Big Data. Часть 3. Использование данных в бизнесе и борьбе с преступностью.

Big Data. Часть 3. Использование данных в бизнесе и борьбе с преступностью.

Тимур Тураталиев

Big Data в торговле

Понимание пользовательских запросов и таргетинг — одна из самых больших и максимально освещенных широкой публике областей применения инструментов Big Data. Большие Данные помогают анализировать клиентские привычки, чтобы в дальнейшем лучше понимать запросы потребителей. Компании стремятся расширить традиционный набор данных информацией из социальных сетей и историей поиска браузера, с целью формирования максимально полной клиентской картины. Иногда крупные организации в качестве глобальной цели выбирают создание собственной предсказательной модели.

Например, сети магазинов Target с помощью глубинного анализа данных и собственной системы прогнозирования удается с высокой точностью определить — беременна женщина или нет. За каждым клиентом закрепляется ID, который в свою очередь привязан к кредитке, имени или электронной почте. Идентификатор служит своеобразной корзиной покупок, где хранится информация обо всем, что когда-либо человек приобрел. Специалистами сети установлено, что женщины в положении активно приобретают неароматизированные средства перед вторым триместром беременности, а в течение первых 20 недель налегают на кальциевые, цинковые и магниевые добавки. На основании полученных данных Target отправляет купоны на детские товары клиентам. Сами же скидки на товары для детей «разбавляются» купонами на другие продукты, чтобы предложения купить кроватку или пеленки не выглядели слишком навязчивыми.

Даже правительственные ведомства нашли способ, как использовать технологии Big Data для оптимизации избирательных кампаний. Некоторые считают, что победа Б. Обамы на президентских выборах США в 2012 году обусловлена превосходной работой его команды аналитиков, которые обрабатывали огромные массивы данных в правильном ключе.


Большие Данные на страже закона и порядка

За последние несколько лет правоохранительным структурам удалось выяснить, как и когда использовать Большие Данные. Общеизвестным фактом является то, что Агентство национальной безопасности применяет технологии Больших Данных, чтобы предотвращать террористические акты. Другие ведомства задействуют прогрессивную методологию, чтобы предотвращать более мелкие преступления.

Так, департамент полиции Лос-Анджелеса применяет собственную аналитическую систему - она занимается тем, что обычно называют проактивной охраной правопорядка. Используя отчеты о преступлениях за определенный период времени, алгоритм определяет районы, где вероятность совершения правонарушений является наибольшей. Система отмечает такие участки на карте города небольшими красными квадратами и эти данные тут же передаются в патрульные машины.

Копы Чикаго используют технологии Больших Данных немного другим образом. У блюстителей правопорядка из Города ветров так же есть специальный алгоритм, но он направлен на очерчивание «круга риска», состоящего из людей, которые могут оказаться жертвой или участником вооруженного нападения. По информации газеты The New York Times, данный алгоритм присваивает человеку оценку уязвимости на основании его криминального прошлого (аресты и участие в перестрелках, принадлежность к преступным группировкам). Разработчик системы уверяет, что в то время как система изучает криминальное прошлое личности, она не учитывает второстепенных факторов вроде расы, пола, этнической принадлежности и месторасположения человека.


Как технологии Big Data помогают развиваться городам?


Анализ данных также применяется для улучшения ряда аспектов жизнедеятельности городов и стран. Например, зная точно, как и когда использовать технологии Big Data, можно оптимизировать потоки транспорта. Для этого берется в расчет передвижение автомобилей в режиме онлайн, анализируются социальные медиа и метеорологические данные. Сегодня ряд городов взял курс на использование анализа данных с целью объединения транспортной инфраструктуры с другими видами коммунальных услуг в единое целое. Это концепция «умного» города, в котором автобусы ждут опаздывающий поезд, а светофоры способны прогнозировать загруженность на дорогах, чтобы минимизировать пробки.

На основе технологий Больших Данных в городе Лонг-Бич работают «умные» счетчики воды, которые используются для пресечения незаконного полива. Ранее они применялись с целью сокращения потребления воды частными домовладениями (максимальный результат — сокращение на 80%). Экономия пресной воды — вопрос актуальный всегда. Особенно, когда государство переживает самую сильную засуху, которая когда-либо была зафиксирована.

К перечню тех, кто использует Big Data, присоединились представители Департамента транспорта города Лос-Анджелеса. На основании данных, полученных от датчиков дорожных камер, власти производят контроль работы светофоров, что в свою очередь позволяет регулировать траффик. Под управлением компьютеризованной системы находится порядка 4 500 тысяч светофоров по всему городу. Согласно официальным данным, новый алгоритм помог уменьшить заторы на 16%.


Двигатель прогресса в сфере маркетинга и продаж.



В маркетинге, инструменты Big Data позволяют выявить, является ли продвижение каких-либо идей на том или ином этапе цикла продаж наиболее эффективным. С помощью анализа данных определяется, как инвестиции способны улучшить систему управления взаимоотношениями с клиентами, какую стратегию следует выбрать для повышения коэффициента конверсии и как оптимизировать жизненный цикл клиента. В бизнесе, связанном с облачными технологиями, алгоритмы Больших Данных применяют для выяснения того, как минимизировать цену привлечения клиента, и увеличить его жизненный цикл.

Дифференциация стратегий ценообразования в зависимости от внутрисистемного уровня клиента — это, пожалуй, главное, для чего Big Data используется в сфере маркетинга. Компания McKinsey выяснила, что около 75% доходов среднестатистической фирмы составляют базовые продукты, на 30% из которых устанавливаются некорректные цены. Увеличение цены на 1% приводит к росту операционной прибыли на 8,7%.

Исследовательской группе Forrester удалось определить, что анализ данных позволяет маркетологам сосредоточиться на том, как сделать отношения с клиентами более успешными. Исследуя направление развития клиентов, специалисты могут оценить уровень их лояльности, а также продлить жизненный цикл в контексте конкретной компании.

Оптимизация стратегий продаж и этапы выхода на новые рынки с использованием геоаналитики находят отображение в биофармацевтической промышленности. Согласно McKinsey, компании, занимающиеся производством медикаментов, тратят в среднем от 20 до 30% прибыли на администрирование и продажи. Если предприятия начнут активнее использовать Большие Данные, чтобы определить наиболее рентабельные и быстро растущие рынки, расходы будут немедленно сокращены.

Анализ данных — средство получения компаниями полного представления относительно ключевых аспектов их бизнеса. Увеличение доходов, снижение затрат и сокращение оборотного капитала являются теми тремя задачами, которые современный бизнес пытается решить с помощью аналитических инструментов.

Наконец, 58% директоров по маркетингу уверяют, что реализация технологий Big Data прослеживается в поисковой оптимизации (SEO), e-mail и мобильном маркетинге, где анализ данных отыгрывает наиболее значимую роль в формировании маркетинговых программ. Лишь на 4% меньше респондентов уверены, что Большие Данные будут играть значимую роль во всех маркетинговых стратегиях на протяжении долгих лет.


Сейчас Big Data — это не абстрактное понятие, которое, может быть, найдет свое применение через пару лет. Это вполне рабочий набор технологий, способный принести пользу практически во всех сферах человеческой деятельности: от медицины и охраны общественного порядка до маркетинга и продаж. Этап активной интеграции Больших Данных в нашу повседневную жизнь только начался, и кто знает, какова будет роль Big Data уже через несколько лет?

Ссылка на источники:

http://ru.datasides.com/big-data-use-cases/