XIX в. приступил к обобщению имевшихся аналитических данных. С 1889 г. по 1924 г. он несколько раз публиковал все более обоснованные сведения о среднем содержании химических элементов. Книга Ф. Кларка «The Date of Geochemistry» явилась первым объективным обоснованием закономерностей распределения главных химических элементов в земной коре.
В Европе геохимия складывалась на базе минералогии - науки о природных химических соединениях и процессах их образования. По этой причине главное внимание уделялось процессам, определявшим распределение химических элементов.
В Норвегии при университете в Осло сложилась сильная научная школа минералогов и химиков, представители которой изучали распределение и соотношение элементов в связи с физико-химическими процессами рудо- и породообразования. В недрах этой научной школы сформировался как ученый выдающийся геохимик В.М. Гольдшмидт. Он разработал учение о глобальных закономерностях распределения химических элементов в зависимости от строения их атомов и ионов /7,11/.
В России становление В.И. Вернадский проводил минералогические исследования в Московском университете. Исследуя происхождение минералов, он изучал миграцию химических элементов, роль изоморфизма в распределении элементов в земной коре, формы химических минералов и их присутствие в различных породах.
Эти исследования во многом определили возникновение биогеохимии. Базовым ядром научной концепции В.И. Вернадского, положенным в основу генетической минералогии, геохимии и в дальнейшем биогеохимии и науке о биосфере, была научная идея о тесном переплетении всех природных факторов и о преобладающей роли живого вещества в формировании биосферы в целом.
В1918-1919 гг. он организовал первые биогеохимические исследования в Крымском (Таврическом) университете. В начале 1920 годов В.И. Вернадский пропагандировал свои биогеохимические идеи в Санкт-Петербурге и Праге, а затем и в Сорбонне, где он читал первый курс по биогеохимии в 1926-1927 гг.
В 1928 г. Была организована Биогеохимическая лаборатория Академии наук СССР, и В.И. Вернадский возглавил эту лабораторию вплоть до его кончины в 1945 г. Научная программа лаборатории по количественной оценке химического состава живых организмов начала выполняться в СССР в начале 30-х годов XX в. Эта программа послужила основой широких биогеохимических исследований как в России (СССР), так и во многих странах мира во второй половине XX в.
Перечисленные направления геохимии сыграли важную роль в формировании биогеохимии /3,13/.
Живое вещество. Аспекты геохимической деятельности организмов. Сфера обитания организмов. Биогеохимические процессы. Связь биогеохимии с другими науками. Биогеохимические циклы миграции. Основные задачи биогеохимии. Практическое значение биогеохимии. презентация [305,9 K], добавлен 08.08.2015
Понятие биогеохимии, предмет изучения, ее основоположник Вернадский. Массообмен химических элементов между живыми организмами и окружающей средой, цикличность биогеохимических процессов. Соотношение биогеохимии с геохимией, биологией, почвоведением. реферат [26,2 K], добавлен 16.08.2009
Характер происхождения жизни, основные функции живого вещества. Привнесение на Землю живого вещества из глубин космоса. Доказательства реального существования всепроникающего биологического поля. Многообразие видов на Земле. Человек как часть биосферы. контрольная работа [48,1 K], добавлен 19.06.2012
Один из представителей русского космизма, создатель науки биогеохимии русский ученый академик Владимир Иванович Вернадский. Особенности теории биосферы, характеристика ее компонентов. Возникновение и строение биосферы. Роль живого вещества в биосфере. презентация [3,5 M], добавлен 07.12.2014
Понятие биосферы как оболочки Земли, ее состав и структура. Особенности учения о биосфере В.И. Вернадского. Взаимосвязь эволюции биосферы с эволюцией форм живого вещества. Ресурсы биосферы — особый компонент природной среды. Пределы устойчивости биосферы. реферат [24,9 K], добавлен 13.04.2014
Основа организации и устойчивости биосферы, распределение и классификация живого вещества. Миграция живых организмов, постоянство их биомассы. Фотосинтез - основное звено биохимического круговорота в природе. Функции живого вещества в биосфере Земли. реферат [23,7 K], добавлен 25.11.2010
Этапы зарождения и развития жизни на Земле, отличительные свойства живого вещества. Основные положения теории перехода от биосферы к ноосфере французского математика и философа Эдуарда Леруа. Единство биосферы и человечества в
Биогеохимия: история и современность реферат. Биология и естествознание.
Страховые Случаи Курсовая
Животным Лучше Жить В Дикой Природе Эссе
Реферат: Тормозная система
Курсовая работа по теме Назначение программ, входящих в пакет Microsoft Office 2007
Отчет По Практике Екатеринбурга
Реферат На Тему Особо Охраняемые Территории
Реферат: US Foreign Policies Essay Research Paper Speaker
Доклад: Нумизматика
Отчет по практике: Оценка физиологического состояния спортсменов до и после максимальной и стандартной физической нагрузки
Реферат по теме Деградация научных степеней в Киргизии
Реферат: The Noble Savage In Mary Shelley
Реферат: Nineteen EightyFour A Grim Prediction Of The
Дипломная работа по теме Разработка эффективной рекламной кампании
Дипломная работа по теме Анализ финансовой устойчивости ООО 'Балтийский МясоПродукт'
Реферат: Челобитный приказ
Реферат по теме Рентгенодиагностика и лечение переломов
Курсовая Работа На Тему Проблемы Семей Имеющих Подростков
Шпаргалка: Шпаргалка по Гистологии клетки
Сочинение Смерть Екатерины Это Сила Или Слабость
Реферат: Брикнер, Александр Густавович
Техническая экспертиза на соответствие пожарной безопасности склада готовой продукции №3 пивоваренного завода "Heineken" - Безопасность жизнедеятельности и охрана труда контрольная работа
Сравнение требуемой и фактической степени огнестойкости зданий - Безопасность жизнедеятельности и охрана труда лабораторная работа
Проблема влияния неблагоприятных природных факторов на здоровье населения - Безопасность жизнедеятельности и охрана труда дипломная работа


Report Page