Барий и его соединения. Реферат. Другое.

Барий и его соединения. Реферат. Другое.




⚡ 👉🏻👉🏻👉🏻 ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Барий и его соединения

Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе

Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

Тяжелый
шпат, BaSO 4 , был первым известным соединением барин. Его открыл в
начале XVII в. итальянский алхимик Касциароло. Он же установил, что этот
минерал после сильного нагре­вания с углем светится в темноте красным светом и
дал ему название «ляпис соларис» (солнечный камень).


Окись
бария ВаО открыл в 1774 г. Шееле. Он назвал ее «тяжелой землей». В 1797 г.,
прокаливая нитрат бария, Вокелен получил : окись бария. Карбонат бария был
открыт в 1783 г. в Шотландии , и назван «витеритом».


 Металлический
барий впервые получил Дэви в 1808 г. Название , «барий» происходит от слова
«барис» (тяжелый).




  В
природе барий встречается в виде соединений (сульфатов, карбонатов, силикатов,
алюмосиликатов и т.д.) в различных минералах. Содержание бария в земной коре
0,05 вес. % — больше, чем содержание стронция. Ниже перечислены важнейшие
минералы бария:


  Барит
(персидский шпат), BaSO 4 , содержит
65,7 Ва0, встре­чается в виде гранул или бесцветных прозрачных трубчатых
кристаллов (иногда окрашенных примесями в желтый, коричневый, крас­ный, серый,
голубой, зеленый или черный цвет) с плотностью 4,3—4,7 г/см 3 и
твердостью 3—3,5 по шкале Mooca.
Залежи барита есть в России, США, Франции, Румынии и других странах. В природе
встречаются разновидности барита, которые содержат сульфат строн­ция
(баритоцелестин), сульфат свинца и радия.


Барит
применяют в химической промышленности для получения солей бария, используемых в
пиротехнике, производстве красок и лаков, бумажной промышленности, для
приготовления фотобу­маги, цементирования рыхлых пород во время бурения
нефтяных скважин, защитной облицовки стен рентгеновских камер.


Витерит, ВаСОз, содержит 77,7% Ва0. Встречается
в небольших количествах в России, Англии, Японии, США. Это белая масса с серо­ватым
или желтым оттенком; твердость 3—3,5 по шкале Mooca, плотность 4,25—4,35 г/см".
Некоторые разновидности витерита содер­жат карбонат кальция или карбонат
стронция (ВаСО 3 *СаСО 3 , ВаСО 3 *SrСО 3 ).


Гиалофан
(бариевый полевой шпат) K 2 Ba[AI2Si 4 O 12 ], встречается в виде прозрачных бесцвет­ных (или окрашенных
примесями в желтый, голубой, красный цвета) моноклинных кристаллов с плотностью
2,6—2,82 г1смР.


Известны
также другие минералы бария:


бариевый
брюстериг SrBa[Al 2 Si 6 O 16 (OH) 2 ]*3H 2 0, бариевый
апатит [Ba 10 (PO 4 ) 6 ]Cl 2 , бариевая селитра Ba(NO 3 ) 2


Соединения
бария найдены во многих силикатных и известня­ковых породах, подземных и
морских, водах, на солнце.




Металлический
барий получают металлотермическим восстанов­лением окиси или хлорида бария,
термическим разложением гидрида и нитрида бария или Ba(NH.3)e, электролизом расплавленного хло­рида
бария (смесей BaCl 2 и NaCI, BaCI 2 и BaF 2 ) или
насыщенного раствора BaCI 2 *H 2 O на ртутном катоде. Во избежание контактов с воздухом все эти
процессы ведут в вакууме или защитной атмосфере. В процессе промышленной
переработки барита или витерита получают хлорид или окись бария, из которых
металлотермическим восстановлением вырабатывают технический барий (см. схему 1).


Схема
1      Восстановление окиси или хлорида бария


В
промышленности металлический барий получают термическим восстановлением окиси
бария порошком металлического алюминия (избыток) при температуре 1200—1250°.
Процесс идет в вакууме (0,1 мм рт. ст.).


ЗВаО + 2А1 = ЗВа + Аl 2 О 3 — 25 ккал


Восстановление
проводится в кварцевых или герметичных фарфоровых капсулах. После удаления
воздуха током водорода в них создается вакуум, затем окись бария и порошок
алюминия в тече­ние 2—3 час нагревают при температуре 1250°. По
окончании восста­новления нагревание прекращают. После охлаждения перед разбор­кой
установки в нее подают сухой воздух.


Силикотермическое
восстановление окиси бария проводится в вакууме в стальной трубке (температура
1200°):


ЗВаО + Si = 2Ва + ВаSiO 3 — 37 ккал


В
процессе магнийтермического восстановления окиси бария в вакууме получается
металлический барий. В этом случае обра­зуется промежуточный окисел Ba 2 O:


2ВаО + Mg = Ba 2 O + Mg0                
Вa 2 О = Ва0 + Ва


При
цинкотермическом восстановлении окиси бария в вакууме образуется сплав цинка и
бария.


Металлотермическое
восстановление хлорида бария натрием, калием или металлическим цинком в вакууме
приводит к образова­нию сплавов бария с натрием, бария с калием и бария с
цинком. Если восстановление хлорида бария идет при нагревании с карби­дом
кальция CaC 2 , образуется сплав бария и кальция.


Термическая
вакуумная диссоциация гидрида бария (900—1000°), нитрида Ва 3 N 2 (160—180°) и Ва( NH 3 ) 6 (комнатная температура)
сопровождается образованием металлического бария.


При
электролизе расплавленного хлорида бария (или расплавлен­ной смеси BaCl 2 — NaCI, BaCl 2 — BaF 2 ) с расплавленным свинцо­вым или оловянным катодом
образуются сплавы бария со свинцом или оловом. Во время электролиза насыщенного
раствора хлорида бария на ртутном катоде образуется амальгама бария.


Электролитический
метод вследствие трудоемкости практически не используется в промышленности.


Сырой
металлический барий очищают перегонкой в вакууме (1—1,5 мм рт. ст.,
температура 800°) в аппаратуре, подобной при­меняемой для очистки магния.


Барий
— белый серебристый металл с объемно-центрированной кубической решеткой
(модификация α-Ва устойчива ниже 375°, модификация β-Ва — от 375 до
710°). Плотность бария 3,74 г1см 3 , твердость 3 по шкале Мооса
(тверже свинца). Ковкий металл. При загрязнении ртутью становится хрупким. Т.
пл. 710°, т. кип. 1696°. Соли бария окрашивают пламя газовой горелки в
желто-зеленый цвет.


Самый
важный радиоактивный изотоп бария — (β- и γ-активный 140 Ва
— образуется при распаде урана, тория и плутония; период полураспада 13,4 дня.
140 Ва извлекают хроматографически из смеси продуктов распада. Распад
изотопа 140 Ва сопровождается выделе­нием радиоактивного 140 La.


При
облучении цезия дейтронами образуется ядерный изотоп 133 Ва с
периодом полураспада 1,77 дней. Со свинцом, никелем, сурь­мой, оловом и железом
барий образует сплавы.


Барий
химически активнее кальция и стронция. Металлический барий хранят в герметичных
сосудах под петролейным эфиром или парафиновым маслом. На воздухе металлический
барий теряет блеск, покрывается коричневато-желтой, а затем серой пленкой окиси
и нит­рида:


Под
действием галогенов металлический барий образует безвод­ные галогениды ВаХ 2
(X == F ˉ, С1ˉ , Вг ˉ, I ˉ ). Металлический барий разлагает воду:


Ва +
2Н 2 О = Ва(ОН) 2 + 112 + 92,5 ккал


Растворение
металлического бария в жидком аммиаке (—40") сопровождается образованием
аммиаката Ba(NH 3 ) 6 -При обычной температуре барий реагирует с двуокисью углерода:


Металлический
барий — сильный восстановитель. С его помощью при восстановлении хлорида америция
(1100°) и фторида кюрия (1300°) были получены элементы америций (N 95) и кюрий (N 96). При высокой
температуре барий восстанавливает закись углерода, а выде­ляющийся свободный
углерод реагирует с барием с образованием карбида ВаС 2 .


Приведенная
ниже схема иллюстрирует химическую активность бария.


Растворимые
соли бария чрезвычайно ядовиты. Введенный внутривенно хлорид бария мгновенно
вызывает смерть. Карбонат и сульфит бария ядовиты, так как они растворяются в
соляной кислоте, которая содержится в желудочном соке.


Металлический
барий применяется для металлотермического вос­становления америция и кюрия, в
антифрикционных сплавах на осно­ве свинца, а также в вакуумной технике. Сплавы
свинец — барий вытесняют полиграфические сплавы свинец — сурьма.




Известны
многочисленные соединения, в которых барий присут­ствует в виде двухвалентного
катиона. Ион Ва 2+ бесцветен, имеет устойчивую восьмиэлектронную
конфигурацию. Радиус иона 1,34 А. Он обладает относительно большим объемом и
слабо выраженной тенденцией к поляризации, поэтому не образует устойчивых ком­плексных
соединений. Гидроокись Ba(OH)g представляет собой силь­ное основание.


Гидрид бария, ВаН 2 , получают
нагреванием металлического бария, сплавов кадмий — барий, ртуть — барий или
окиси бария в атмосфере водорода:


Ва + Н 2 =
ВаН 2 + 55 ккал                                 Ва0+ 2Н 2
= BaH 2 + Н 2 О


BaH 2 — серовато-белые кристаллы с плотностью 4,21 г/см 3 . Выше
675° они подвергаются термической диссоциации. Гидрид бария разлагает воду и
взаимодействует с азотом, соляной кислотой и аммиаком.


Гидрид бария применяют в
качестве катализатора реакций гидро­генизации.


Окись бария, ВаО, получают непосредственным
синтезом из эле­ментов. Кроме того, используют термическое разложение
гидроокиси, перекиси, карбоната или нитрата бария. Применяют также прокали­вание
смеси карбоната бария с углем, сульфата бария с односерни­стым железом или
нагревание сульфида бария с окисью магния и водой.


ВаО представляет собой
кубические (решетка типа NaCI)
или гексагональные бесцветные кристаллы (или белый аморфный поро­шок), очень
гигроскопичные, с плотностью 5,72 г/см 3 (для кубиче­ской
модификации) и 5,32 г/см 3 (для гексагональной) и твердостью 3,3
по шкале Mooca; т. пл. 1923°, т. кип. 2000°. Ва0
люминесцирует под действием ультрафиолетовых лучей и фосфоресцирует в рентге­новских
лучах.


Растворяясь в воде, окись
бария дает гидроокись бария Ba(OH) 2 . В отличие от окислов
кальция и стронция окись бария при темпера­туре 500° в заметных количествах
поглощает двуокись углерода. На холоду окись бария взаимодействует с хлором, а
при нагре­вании — с кислородом, серой, азотом, углеродом, двуокисью серы,
сероуглеродом, двуокисью кремния, двуокисью свинца, окисью железа, хрома, а
также с солями аммония.




При нагревании окись
бария восстанавливается магнием, цин­ком, алюминием, кремнием и цианидами
щелочных металлов.
Перекись бария, ВаО 2 , получают,
сильно прокаливая гидроокись, нитрат или карбонат бария в токе воздуха в
присутст­вии следов воды. Другие способы получения: непосредственный синтез из
элементов при нагревании, прокаливание окиси бария с окисью меди, нагревание
окиси бария с хлоратом калия, нагревание окиси бария до 350°, дегидратация
кристаллогидрата


Ва + 0 2 = Ва0 2
+ 145,7 ккал                                Ba0 + СиО = Ва0 2
+ Сu                                


Ba0 +1/2 0 2 = Ва0 2 + 12,1 ккал                           
3ВаО + КclO 3 = ЗВа0 2 + КСl


Ba0 2 представляет собой
белый парамагнитный порошок с плот­ностью 4,96 г1см 3 и т. пл.
450°. Он разлагается до Ba0 (600°) или до кислорода (795°), устойчив при
обычной температуре (может храниться годами), плохо растворяется в воде, спирте
и эфире, растворяется в разбавленных кислотах.


Термическое разложение
перекиси бария ускоряют окислы - СеО, Cr 2 O 3 ,


Известны кристаллогидраты
BaO 2 *8H 2 O и BaO 2 H 2 O.
Октагид-рат Ba0 2 •H 2 O получают действием перекиси водорода на бари­товую поду в
слабощелочных растворах, а также обработкой на холоду раствора хлорида пли
гидроокиси бария перекисью натрия:


Ва(ОН) 2 + H 2 O 2 + 6H 2 O = Ва0 2 *8Н 2 О


BaO 2 *8H 2 O выделяется в виде бесцветных
гексагональных кри­сталлов, трудно растворимых в воде, спирте, эфире. Нагретое
с пере­кисью водорода это соединение превращается в желтое вещество — надперекнсь
бария ВаО^.


Перекись бария реагирует
при нагревании с водородом, серой, углеродом, аммиаком, солями аммония,
феррицианидом калия и т. д.


С
концентрированной соляной кислотой перекись бария реагирует, выделяя хлор:


ВаO 2 + 4НС1 конц . = BaCl 2 + Cl 2 + 2H 2 O


Перекись бария
восстанавливает соли благородных металлов (обладающие малой химической
активностью) до соответствующего металла. Перекись бария применяют для
получения перекиси водо­рода, в зажигательных бомбах, а также в качестве
катализатора крекинг-процесса.


BaO 2 •H 2 O 2 представляет собой желтые моноклинные микрокри­сталлы,
устойчивые при 0°, трудно растворимые в обычных раство­рителях.


Гидроокись бария, Ва(ОН) 2 , получают
действием воды на метал­лический барий или ВаО. Используют также обработку
растворов солей бария (особенно нитрата) щелочами. В промышленности при­меняют
действие перегретого пара на сульфид бария. С этой же целью можно нагреть до
175" (под давлением) метаспликат бария BaSiOs с раствором NaOH. Описан метод, основанный на восстанов­лении перекиси бария при 550°:


Ba(OH) 2 — белый порошок с плотностью 4,495 г/см 3
 и т. пл. 408°. В катодных лучах гидроокись бария фосфоресцирует
желто-оран­жевым цветом. Растворяется в воде, трудно растворима в ацетоне и
метплацетате.


При растворении Ва(ОН) 2
в воде получается бесцветный раствор с сильно щелочной реакцией — баритовая
вода, которая в присут­ствии двуокиси углерода быстро покрывается поверхностной
плен­кой карбоната бария.


Известны кристаллогидраты
Ва(ОН) 2 *8Н 2 О, Ва(ОН) 2 *7H 2 O, Ва(ОН) •2Н 2 O и
Ва(ОН) 2 *H 2 O. Кристаллогидрат Ва(ОН) 2 *8H 2 O
выделяется в виде бесцветных моноклинных призм с плотностью 2,18 г/cм 3
и т. пл. 78°. При нагревании до 650° в токе воздуха кри­сталлогидрат
превращается в окись или перекись бария.


Пропускание хлора через
баритовую воду сопровождается обра­зованием хлорида, хлората и очень
незначительных количеств гино-хлорита бария:


6Ва(ОН) 2 + 6CL 2 = 5BaCl 2 + Ва(ClO 3 ) 2
+ 6H 2 О


Баритовая вода реагирует
при 100° с сероуглеродом:


2Ва(ОН) 2 + CS 2 = ВаСО 3 + Ba(HS) 2 + H 2 O


Металлический алюминий взаимодействует
с баритовой водой с образованием гидроксоалюмината бария и водорода:


2Аl + Ва(ОН) 2 + 10H 2 O = Ba[Al(OH) 4 (H 2 O) 2 ] 2 +3H 2


Выше 1000° гидроокись
бария подвергается термической диссоциации:


Баритовая вода Ва(ОН) 2
применяется в качестве очень чувстви­тельного химического реактива на двуокись
углерода.


Фторид бария, BaF 2 , получают непосредственным синтезом из элементов,
действием фтористого водорода на окись, гидроокись, карбонат или хлорид бария,
обработкой баритовой воды фтористо-водородной кислотой, обработкой нитрата или
хлорида бария фто-ридом натрия или калия, а также сплавленном хлорида магния с
фторидом кальция или магния в атмосфере CO 2 и термическим разложением гексафторосиликата бария в
атмосфере инертного газа.


Бесцветные кубические
кристаллы BaF 2 имеют решетку типа CaF 2 с расстоянием между центром иона Ва 2+ и
иона Fֿ 2,68 А. Плотность 4,83 г/см 3 , т.пл. 1280°,
т. кип. 2137°. Кристаллы мало растворимы в воде (1,63 г/л при 18°),
растворяются в фтористоводо-родной, соляной и азотной кислотах. Применяются для
изготовле­ния эмалей и оптических стекол. Температура плавления смеси BaF 2 *LiF
850°, а смеси BaF 2 *BaCl 2 1010°.


Под титанатом бария понимают
соединение BaO-TiO 2 , в котором соотношение катионов и анионов может
быть различным от BaTiO 3 до Ba 6 Ti 17 O 40 ,
промежуточные вещества – политканаты нестехлометричны и в них могут добавлены
вещества, частично замещающие Ba и Ti, то есть проведено легирование.


BaTiO 3 имеет структуру
неравномерно, а с кубической гране или объёмо-центрированной кристаллической
решёткой. Кубическая структура характерна до 120 °C.


При более низких температурах
происходит искажения структуры, она переходит в тирагональную, и , возникает
деформация кислородной подрешётки, как Ti несколько смещается.


Деформация вызывает поляризацию. Для
иона существует 2 энергетически равновесных стабильных положения, симметричных
относительно центра. Направление поляризации едино внутри домена так как
поляризация возникает без внешнего … поля, то она спонтанная. Внешнее
напряжение вызывает упорядочение ориентации диполей. Между поляризацией и
напряжённостью поля возникает гистерезисы.


При Т>120°C=Тс
сегнетоэлектрические свойства пропадают из за высоты симметрии кристалла
(кубическая структура). При Т>Тс диэлектрическая проницаемость Еr зависит от
температуры поз Кюри-Вейтса
 
 


Хорошие нелигированные вещества BaTiO 3
– диэлектрики. С D Е~ 3Эв. И тип энергия активации докоров 0,1 Эв. То
есть при номинальной температуре эти носители полностью ионизированы. Кроме
легированных элементов роль донора играет кислородные вариации при кислородной
мстехлометрии за счёт отчёта.


Таким образом часть примеси носит
акцепторный характер. Акцепторы захватывают электроны и на поверхности
кристалита создаётся отрицательный поверхностный заряд. Отрицательный
поверхностный заряд вызывает увеличение электростатического потенциала на
границе зерна. Удельная проводимость зависит от высоты потенциального барьера С
ростом температуры проводимость растёт. Для сохранения электронейтральности
образца в приповерхностном слое кристалла возникает положительный
пространственный заряд. В том слое, толщиной S подвижных носителей заряда мало
и плотность. Пространственный заряда определяется практически только легирующей
примесью доноров nD


Внутри кристалла отсутствуют
акцепторы, способные компенсировать доноры.


Если А – площадь приповерхностной
области с глубиной ОЗ “S”, то


N’ а – концентрация акцепторов,
захвативших электроны, заряд ОПЗ “-” e* N’а


Dj =-r /(x r*x 0) так как r=e*nд,
a*x? S


b - константа, связанная с N’a По
полученному уравнению с ростом температуры R растёт.


В некотором интервале температур так
как при высокой температуре Nа уменьшается из за высвобождения электронов с
захваченных по границам зёрнен.


  Особое место среди п/п приборов с a R >0
занимают приборы на основе тинаната бария BaTiO3. В диапазоне ΔT 100 – 150
K они обладают очень высоким ТКС, до 0,3К-1. Термисторы с положительным
температурным коэффициентом сопротивления – РТС – термисторы-позисторы.


Термисторы с a>0 называются РТС-термисторами или
позисторами. ТКС>0 имеет большиство металлови некоторые поликристаллические
п/п


Керамические позисторы имеют ТКС>0 в узком диапазоне
температур. Вне этого диапазона их ТКС<0, как у обычных полупроводников.




1.
Локшин Э.П.,
Воскобойников Н.Б. Барий. – Барий и его свойства, изд.КНЦ РАН. - 1996 г. - 168
с.


2.
Лебедев В.Н.,
Локшин Э.П., Маслобоев В.А., Дозорова Р.Б., Михлин Е.Б. Сырьевые источники
металлов России и проблемы их вовлечения в переработку // Цветные металлы. -
1997. - №8. - С.46-50.


3.
Гуцол А.Ф. Титонат
бария // Успехи физ. наук. - 1997. - Т.167. - №6. - С.165-187.












Похожие работы на - Барий и его соединения Реферат. Другое.
Дипломная работа по теме Проектирование базы данных сессионной успеваемости студентов ВУЗа
Курсовая работа по теме Оценка результативности использования заемных средств в ООО 'Топаз'
Контрольная работа по теме Образование следов выстрела
Доклад по теме Accuser
Как Я Берегу Свое Здоровье Сочинение
Сочинение На Рассказ Осенний Ковер
Дипломная работа по теме Представления о семье у воспитанников детских домов разного типа
Отчет По Лабораторной Работе Гост
Курсовая работа по теме Визуализация геофизических данных
Курсовая работа: Моральный вред. Скачать бесплатно и без регистрации
Универсальные Примеры Для Эссе
Потенциально Опасные Объекты Саратовской Области Реферат
Контрольная Работа По Алгебре 8 Класс A8
Курсовая работа: Социальные пособия, как одно из направлений государственной социальной политики РФ
Акт Реферат
Контрольная работа по теме Специфіка створення резервів підприємства
Реферат Анализ Финансового Состояния Предприятия
Реферат На Тему Жизнь Людей
Курсовая Работа На Тему Пути Повышения Производительности Труда В Отраслях Тэк
Дипломная работа по теме Брачный договор
Реферат: Углерод и его основные неорганические соединения
Контрольная работа: Налоговые правонарушения и ответственность за их совершение
Контрольная работа: по путям сообщения

Report Page