Автомобильная система видеонаблюдения. Дипломная (ВКР). Информатика, ВТ, телекоммуникации.

Автомобильная система видеонаблюдения. Дипломная (ВКР). Информатика, ВТ, телекоммуникации.




🛑 👉🏻👉🏻👉🏻 ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Автомобильная система видеонаблюдения

Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе

Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

3.2 Блок оцифровки аналоговых видеосигналов


5. Разработка схемы электрической
принципиальной


6.4 Выбор метода изготовления печатной платы


7.1 Конструкторско-технологический
расчет печатной платы


7.2 Электрический расчет печатной
платы


7.3 Расчет печатной
платы на вибропрочность


8. Проектирование печатных плат в САПР P-CAD


9. Технология изготовления печатных плат


10. Технология поверхностного монтажа


13. Разработка алгоритма работы устройства


По
данным приведенным департаментом ГАИ Министерства внутренних дел Украины, на
дорогах страны происходит более 500 ДТП в сутки. Что примерно равно цифре 180-190
тис. ДТП в год.


Количество
автомобилей на дорогах стремительно увеличивается с каждым днем. В сегодняшних
условиях даже опытный и аккуратный водитель не застрахован от ДТП, которое
может произойти не по его вине. К сожалению, установить истинную картину ДТП и
определить меру вины участников происшествия бывает вовсе непросто. Не всегда
есть очевидцы происшествия, которые не только согласятся дождаться прибытия
инспектора, но и дадут правдивые показания. Из-за этого водителю, пострадавшему
в ДТП, очень часто не удается доказать свою невиновность.


Ни для
кого не секрет, что выявление сотрудниками ГИБДД виновника ДТП процесс
длительный, и зачастую не соответствует действительности. А если учесть тот
факт что каждый 20-тый нарушитель скрывается с места происшествия, то иногда и
вообще не разрешимый.


Решить
вопрос об объективном и своевременном выявлении правонарушителя в данной
ситуации помогла бы оперативная видеосъемка, которая осуществляется
непосредственно из машины участника движения. При этом не обязательно иметь
запись всего пути следования машины, а только запись самой аварии и небольшого
промежутка времени перед ней.


Исходя
из этого, разработка автомобильной системы видеонаблюдения является очень
актуальной на сегодняшний день темой.


Кроме
основной области применения устройство может использоваться для повышения безопасности
транспортного средства.


Устройство,
разрабатываемое в данном проекте, должно быть работать от питания в 12В, иметь
компактные размеры, а также обеспечивать циклическую видеозапись в цифровом
формате во встроенную ОЗУ







Исходя из особенностей
проектирования прибора и специфики области его применения, рассмотрим основные
критерии, которые будут влиять на разработку устройства измерения качества
электроэнергии в сетях 220В (далее - устройства).


К основным критериям устройства
следует отнести


1) Повышенную надежность и
помехозащищенность


3) Относительную дешевизну устройства


Для реализации хорошей
надежности и помехозащищенности необходимо обеспечить штатный режим всех узлов
и соединений данного устройства, а также конструктивно реализовать защиту
прибора от вредных воздействий окружающей среды.


Для получения малых
габаритов и обеспечения дешевизны устройства следует использовать широко
распространенные типы ИМС а также, по возможности, унифицированные типоразмеры корпусов
резисторов, конденсаторов и диодов.









На сегодняшний день на
рынке существует большое разнообразие автомобильных систем видеонаблюдения. Их
отличие друг от друга заключается в:


- количестве
обрабатываемых потоков видео;


- частоте кадров
записываемого видео материала;


- объеме памяти для
записи видео материала ;


Среди всех аналогов,
наиболее удовлетворяющим техническому заданию, является автомобильная система
видео наблюдения DRS-1100
производства XDriven. Ниже приведены его технические
характеристики. [1]


- количество обрабатываемых потоков
видео 1.


- Съемная карта памяти SD объемом от 512Мб до 4 Гб.


- возможные разрешения видео кадра
320 х 240, 640 х 480, 1280 х 960.


- Диапазон рабочих температур от 0
до +50 С.


- Размеры печатной платы: 127 х 51
х 25 мм.


Рассмотрим функциональные
возможности данного аналога.


После инициализации видео камеры
устройство начинает запись видео материала. Запись может производиться с разным
разрешением, и частотой видео кадров. Стандартная частота кадров 5к/с, может
настраиваться от 1к/с до 30к/с. Видео разрешение тоже может изменятся в трех
режимах ( 320 х 240), (640 х 480), (1280 х 960). Запись производится на съемную
карту памяти SD объемом от 512Mб до 4Гб в формате MPEG4. В устройстве имеется 2 кнопки. Первая кнопка отвечает за
включение устройства. Вторая кнопка отвечает за фиксацию события. Предусмотрена
возможность синхронизации с ПК, для снятия видео информации или установки
дополнительных настроек.


Преимущества разрабатываемого устройства
по сравнению с DRS-1100 заключаются в следующем:


-
Четыре потока обрабатываемого видео;


-
Возможность считывания на выбор данных от любой из четырех
видео камер;


-
Запись видео материала 10 секунд после происхождения события.


У разрабатываемого устройства есть
и недостатки по сравнению с DRS-1100, но при этом оно полностью удовлетворяет техническому
заданию.









Согласно техническому
заданию устройство должно выполнять следующие функции:


1. Обеспечивать обработку четырех
потоков видео в режиме реального времени.


2. Разрешение записываемого материала
640 х 480.


3. Циклическую запись видео материала.


4. Запись видео материала не менее 30с.


Исходя из требований
изложенных выше, функционально проектируемое устройство можно разделить на
следующие блоки:


- блок оцифровки аналоговых
видео сигналов;


Каждый блок должен
выполнять определенные функции и находиться во взаимосвязи с центральным
процессором либо передавая ему данные, либо получая от него команды управления
или данные.


Рассмотрим функции,
которые должен выполнять каждый блок структурной схемы ДК31.424313.001 Э1.




Блок должен обеспечивать
непрерывную съемку видео материала с разрешением не менее 640 х 480. Угол
обзора каждой камеры должен быть не менее 70°.







3.2 Блок оцифровки
аналоговых видеосигналов




Должна обеспечивать
оцифровку четырех аналоговых видео сигналов в режиме реального времени. А также
обеспечивать последующую передачу оцифрованных сигналов непосредственно в
встроенную ОЗУ




Блок памяти должен
поддерживать циклическую запись четырех потоков оцифрованного видео материала в
режиме реального времени, а также иметь достаточный объем для записи 30 секунд
видео с разрешением не менее 640 х 480.




Данный блок осуществляет синхронизацию
устройства. Также он должен принимать информацию, поступающую со всех датчиков,
обрабатывать ее и производить управление всем устройством в целом.




Данный блок должен
обеспечивать управление при начальной инициализации и перенастройке
контроллера, а также обеспечить переключение при выборе считываемого материала.







Для применения в
разрабатываемом устройстве были выбраны SMD-компоненты мощностью до 0,25 Вт.
Выбор был сделан, исходя из соображений достаточной надежности, точности и
низкой общей стоимости прибора. SMD-компоненты в достаточной степени
удовлетворяют вышеприведенным требованиям и являются одной из наиболее
распространенных марок резисторов, что сыграло решающую роль при их выборе.
Другие дискретные компоненты выбраны исходя из аналогичных соображений.




Необходимо
подобрать микроконтроллер, который удовлетворяет условию ТЗ. Выберем
микросхемы, которые подходят для сравнения, и составим таблицу параметров. К
рассмотрению приняты такие параметры как:


Параметры
подходящих микросхем приведены в таблице 3.1 .









Необходимо выбрать одну
из этих микросхем, причем наиболее подходящую. Для этого воспользуемся методом
выбора элементов по матрице параметров.[3]


Параметры в
матрице X должны соответствовать такому виду, чтобы большему значению параметра
соответствовало лучшее качество ИС. Параметры, не удовлетворяющие такому
условию (I ПОТ , Е П ) пересчитываются по такой формуле:




Пересчитав
эти параметры, получаем такую матрицу Y:









После этого
параметры матрицы Y нормируют по такой формуле:




В результате
нормирования получим матрицу A (в ней есть обязательно хотя бы один нуль).
Матрица А имеет такой вид:




Для
обобщенного анализа системы параметров элементов вводят оценочную функцию:




Определим эти
оценочные функции (приведем их в матричном виде):




По полученным
значениям оценочной функции можно сказать, что микроконтроллер ATmega1281(Atmel) наилучший из всех
рассматриваемых (ему соответствует минимальное значение оценочной функции). Его
и будем применять в схеме.




Выполним
сравнение микросхем и осуществим выбор наиболее подходящего для условий,
заданых в ТЗ. К рассмотрению приняты такие параметры как:


- количество
обрабатываемых сигналов;


Наиболее
распространенными видеодекодерами с необходимыми параметрами являются:


Параметры
этих микросхем приведены в таблице 3.2




Необходимо выбрать одну
из этих микросхем, причем наиболее подходящую. Для этого воспользуемся методом
выбора элементов по матрице параметров.


Параметры в
матрице X должны соответствовать такому виду, чтобы большему значению параметра
соответствовало лучшее качество ИС. Параметры, не удовлетворяющие такому
условию (I ПОТ , Е П ) пересчитываются по формуле (4.1).


Пересчитав
эти параметры, получаем такую матрицу Y:




После этого
параметры матрицы Y нормируют по формуле (4.2).


В результате
нормирования получим матрицу A (в ней есть обязательно хотя бы один нуль).


Для
обобщенного анализа системы параметров элементов вводят оценочную функцию,
рассчитываемую по формуле (4.3):


Определим эти
оценочные функции (приведем их в матричном виде):









По полученным
значениям оценочной функции можно сказать, что микросхема видеодекодера SAA7144HL1 наилучшая из всех рассматриваемых (ей соответствует
минимальное значение оценочной функции). Её и будем применять.


Остальные элементы
принципиальной схемы выбираются аналогичным образом.




Также нам
необходима микросхема стабилизации напряжения. Выполним сравнение микросхем и
осуществим выбор наиболее подходящих для наших условий. К рассмотрению приняты
такие параметры как:


- отклонение
выходного напряжения он номинального


Параметры
этих микросхем приведены в таблице 4.4.




При составлении таблицы
использовались источники [3,4].


Наша задача выбрать одну
из этих микросхем, причем наиболее нам подходящую. Для этого воспользуемся
методом выбора элементов по матрице параметров. Запишем матрицу параметров:




Параметры в
матрице X должны соответствовать такому виду,
чтобы большему значению параметра соответствовало лучшее качество ИС.
Параметры, не удовлетворяющие такому условию (N, Uвых,)
пересчитываются по такой формуле:




Пересчитав
эти параметры, получаем такую матрицу Y:




После этого
параметры матрицы Y нормируют по
такой формуле:




В результате
нормирования получим матрицу A (в
ней есть обязательно хотя бы один нуль).


Для
обобщенного анализа системы параметров элементов вводят оценочную функцию:




Определим эти
оценочные функции (приведем их в матричном виде):




По полученным
значениям оценочной функции можно сказать, что стабилизатор напряжения
К1156ЕК5А наилучший из всех рассматриваемых (ему соответствует минимальное
значение оценочной функции). Его и будем применять в качестве элемента схемы.


Остальные элементы
принципиальной схемы выбираются аналогичным образом.




Микросхема памяти должна
обладать следующими характеристиками:


- иметь емкость для
записи 30с видео материала с частотой кадров 25к/с, и разрешением 640 х 480
точек.


- иметь возможность
циклической записи.


Таким требованиям
отвечают микросхемы NAND Flash-памяти . Эти микросхемы имеют
странично-блочную организацию и последовательный доступ к данным в пределах
одной страницы. Такая организация больше всего подходит для хранения больших
массивов данных, тем более что объем памяти этих микросхем достигает 8 Гбит (1
ГБайт). На основе этих микросхем построены все известные карты памяти. Объем
памяти на один видео канал разрабатываемого устройства высчитывается по формуле




I цветн – количество бит цветности;


N к/с – количество кадров в секунду;


Наиболее распространенные
микросхем емкостью 2Гбита, (256Мбайт) производят фирмы Samsung и Hynix.
Samsung микросхема К9F2G08U0A, и Hynix-микросхема
HY27UF082G2M. Обе микросхемы являются абсолютно идентичными по своим
характеристикам, поэтому выбираем микросхему с наиболее приемлемой ценой фирмы Hynix.









5. РАЗРАБОТКА СХЕМЫ
ЭЛЕКТРИЧЕСКОЙ ПРИНЦИПИАЛЬНОЙ




Схема электрическая
принципиальная устройства автомобильной системы видео наблюдения ДК31.424313.001
Э3 должна выполнять все функции, изложенные в техническом задании к данной
работе. Исходя из этого просматриваются некоторые блоки, выполняющие свои
функции и находящиеся во взаимосвязи между собой.


Основой устройства
является микроконтроллер ATmega1281
фирмы «Atmel». Для оцифровки видео сигналов используется 4-х канальный
видеодекодер SAA7144HL1. Устройство питается от внешнего нестабилизированного
источника питания постоянного тока +12В номинальным током не менее 0,5А.




Схема питания выполнена
на стабилизаторах напряжения К1156ЕК5 (DA1), который преобразовывает напряжение
«плюс 12В» в напряжение «плюс 5В», и стабилизаторе IRU1117-33 который преобразовывает напряжение «плюс 5В» в
напряжение «плюс 3,3В». Также в схему
питания включен конденсатор C1, C29, C30, C31 для борьбы с высокочастотными и низкочастотными помехами.




Оцифровка видео сигнала будет
производиться с помощью 4-х канального видеодекодера SAA7144HL1.
Поскольку видеокамеры будут расположен за пределами печатной платы, то
количество проводников подключаемых к ним должно быть минимальным. Данный
видеодекодер отвечает таким требованиям и при подключении используется по одной
линии на канал. Для нормальной роботы видеодекодера необходим кварцевый
резонатор.


Кварцевый резонатор ZQ1 с
частотой 25МГц, который тактирует работу видеодекодера. Он подключен между
входами тактирования XTAL0 и XTAL1. Эти выводы являются соответственно входом и
выходом инвертирующего усилителя тактового генератора. Емкости конденсаторов
C10 и С11 , подключаемых между выводами резонатора и общим проводом, зависят от
типа резонатора. Для кварцевого резонатора необходимы конденсаторы емкостью
10пФ. Оцифрованный сигнал подается на четыре 8-и битных порта. Каждый порт
соответствует отдельному сигналу.




В данном устройстве блок
памяти представляет собой 4-и ИМС Hynix HY27UF082G2M которые напрямую подключаются к портам микроконтроллера и
видеодекодера для управления, и записи информации соответственно.




На этот блок возложена
основная работа устройства, и он состоит из микроконтроллера ATmega1281 (DD6) и разъема ХP2 к которому подключаются датчики и кнопки управления.
Рассмотрим элементы необходимые для нормальной работы микроконтроллера.


Кварцевый резонатор ZQ2 с
частотой 16 МГц, который тактирует работу микроконтроллера. Он подключен между
входами тактирования XTAL1 и XTAL2. Эти выводы являются соответственно входом и
выходом инвертирующего усилителя тактового генератора. Емкости конденсаторов
C32 и С33 , подключаемых между выводами резонатора и общим проводом, зависят от
типа резонатора. Для кварцевого резонатора необходимы конденсаторы емкостью
30пФ.


Как
правило, устройства, использующие микроконтроллеры, должны начинать работу при
включении питающего напряжения. Для установки внутренних регистров в исходное
состояние на вывод 1 (RST) необходимо подать единичный импульс длительностью не
менее 16 периодов тактовой частоты. В данной схеме начальный сброс
микроконтроллера выполняется нажатия кнопки RST, которая подключена к разъему XP2


Для ввода некоторой
информации от пользователя самым простым способом является клавиатура. При этом
заказывать специализированную клавиатуру для каждого отдельного устройства
достаточно дорого. В таком случае наиболее простой способ составить из
отдельных кнопок необходимую клавиатуру. При этом обработка нажатий кнопок
ведется с помощью микроконтроллера. Существует несколько основных способов
обработки нажатий клавиатуры – по прерыванию или периодически опрашивая
клавиатуру. Обработку по прерыванию удобно использовать, когда нажатие кнопки
будет редким, не основным действием пользователя. В этом случае такая обработка
нажатия позволяет микроконтроллеру выполнять свою основную задачу, не
«отвлекаясь на проверку клавиатуры», а при нажатии кнопки переходить на
обработку нажатия и затем вновь возвращаться к основной программе. Если же
клавиатура используется для ввода некоторой последовательности информации,
которая затем обрабатывается (как в калькуляторе), то имеет смысл проводить
постоянный опрос клавиатуры. Поскольку данное устройство относится ко второму
типу, то опрос клавиатуры будет происходить периодическим считыванием порта.


Разъем к которому
подключены кнопки и датчики напрямую подключен к портам микроконтроллера.


Кнопки будут
использоваться для начального сброса RESET, для старта записи и передачи, а также для выбора необходимой
передаваемой информации.







Печатной платой (ПП) называется
материал основания, вырезанный по размеру, содержащий необходимые отверстия и,
по меньшей мере, один проводящий рисунок. Материал для печатной платы должен
обладать следующими свойствами [8]:


- иметь минимальные
ε, tgδ, TKp, ТКε;


- для стабильной работы и
исключения паразитных емкостей p и Unp максимум;


- ТКЛР печатной платы
близок к ТКЛР меди;


- теплопроводность и теплоемкость должны быть максимальны для
отвода тепла от печатных медных проводников;


- стойкость к химическим,
внешним воздействиям;


- высокие механические свойства (твердость, прочность на
изгиб, сжатие, растяжение, вибростойкость);


- допускать возможность обработки резанием и штамповкой;


- сохранять свои свойства при воздействии климатических
факторов, а также в процессе создания рисунка схемы и пайки.


Для изготовления печатных
плат используются слоистые диэлектрики, лакированные электролитической медью. К
материалам для печатных плат предъявляются следующие требования:


-
Они должны
обладать высокой термостойкостью (260°С в течение 5-20с) и малой влагопроницаемостью (0,2%-0,8%);


-
Поверхностное
сопротивление при 40°С
должно быть не менее 10 4 МОм.


-
Чистота меди
должна быть не менее 99,5%;


Основными материалами для
изготовления печатных плат являются:


Гетинакс и стеклотекстолит фольгированные представляют собой
слоистые прессованные пластики, изготовленные на основе бумаги (гетинакс) или
ткани из стеклянного волокна (стеклотекстолит), пропитанные термореактивными
смолами и облицованные с одной или двух сторон медной электролитической
фольгой.


Часто для изготовления печатных плат используют
стеклотекстолит фольгированный травящийся, который представляет собой листовой
прессованный слоистый пластик, изготовленный из стеклоткани, пропитанной
искусственной термореактивной смолой и облицованный с одной или двух сторон
электролитической фольгой с гальваностойким покрытием или медной
электролитической оксидированной фольгой. Он предназначен для изготовления
многослойных печатных плат методом металлизации сквозных отверстий.


В качестве материала для изготовления ПП выбираем
стеклотекстолит СФ-2-35-1.5 ГОСТ 10316-88 он уверенно выдерживает перепады
температур, вибрационные нагрузки, климатические удары (в отличие от гетинакса,
который со временем имеет свойство расслаиваться):


- толщина основания
(стеклотекстолита) - 1.5 мм.




Печатные платы с гибким и
жестким основанием по конструкции делятся на такие типы [8]:


Для создания устройства
целесообразно использовать двустороннюю печатную плату с металлизированными
монтажными и переходными отверстиями. Этот тип плат характеризуется высокими
коммутационными свойствами, повышенной прочностью соединения вывода навесного
элемента с проводящим рисунком платы.


Применение двусторонних
плат позволяет облегчить трассировку, оптимально разместить элементы навесного
монтажа. Уменьшить габариты платы, следовательно, уменьшить расход материала
платы, обеспечить надежное соединение.


Поэтому изготавливаемая
печатная плата будет именно двухсторонней платой.




По плотности монтажа ПП
делятся на 5 классов точности. Печатные платы 1-го и 2-го класса точности
наиболее просты в исполнении, надежны в эксплуатации и имеют минимальную
плотность монтажа. Печатные платы 3-го, 4-го, 5-го класса точности требуют
использования высококачественных материалов, инструмента и оборудования [3].


Проектируемое устройство
должно иметь небольшие габаритные размеры, плотность монтажа должна быть
достаточно высокой. В тоже время на печатной плате необходимо расположить не
очень большое количество элементов, поэтому не следует делать монтаж очень
плотным. Наиболее распространенным классом точности для устройств подобного
типа является класс 4, поэтому и для данной печатной платы выбран этот класс
точности.


3-й класс точности
предусматривает следующие ограничения:


-
Расстояние между
краями соседних элементов не менее 0,15 мм;


-
Предельные
размеры печатной паты – до 170÷240 мм;


Для вычерчивания
взаимного расположения печатных проводников, контактных площадок, монтажных
отверстий, переходных отверстий, используется координатная сетка прямоугольной
системы координат. Шагом
координатной сетки до 1 января 1998 года был шаг 2,5 мм; дополнительным – 1,25; 0,625 мм. С 1 января 1998 г. для размещения соединений на ПП основным шагом координатной сетки
является шаг 0,50 мм в обоих направлениях. Если координатная сетка с
номинальным шагом 0,50 мм не удовлетворяет требованиям конкретной конструкции,
то должна применяться координатная сетка с основным шагом 0,05 мм. Для конкретных конструкций, использующих элементную базу с шагом 0,625 мм, допускается применение шага координатной сетки 0,625 мм. Шаг координатной сетки выбирают в соответствии с шагом большинства ЭРИ, устанавливаемых на ПП. Если есть
необходимость применить шаг координатной сетки, который отличается от основных
шагов, то он должен быть кратным основным шагам.


Предпочтительными
являются следующие
шаги координатной сетки:


·
n · 0,05 мм, где n = 5, 10, 15, 20, 25;


·
n · 0,50 мм, где n = 1, 2, 5, 6, 10.


Допустимые
шаги координатной
сетки – дюймовые шаги, которые применяют в конструкции ПП, использующих ЭРИ с
шагом, кратным 2,54 мм:


Шаг большинства
используемых ЭРИ кратный 1.25 мм, поэтому основной шаг координатной сетки будет
выбран 1.25 мм.




6.4 Выбор метода изготовления
печатной платы




Существует несколько
методов изготовления ДПП:


1. Химический метод
изготовления ПП. При этом методе рисунок образуется путем удаления проводящего
слоя с участков поверхности. Для этого на медную фольгу наносят рисунок схемы,
а незащищенные участки удаляют.


- отсутствие металлизации
отверстий;


2. Электрохимический
метод изготовления ПП основан на избирательном осаждении меди на
нефольгированный диэлектрик.


- высокая надежность сцепления проводников и
металлизированных отверстий.


3. Комбинированный метод.
Сочетает в себе преимущества химического и электрохимического методов. В данном
методе печатная плата изготавливается из фольгированного диэлектрика, рисунок
вытравливается химическим методом с последующей металлизацией отверстий
электрохимическим методом.


Исходя из выше
изложенного, комбинированный метод наиболее подходит для изготовления печатной
платы, как метод, сочетающий в себе преимущества двух предыдущих.









7.1
Конструкторско-технологический расчет печатной платы




1. Определим минимальную
ширину печатного проводника по постоянному току для шины питания (ШП) и шины
земли (ШЗ) [3]:




где I max –
максимально допустимый суммарный ток, протекающий по ШЗ и ШП;


j доп –
допустимая плотность тока, для печатных плат, изготовленных комбинированным
методом (j доп = 48 А/мм 2 );


t пр. – толщина
проводника, которая определяется так:




где h Ф –
толщина фольги (0,035 мм);


h ГМ – толщина
слоя гальванически осажденной меди (0,055мм);


h ХМ – толщина
слоя химически осажденной меди (0,0065мм);




Максимально допустимый
ток I max определяется как сумма токов потребления всех ИМС данного
печатного узла.


Максимальный ток
потребления печатного узла берем из таблицы 7.1.1







Максимальный
ток потребления всего печатного узла

2. Определим минимальную
ширину проводника с учетом допустимого падения напряжения на нем:




где ρ – удельное
сопротивление проводника (0,0175 );


 – длина самого длинного печатного проводника на ПП
(153,1мм)


U доп. –
допустимое падение напряжения на печатном проводнике




3. Определим номинальный
диаметр монтажного отверстия:




где d е –
диаметр вывода элемента, d е = 0,4 (мм), выбранный


d но – нижняя
граница между минимальным диаметром отверстия и максимальным диаметром вывода,
(d но.м. = 0,1 мм для монтажных отверстий и d но.п. = 0,18 мм – для переходных отверстий)


В результате, для
монтажных отверстий получаем




Для переходных отверстий
(формула 2.3):




4. Определим диаметр контактных
площадок.




D 1min –
минимальный эффективный диаметр площадки:




где b ПО –
расстояние от края отверстия до края площадки, b m = 0,1 мм;


δ д -
погрешность размещения центра отверстия, δ д = 0,05 мм;


δ р -
погрешность размещения контактных площадок, δ р = 0,05 мм


d max –
максимальный диаметр монтажного отверстия:









где Δd – допуск на
отверстие, Δd = 0,05;




Максимальный диаметр
контактной площадки:




где b 1min = 0,15 мм, по ГОСТ 23751-86 для печатных плат 4-го класса точности


6. Определим минимальное
расстояние между элементами проводящего рисунка.


Минимальное
расстояние между проводником и контактной площадкой:




L 0
– расстояние между центрами двух элементов L 0 = 1,524 мм;


d l
– допуск на размещение проводников d l =
0,03 мм;


Остальные
параметры были вычислены раньше:


Минимальное
расстояние между центрами двух контактных площадок:




Минимальное
расстояние между центрами двух проводников:







Расчеты показывают, что
расстояние между КП, а также проводником и КП соответствует 4-му классу
точности.




7.2 Электрический
расчет печатной платы




1. Определим допустимое
падение напряжения на печатном проводнике [3]:




где ρ – удельное
сопротивление фольги (0,0175 );


І max –
максимальный ток, протекающий в печатном проводнике (100 мА);


b пр. – ширина
печатного проводника (0,25мм);


т пр – толщина
печатного проводника (0,0965мм);




где f – частота, на
которой проводится расчет (1 Гц);


Е п –
напряжение питания схемы (+5 В);


tgδ – тангенс угла
диэлектрических потерь материала (0,002);


где ε –
диэлектрическая проницаемость материала ПП (ε ст =5,5);


3. Определим паразитную
емкость между двумя соседними печатными проводниками, расположенными на одной
стороне ПП:




где l пер –
длина проводников, параллельных между собой и расположенных на одной стороне ПП
(153,1мм)


S – расстояние между
краями проводников (1,25мм);




4. Определим паразитную
индуктивность шины питание и шины земля:




Таким образом,
разработанная ПП удовлетворяет заданным условиям, так как полученные расчетные
значения электрических параметров не превышают допустимых значений для
двусторонних печатных плат.




Данный расчет проводится
с целью определения степени влияния вибраций и перегрузок, которые воздействуют
на элементы печатного узла. При расчете на вибропрочность в качестве расчетной
схемы принимается упрощенная модель в виде прямоугольной пластины размерами
сторон a*b постоянной толщины h с равномерным распределением массы элементов по
всей пластине, тип закрепления – опирание по 4-м сторонам [9]


материал печатной платы –
СФ-2-35-1,5 ГОСТ 10316-78


- габаритные размеры платы – 95 х 95 х
1,5мм.


- масса элементов на плате – 18,4 гр.


1. Массу печатаной платы
можно рассчитать по такой формуле:




где r - плотность стеклотекстолита (r=2050 кг/м 3 ), а*b*h –
размеры печатной платы (берутся из чертежа печатной платы).


Пользуясь формулой (7.1)
рассчитаем массу нашей печатной платы:




2. Определим коэффициент
влияния (он учитывает массу ЭРЭ на печатной плате) пользуясь следующим
выражением:




где m Э –
суммарная масса всех ЭРЭ на печатной плате, m Э =18,4 г.


3. Далее следует
определить собственную частоту колебаний печатной платы:




где D – цилиндрическая
жесткость, определяется по формуле:


Подставим эти значения в
формулу (7.4):




Определим a, считая, что плата опирается по
четырем сторонам:




n=r*g, где g – ускорение свободного падения (g=9.81).


Теперь подставим все
найденные значения в выражение (6.3.3) и найдем собственную частоту колебания
печатной платы:







Практика показала, что
если f c >250 Гц, то конструкция абсолютно жесткая. Делаем вывод,
что устройство не нуждается в дополнительных опорах, амортизаторах или других
элементах, необходимых для уменьшения перегрузок при действии вибрации.




Максимальную мощность
рассеивает стабилизатор напряжения IRU1117-33CY.


На данной микросхеме
падение напряжен
Недостатки SMT: Дипломная (ВКР). Информатика, ВТ, телекоммуникации.
Глобальные Катастрофы Реферат
Дипломная работа по теме Мониторинг физического развития и функционального состояния организма юношей-борцов
Реферат: Pros And Cons Of Capotal Punishment Essay
Писать Контрольную Работу По Математике 2 Класс
Реферат: Шейпинг – технология. Скачать бесплатно и без регистрации
Курсовая работа по теме Критерий достоверности в аудите: сущность, роль и значение
Контрольная работа по теме Архитектура северных городов России
Сочинение На Тему Совесть 7 Класс
Реферат по теме Концепция и принципы неклассического естествознания
Дипломная работа по теме Оценка иностранных инвестиций в Российской Федерации
Грамоте Учиться Всегда Пригодится Сочинение 2 Класс
Курсовая работа по теме Основные интерфейсы, применяемые в компьютерной технике
Короткое Сочинение О Любом Народе
Реферат: Конфиденциальная информация 2
Основные виды показателей вариации
Курсовая работа по теме Поняття, зміст і види правовідносин
Алгебра 10 Класс Мордкович Контрольные Работы Ответы
Отчет По Учебной Практике В Организации
Реферат по теме Признаки организационно-правовых форм
Контрольная Работа На Тему Правовое Воспитание. Основные Аспекты Понимания Законности
Статья: Способности, их измерение и развитие
Похожие работы на - Бух учет в угольной промышленности
Похожие работы на - Состав бухгалтерской финансовой отчетности

Report Page