Биогеохимические круговороты веществ в природе - Экология и охрана природы реферат

Биогеохимические круговороты веществ в природе - Экология и охрана природы реферат




































Главная

Экология и охрана природы
Биогеохимические круговороты веществ в природе

Характеристика большого и малого круговоротов (воды, углерода, кислорода, азота, фосфора, серы, неорганических катионов), их особенности, взаимосвязи, структура потоков и их значение. Антропогенный круговорот ксенобиотиков (ртути, свинца, хрома).


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Характеристика большого и малого круговоротов
Все вещества на нашей планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ:
1) Большой (геологический или абиотический);
2) Малый (биотический, биогенный или биологический).
Круговороты веществ и потоки космической энергии создают устойчивость биосферы. Круговорот твердого вещества и воды, происходящий в результате действия абиотических факторов (неживой природы), называют большим геологическим круговоротом. При большом геологическом круговороте (протекает миллионы лет) горные породы разрушаются, выветриваются, вещества растворяются и попадают в Мировой океан; протекают геотектонические изменения, опускание материков, поднятие морского дна. Время круговорота воды в ледниках 8 000 лет, в реках - 11 дней. Именно большой круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.
Большой, геологический круговорот в биосфере характеризуется двумя важными моментами:
а) осуществляется на протяжении всего геологического развития Земли;
б) представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.
На современном этапе развития человечества в результате большого круговорота на большие расстояния переносятся также загрязняющие вещества - оксиды серы и азота, пыль, радиоактивные примеси. Наибольшему загрязнению подверглись территории умеренных широт Северного полушария.
Малый, биогенный или биологический круговорот веществ происходит в твердой, жидкой и газообразных фазах при участии живых организмов. Биологический круговорот в противоположность геологическому требует меньших затрат энергии. Малый круговорот является частью большого, происходит на уровне биогеоценозов (внутри экосистем) и заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела. Продукты распада органического вещества разлагаются до минеральных компонентов. Малый круговорот незамкнут , что связано с поступлением веществ и энергии в экосистему извне и с выходом части их в биосферный круговорот.
В большом и малом круговоротах участвует множество химических элементов и их соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы и азота (их оксиды - главнейшие загрязнители атмосферы ), а также фосфора (фосфаты -главный загрязнитель материковых вод) . Практически все загрязняющие вещества выступают как вредные, и их относят к группе ксенобиотиков. В настоящее время большое значение имеют круговороты ксенобиотиков - токсичных элементов - ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина) . Кроме того, из большого круговорота в малый поступают многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.), которые причиняют вред биоте и здоровью человека.
Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - созидания органического вещества и его разрушения живым веществом.
В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты . Круговорот химических веществ из неорганической среды через растительность и животных обратно в неорганическую среду с использованием солнечной энергии химических реакций называется биогеохимическим циклом .
Настоящее и будущее нашей планеты зависит от участия живых организмов в функционировании биосферы. В круговороте веществ живое вещество, или биомасса, выполняет биогеохимические функции: газовую, концентрационную, окислительно-восстановительную и биохимическую.
Биологический круговорот происходит при участии живых организмов и заключается в воспроизводстве органического вещества из неорганического и разложении этого органического до неорганического посредством пищевой трофической цепи. Интенсивность продукционных и деструкционных процессов в биологическом круговороте зависит от количества тепла и влаги. Например, низкая скорость разложения органического вещества полярных районов зависит от дефицита тепла.
Важным показателем интенсивности биологического круговорота является скорость обращения химических элементов. Интенсивность характеризуется индексом , равным отношению массы лесной подстилки к опаду . Чем больше индекс, тем меньше интенсивность круговорота.
Индекс в хвойных лесах - 10 - 17; широколиственных 3 - 4; саванне не более 0,2; влажных тропических лесах не более 0,1 , т.е. здесь биологический круговорот наиболее интенсивный.
Поток элементов (азота, фосфора, серы) через микроорганизмы на порядок выше, чем через растения и животных. Биологический круговорот не является полностью обратимым, он тесно связан с биогеохимическим круговоротом. Химические элементы циркулируют в биосфере по различным путям биологического круговорота:
поглощаются живым веществом и заряжаются энергией;
покидают живое вещество, выделяя энергию во внешнюю среду.
Эти циклы бывают двух типов: круговорот газообразных веществ; осадочный цикл (резерв в земной коре).
Сами круговороты состоят из двух частей:
- резервного фонда (это часть вещества, не связанная с живыми организмами);
- подвижного (обменного) фонда (меньшая часть вещества, связанная с прямым обменом между организмами и их непосредственным окружением).
- круговороты газового типа с резервным фондом в земной коре (круговороты углерода, кислорода, азота) - способны к быстрой саморегуляции;
- круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.) - более инертны, основная масса вещества находится в «недоступном» живым организмам виде.
Круговороты также можно разделить на:
- замкнутые (круговорот газообразных веществ, например, кислорода, углерода и азота - резерв в атмосфере и гидросфере океана, поэтому нехватка быстро компенсируется);
- незамкнутые (создающие резервный фонд в земной коре, например, фосфор - поэтому потери плохо компенсируются, т.е. создается дефицит).
Энергетической основой существования биологических круговоротов на Земле и их начальным звеном является процесс фотосинтеза. Каждый новый цикл круговорота не является точным повторением предыдущего. Например, в ходе эволюции биосферы часть процессов имела необратимый характер, в результате чего происходило образование и накопление биогенных осадков, увеличение количества кислорода в атмосфере, изменение количественных соотношений изотопов ряда элементов и т.д.
Циркуляцию веществ принято называть биогеохимическими циклами . Основные биогеохимические (биосферные) циклы веществ: цикл воды, цикл кислорода, цикл азота (участие бактерий-азотфиксаторов), цикл углерода (участие аэробных бактерий; ежегодно около 130 т углерода сбрасывается в геологический цикл ), цикл фосфора (участие почвенных бактерий; ежегодно в океаны вымывается 14 млн.т фосфора), цикл серы, цикл катионов металлов.
Круговорот воды - замкнутый цикл, который может совершаться, как было сказано выше, и в отсутствии жизни, но живые организмы видоизменяют его.
Круговорот основан на принципе : суммарное испарение компенсируется выпадением осадков . Для планеты в целом испарение и осадки уравновешивают друг друга . При этом из океана испаряется воды больше, чем возвращается с осадками. На суше, наоборот, больше выпадает осадков, но излишек стекает в озера и реки, а оттуда снова в океан. Баланс влаги между континентами и океанами поддерживается речным стоком.
Таким образом, глобальный гидрологический цикл имеет четыре основных потока: осадки, испарение, влагоперенос, транспирация.
Вода - самое распространенное вещество в биосфере - служит не только средой обитания для многих организмов, но и является составной частью тела всех живых существ. Несмотря на огромное значение воды во всех жизненных процессах, происходящих в биосфере, живое вещество не играет определяющей роли в большом круговороте воды на земном шаре. Движущей силой этого круговорота является энергия солнца , которая тратится на испарение воды с поверхности водяных бассейнов или суши. Испарившаяся влага конденсируется в атмосфере в виде облаков, переносимых ветром; при охлаждении облаков выпадают осадки.
Общее количество свободной несвязанной воды (доля океанов и морей, где жидкая соленая вода), приходится от 86 до 98 %. Остальное количество воды (пресная вода) хранится в полярных шапках и ледниках и образует водные бассейны и ее грунтовые воды. Выпадающие на поверхность суши, покрытой растительностью, осадки частично задерживаются листовой поверхностью и в дальнейшем испаряются в атмосферу. Влага, достигшая почвы, может присоединиться к поверхностному стоку или поглотиться почвой. Полностью поглотившись почвой (это зависит от типа почв, особенности горных пород и растительного покрова), избыток осадка может просочиться вглубь, к грунтовым водам. Если количество выпавших осадков превышает влагоемкость верхних слоев почвы, начинается поверхностный сток, скорость которого зависит от состояния почвы, крутизны склона, продолжительности осадков и характера растительности (растительность может предохранить почву от водной эрозии). Вода, задержавшаяся в почве, может испаряться с ее поверхности или, после поглощения корнями растений, транспирироваться (испаряться) в атмосферу через листья.
Транспирационный ток воды (почва - корни растений - листья -атмосфера) представляет собой основной путь воды через живое вещество в ее большом круговороте на нашей планете.
От свойств и особенностей углерода зависит все многообразие органических веществ, биохимических процессов и жизненных форм на Земле. Содержание углерода в большинстве живых организмов составляет около 45 % от сухой их биомассы. В круговороте органического вещества и всего углерода Земли участвует все живое вещество планеты, которое непрерывно возникает, видоизменяется, погибает, разлагается и в такой последовательности происходит перенос углерода с одного органического вещества на построение другого по цепи питания. Кроме того, все живое дышит, выделяя углекислый газ.
Круговорот углерода на суше . Круговорот углерода поддерживается благодаря фотосинтезу наземными растениями и океанским фитопланктоном. Поглощая углекислоту (фиксируя неорганический углерод), растения с помощью энергии солнечного света преобразуют ее в органические соединения - создавая свою биомассу. Ночью же растения, как и все живое, дышат, выделяя углекислый газ.
Большая часть первичной продукции - биомассы растительности (содержащей органический углерод) - поедается растительноядными животными, которые строят свою биомассу, содержащую органический углерод, далее в свою очередь поедаемые организмами следующих звеньев сложных трофических цепей, образованных консументами второго, третьего и т.д. порядков. Организмы каждого трофического уровня используют энергию, заключенную в веществах тела своих жертв или хозяев (паразиты) и выделяют в атмосферу углекислый газ, образующийся в процессе дыхания.
Отмершие растения, трупы и экскременты животных служат пищей для многочисленных гетеротрофных организмов (животных, растений-сапрофитов, грибов, микроорганизмов). Все эти организмы обитают в основном в почве и в процессе жизнедеятельности создают свою биомассу, в состав которой входит органический углерод. Они также выделяют углекислый газ, создавая «почвенное дыхание». Часто мертвое органическое вещество не полностью разлагается и в почвах накапливается гумус (перегной), играющий важную роль в плодородии почв. Степень минерализации и гумификации органических веществ зависит от многих факторов: влажности, температуры, физических свойств почвы, состава органических остатков и т.д . Под действием бактерий и грибов гумус может разлагаться до углекислоты и минеральных соединений.
Круговорот углерода в Мировом океане. Круговорот углерода в океане отличается от круговорота на суше. В океане слабое звено организмов высших трофических уровней, следовательно, и все звенья круговорота углерода . Время прохождения углерода через трофическое звено океана непродолжительно, а количество выделяемого углекислого газа незначительно.
Океан выполняет роль основного регулятора содержания углекислого газа в атмосфере. Между океаном и атмосферой происходит интенсивный обмен углекислого газа. Воды океана имеют большую растворяющую способность и буферную емкость. Система, состоящая из угольной кислоты и ее солей (карбонатов) является своеобразным депо углекислоты, связана с атмосферой через диффузию СО? из воды в атмосферу и обратно.
В океане днем интенсивно протекает фотосинтез фитопланктона, при этом свободная углекислота усиленно расходуется, карбонаты служат дополнительным источником ее образования. Ночью при увеличении содержания свободной кислоты за счет дыхания животных и растений значительная ее часть снова входит в состав карбонатов. Происходящие процессы идут в направлениях: живое вещество- СО?- Н?СО?- Са(НСО?)?- СаСО?.
В природе некоторое количество органического вещества не подвергается минерализации в результате недостатка кислорода, большой кислотности среды, специфических условий захоронения и т.д. Часть углерода выходит из биологического круговорота в виде неорганических (известняки, мел, кораллы) и органических (сланцы, нефть, уголь) отложений.
Деятельность человека вносит существенные изменения в круговорот углерода на нашей планете. Изменяются ландшафты, типы растительности, биоценозы и их пищевые цепи, осушаются или орошаются огромные площади поверхности суши, улучшается (или ухудшается) плодородие почв, вносятся удобрения и пестициды и т.д. Наиболее опасно поступление углекислого газа в атмосферу в результате сжигания топлива. При этом увеличивается скорость круговорота углерода и укорачивается его цикл .
Кислород является обязательным условием существования жизни на Земле. Он входит практически во все биологические соединения, участвует в биохимических реакциях окисления органических веществ, обеспечивающих энергией все процессы жизнедеятельности организмов биосферы. Кислород обеспечивает дыхание животных, растений и микроорганизмов в атмосфере, почве, воде, участвует в химических реакциях окисления, происходящих в горных породах, почвах, илах, водоносных горизонтах.
Основные ветви круговорота кислорода:
- образование свободного кислорода при фотосинтезе и его поглощение в процессе дыхания живых организмов (растений, животных, микроорганизмов в атмосфере, почве, воде);
- создание окислительно-восстановительных зональностей;
- окисление окиси углерода при извержении вулканов, накопление сульфатных осадочных пород, расход кислорода в человеческой деятельности и т.д.; везде участвует молекулярный кислород фотосинтеза.
Азот входит в состав биологически важных органических веществ всех живых организмов: белков, нуклеиновых кислот, липопротеидов, ферментов, хлорофилла и т.д. Несмотря на содержание азот (79 %) в составе воздуха, он является дефицитным для живых организмов.
Азот в биосфере находится в недоступной для организмов газообразной форме (N2) - химически мало активной, поэтому он не может непосредственно использоваться высшими растениями (и большинством низших растений) и животным миром. Растения усваивают азот из почвы в виде ионов аммония или нитратных ионов , т.е. так называемый фиксированный азот .
Различают атмосферную, промышленную и биологическую фиксации азота .
Атмосферная фиксация происходит при ионизации атмосферы космическими лучами и при сильных электрических разрядах во время гроз, при этом из молекулярного азота воздуха образуются оксиды азота и аммиака, которые благодаря атмосферным осадкам превращаются в аммонийный , нитритный , нитратный азот и попадают в почву и водные бассейны.
Промышленная фиксация происходит в результате хозяйственной деятельности человека. Атмосфера загрязняется соединениями азота заводами, производящими азотные соединения. Горячие выбросы ТЭЦ, заводов, космических аппаратов, сверхзвуковых самолетов окисляют азот воздуха. Оксиды азота, взаимодействуя с парами воды воздуха с осадками возвращаются на землю, попадают в почву в ионной форме.
Биологическая фиксация играет основную роль в круговороте азота . Ее осуществляют почвенные бактерии:
1) азотфиксирующие бактерии (и сине-зеленые водоросли);
2) микроорганизмы, живущие в симбиозе с высшими растениями (клубеньковые бактерии);
Свободно живущие в почве азотфиксирующие аэробные ( существующие в присутствии кислорода ) бактерии (Azotobacter) способны осуществлять фиксацию молекулярного азота атмосферы за счет энергии, получаемой при окислении органических веществ почвы в процессе дыхания, в конечном итоге связывая его с водородом и вводя в виде аминогруппы (-NH2) в состав аминокислот своего тела. Молекулярный азот способен фиксировать и некоторые анаэробные (живущие в отсутствие кислорода) бактерии , существующие в почве (Clostridium). Отмирая, и те и другие микроорганизмы обогащают почву органическим азотом.
К биологической фиксации молекулярного азота способны и сине-зеленые водоросли , особенно важные для почв рисовых полей.
Наиболее эффективно биологическая фиксация атмосферного азота протекает у бактерий, живущих в симбиозе в клубеньках бобовых растений ( клубеньковые бактерии ).
Эти бактерии (Rizobium) используют энергию растения-хозяина для фиксации азота, в то же время снабжая наземные органы хозяина доступными ему соединениями азота. Усваивая соединения азота из почвы в нитратной и аммонийной формах, растения строят необходимые азотсодержащие соединения своего тела (нитратный азот в клетках растений предварительно восстанавливается). Растения-продуценты снабжают азотистыми веществами весь животный мир и человечество. Погибшие растения используются, согласно трофической цепи, биоредуцентами.
Аммонифицирующие микроорганизмы разлагают органические вещества, содержащие азот (аминокислоты, мочевину), с образованием аммиака. Часть органического азота в почве не минерализуется, а превращается в гумусовые вещества, битумы и компоненты осадочных пород.
Аммиак (в виде аммонийного иона) может поступить в корневую систему растений, или использоваться в процессах нитрификации.
Нитрифицирующие микроорганизмы являются хемосинтетиками, используют энергию окисления аммиака до нитратов и нитритов до нитратов для обеспечения всех процессов жизнедеятельности. За счет этой энергии нитрификаторы восстанавливают углекислый газ и строят органические вещества своего тела. Окисление аммиака при нитрификации протекает по реакциям:
2NH? + 3O? > 2HNO? + 2H?O + 600 кДж (148 ккал).
2HNO? + O? > 2HNO? + 198 кДж (48 ккал).
Нитраты, образовавшиеся в процессах нитрификации, вновь поступают в биологический круговорот, поглощаются из почвы корнями растений или после поступления с водным стоком в водные бассейны- фитопланктоном и фитобентосом.
Наряду с организмами, фиксирующими атмосферный азот и нитрифицирующие его, в биосфере существуют микроорганизмы, способные восстанавливать нитраты или нитриты до молекулярного азота. Такие микроорганизмы, называемые денитрификаторами, при недостатке свободного кислорода в водах или почве используют кислород нитратов для окисления органических веществ :
5C?H??O?(глюкоза) + 24KNO? > 24KHCO? + 6CO? + 12N? + 18H?O + энергия
Освобождающаяся при этом энергия служит основой всей жизнедеятельности денитрифицирующих микроорганизмов.
Таким образом, во всех звеньях круговорота исключительную роль играют живые вещества.
В настоящее время все большую роль в азотном балансе почв и, следовательно, во всем круговороте азота в биосфере играет промышленная фиксация атмосферного азота человеком.
Круговорот фосфора более прост. В то время как резервуаром азота служит воздух, резервуар фосфора - это горные породы, из которых он высвобождается при эрозии.
Углерод, кислород, водород и азот легче и быстрее мигрируют в атмосфере, так как находятся в газообразной форме, образуя в биологических круговоротах газообразные соединения. Для всех остальных элементов, кроме серы необходимых для существования живого вещества, в биологических круговоротах нехарактерно образование газообразных соединений. Эти элементы мигрируют в основном в виде ионов и молекул, растворенных в воде.
Фосфор, усваиваемый растениями в виде ионов ортофосфорной кислоты принимает большое участие в жизнедеятельности всех живых организмов. Он входит в состав АДФ, АТФ, ДНК, РНК и др. соединения.
Круговорот фосфора в биосфере является незамкнутым . В наземных биогеоценозах фосфор после поглощения растениями из почвы по пищевой цепи вновь поступает в виде фосфатов в почву. Основное количество фосфора вновь поглощается корневой системой растений. Частично фосфор может вымываться со стоком дождевых вод из почвы в водные бассейны. В естественных биогеоценозах часто испытывается недостаток фосфора, причем в щелочной и окисленной среде он находится обычно в виде нерастворимых соединений.
Большое количество фосфатов содержат горные породы литосферы. Часть их постепенно переходит в почву, часть разрабатывается человеком для производства фосфорных удобрений, большая часть выщелачивается и вымывается в гидросферу. Там они используются фитопланктоном и связанными с ними организмами, находящимися на разных трофических уровнях сложных пищевых цепей.
В Мировом океане потери фосфатов из биологического круговорота происходят за счет отложений остатков растений и животных на больших глубинах. Поскольку фосфор перемещается, в основном, из литосферы в гидросферу с водой, то в литосферу он мигрирует биологическим путем (поедание рыб морскими птицами, использование бентосных водорослей и рыбной муки в качестве удобрения и т.д.).
Из всех элементов минерального питания растений фосфор можно считать дефицитным.
Для живых организмов сера играет большое значение, т. к. она входит в состав серосодержащих аминокислот (цистина, цистеина, метионина и др.). Находясь в составе белков, серосодержащие аминокислоты поддерживают необходимую трехмерную структуру белковых молекул.
Сера усваивается растениями из почвы только в окисленной форме, в виде иона . В растениях сера восстанавливается и входит в состав аминокислот в виде сульфгидрильных (-SH) и дисульфидных (-S-S-) групп.
Животные усваивают только восстановленную серу , находящуюся в составе органических веществ. После отмирания растительных и животных организмов сера возвращается в почву, где в результате деятельности многочисленных форм микроорганизмов подвергается преобразованиям.
В аэробных условиях некоторые микроорганизмы окисляют органическую серу до сульфатов. Сульфатные ионы, абсорбируясь корнями растений, вновь включаются в биологический круговорот. Часть сульфатов может включаться в водную миграцию и выноситься из почвы. В почвах, богатых гумусовыми веществами, значительное количество серы находится в органических соединениях, что препятствует ее вымыванию.
В анаэробных условиях при разложении органических соединений серы образуется сероводород. Если сульфаты и органические вещества находятся в бескислородной среде, то активируется деятельность сульфатредуцирующих бактерий. Они используют кислород сульфатов для окисления органических веществ и получают таким образом необходимую для своего существования энергию.
Сульфатредуцирующие бактерии распространены в подземных водах, в илах и застойных морских водах. Сероводород является ядом для большинства живых организмов, поэтому его накопление в залитой водой почве, озерах, лиманах и т.д. значительно снижает или даже полностью прекращает жизненные процессы. Такое явление наблюдается в Черном море на глубине ниже 200 м от его поверхности.
Таким образом, для создания благоприятной среды необходимо окисление сероводорода до сульфатных ионов, что уничтожит вредное действие сероводорода, сера перейдет в доступную для растений форму - в виде сернокислых солей. Эту роль выполняет в природе особая группа серобактерий (бесцветные, зеленые, пурпурные) и тионовые бактерии.
Бесцветные серобактерии являются хемосинтетиками : они используют энергию, получаемую при окислении кислородом сероводорода до элементарной серы и при дальнейшем ее окислении до сульфатов.
Окрашенные серобактерии являются фотосинтезирующими организмами , которые используют сероводород в качестве донора водорода для восстановления углекислоты. Образующаяся элементарная сера у зеленых серобактерий выделяется из клеток, у пурпурных накапливается внутри клеток.
Суммарная реакция этого процесса - фоторедукция:
Тионовые бактерии окисляют за счет свободного кислорода элементарную серу и ее различные восстановленные соединения до сульфатов, возвращая ее снова в основное русло биологического круговорота.
В процессах биологического круговорота, где происходит превращение серы, огромную роль играют живые организмы, особенно микроорганизмы.
Главным накопителем серы на нашей планете является Мировой океан, т. к. в него из почвы непрерывно поступают сульфат-ионы. Часть серы из океана возвращается на сушу через атмосферу по схеме сероводород - окисление его до двуокиси серы - растворение последней в дождевой воде с образованием серной кислоты и сульфатов - возвращение серы с атмосферными осадками в почвенный покров Земли.
Жизненно важными кроме основных элементов, входящих в состав живых организмов (углерода, кислорода, водорода, фосфора и серы), являются и многие другие макро- и микроэлементы - неорганические катионы. В водных бассейнах растения получают необходимые им катионы металлов непосредственно из окружающей среды . На суше главным источником неорганических катионов служит почва , которая получила их в процессе разрушения материнских пород. В растениях поглощенные корневыми системами катионы передвигаются в листья и другие органы; некоторые из них (магний, железо, медь и ряд других) входят в состав биологически важных молекул (хлорофилла, ферментов); другие, оставаясь в свободном виде, участвуют в поддержании необходимых коллоидных свойств протоплазмы клеток и выполняют иные разнообразные функции.
При отмирании живых организмов неорганические катионы в процессе минерализации органических веществ возвращаются в почву. Потери этих компонентов из почвы происходят в результате выщелачивания и выноса катионов металлов с дождевыми водами, отторжения и выноса органического вещества человеком при возделывании сельскохозяйственных растений, рубке леса, скашивании трав на корм скоту и т.д.
Рациональное применение минеральных удобрений, мелиорация почв, внесение органических удобрений, правильная агротехника помогут восстановить и поддержать баланс неорганических катионов в биоценозах биосферы.
Антропогенный круговорот: круговорот ксенобиотиков
Человечество является частью природы и может существовать только в постоянном взаимодействии с ней.
Существуют сходства и противоречия между естественным и антропогенным круговоротом веществ и энергии, совершающихся в биосфере.
Естественный (биогеохимический) круговорот жизни имеет следующие особенности :
- использование солнечной энергии в качестве источника жизни и все ее проявления на основе термодинамических законов;
- он осуществляется безотходно, т.е. все продукты его жизнедеятельности, минерализуются и снова включаются в следующий цикл круговорота веществ. При этом за пределы биосферы удаляется отработанная, обесцененная тепловая энергия . При биогеохимическом круговороте веществ образуются отходы, т.е. запасы в виде каменного угля, нефти, газа и других минеральных ресурсов. В отличие от безотходного естественного круговорота антропогенный круговорот сопровождается увеличивающимися с каждым годом отходами.
В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, т. к. с вулканическими газами в воздух поступают нужные элементы (например, азот).
Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии.
Огромную роль на биогеохимический круговорот оказывает человек, но в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила - разрушительная по отношению к биосфере. В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается .
Антропогенный круговорот не ограничивается энергией солнечного света, улавливаемой зелеными растениями планеты. Человечество использует энергию топлива, гидро- и атомных станций.
Можно утверждать, что антропогенная деятельность на современном этапе представляет собой огромную разрушительную для биосферы силу.
Биосфера обладает особенным свойством - значительной устойчивостью по отношению к загрязняющим веществам. Эта устойчивость основана на естественной способности различных компонентов природной среды к самоочищению и самовосстановлению. Но не безгранично. Возможный глобальный кризис вызвал необходимость построения математической модели биосферы как единого целого (система «Гея») с целью получения информации о возможном состоянии биосферы.
Ксенобиотик - чужеродное для живых организмов вещество, появляющееся в результате антропогенной деятельности (пестициды, препараты бытовой химии и другие загрязнители), способное вызывать нарушение биотических процессов, в т.ч. заболевание или гибель организма. Такие загрязнители не подвергаются биодеградации, а аккумулируются в трофических цепях.
Ртуть - весьма редкий элемент. Она рассеяна в земной коре и только в немногих минералах, таких как киноварь, содержится в концентрированном виде. Ртуть участвует в круговороте вещества в биосфере, мигрируя в газообразном состоянии и в водных растворах.
В атмосферу она поступает из гидросферы при испарении, при выделении из киновари, с вулканическими газами и газами из термальных источников. Часть газообразной ртути в атмосфере перех
Биогеохимические круговороты веществ в природе реферат. Экология и охрана природы.
Оплата Труда Реферат
Требования к организации рабочего места менеджера
Реферат: Современные проблемы и основные направления совершенствования защиты информации
Испарение с поверхности воды и почвы и растениями. Суточный и годовой ход испарения. Ядра конденсации. Первичные продукты сгущения водяного пара.
Реферат: Три поколения композиторов-романтиков и их отношение к синтетическим жанрам
Реферат по теме Личная гигиена пациентов и обслуживающего персонала
Стоит Ли Меня Себя Ради Любви Сочинение
Курсовая работа: Налоговый контроль и налоговая ответственность
Реферат: Синдром дефицита внимания и гиперактивности. Скачать бесплатно и без регистрации
Скачать Павлова Сочинение
Тепляков Диссертация
Курсовая работа по теме Система севооборотов в интенсивном земледелии
Реферат: Frankenstein A Modern Perspective Essay Research Paper
Брэдбери Собрание Сочинений Скачать Торрент
Контрольная работа по теме Теоретико-методологические основы социологии журналистики
Реферат На Тему Схемотехніка Тригерів На Дискретних Та Інтегральних Мікросхемах
Курсовая работа по теме Жесты и мимика
Доклад: Шпили эпохи Сталина
Сочинение О Добре 6 Класс
Осенний Ветер Сочинение 4 Класс
Проектное управление предприятием - Менеджмент и трудовые отношения дипломная работа
Довідкова система текстового редактора - Программирование, компьютеры и кибернетика презентация
Конфликты в коллективе - Менеджмент и трудовые отношения реферат


Report Page