Автоматизированные системы контроля загрязнения воздушного бассейна - Экология и охрана природы курсовая работа

Автоматизированные системы контроля загрязнения воздушного бассейна - Экология и охрана природы курсовая работа




































Главная

Экология и охрана природы
Автоматизированные системы контроля загрязнения воздушного бассейна

Проблема загрязнения атмосферного воздуха промышленными предприятиями, классификация методов анализа его состава. Основные достоинства автоматических приборов, измеряющих количество вредных веществ. Виды сигнализаторов довзрывоопасных концентраций.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1.2 Источники загрязнения атмосферы
1.3 Классификация загрязнителей воздуха
2. Классификация автоматических методов анализа состава воздуха и их краткая характеристика
3. Автоматизированные системы контроля загрязнения воздушного бассейна
3.1 Автоматические приборы непрерывного действия для анализа загрязнений воздуха
3.2 Автоматические сигнализаторы довзрывоопасных концентраций
Окружающий нас воздух (атмосфера) является важнейшим фактором обеспечения нашей жизни. Стоит прекратить поступление воздуха в организм через органы дыхания, как уже через короткое время наступит смерть. В естественных условиях эта зависимость жизни от постоянного поступления, не содержащего посторонних примесей воздуха для дыхания, не таит в себе никакой опасности, но лишь до тех пор, пока в нашем распоряжении есть достаточное количество чистого, однородного по составу воздуха. Только с того времени, как человек начал применять в своей деятельности вредные для его жизни вещества, которые ранее лишь изредка, да и то в незначительных количествах загрязняли атмосферу, чистота использовавшегося для дыхания воздуха иногда стала подвергаться угрозе. При этом обнаружилось, что наши органы чувств не позволяют нам с достаточной точностью определять качество воздуха.
Наше обоняние не способно сигнализировать о наличии в воздухе всех вредных для нашего организма загрязнений, например, оксида и диоксида углерода, оксидов азота (I) и (II). В то же время, хотя мы и ощущаем присутствие в атмосфере даже незначительного количества таких ядовитых веществ как синильная кислота, наш организм не отвечает на это какой-либо защитной реакцией. Неравномерно по своему характеру и воздействие на человека некоторых раздражающих газов. Так, аммиак сначала вызывает раздражающее действие, тогда как его вредное воздействие сказывается с некоторым опозданием; у диоксидов серы и азота мы наблюдаем обратную картину. Ограничены возможности наших органов обоняния и с точки зрения количественного определения содержания в воздухе примесей. Не говоря о том, что восприимчивость людей ко многим обладающим запахом загрязнениям воздуха носит строго индивидуальный характер, по отношению к некоторым ядовитым веществам, таким, как сероводород и диоксид азота, имеет место явление привыкания. Что же касается радиоактивных загрязнений воздуха, которые приобрели особое значение лишь в последние десятилетия, то для их обнаружения мы вообще не обладаем какими-либо органами чувств.
Как показывают приведенные выше примеры, постоянно расширяющееся использование ядовитых веществ и вызванное этим усиление качественного и количественного загрязнения воздуха обусловили необходимость создания дополнительных средств определения качества воздуха. Вначале для этой цели применялись отдельные методы, основанные на практическом опыте, как, например, наблюдение за горящей свечой (если ее пламя начинало мерцать или гасло, это указывало на присутствие в воздухе избыточного количества углекислого газа) или за поведением певчих птиц в помещениях, где существовала опасность внезапного выброса оксида углерода. Позднее для исследования состава воздуха стали применять методы химического анализа, дополненные физическими измерениями.
При этом возникают две основные задачи. С одной стороны, исследование собственно атмосферы населенных пунктов, проводимое с целью охраны здоровья проживающих там людей, а также исследование состава воздуха в сельскохозяйственных районах, призванное выявлять вредное воздействие загрязнений воздуха на растения и животных. С другой стороны, это контроль чистоты воздуха в рабочих зонах производственных помещений, подвергающихся опасности проникновения вредных газов, осуществляемый для защиты работающего там персонала.
Обращает на себя внимание, что анализы состава воздуха в жилых, конторских и подсобных помещениях, где горожане обычно проводят больше времени, чем на улице, проводятся сравнительно редко. При этом, по-видимому, предполагается, что показатели, измеренные вне зданий, действительны и для расположенных в них помещений. Подобное предположение во многих случаях не соответствует истине. Например, в комнате с оштукатуренными стенами уровень содержания проникшего в нее диоксида серы быстро падает. То же можно сказать в отношении диоксида азота, фтористого водорода и других кислых газов. Никогда не бывает также одинаковым содержание пыли в воздухе на улице и внутри расположенного на ней здания.
В этой связи уместно отметить, что хотя современная техника вызвала значительное загрязнение атмосферы, она в то же время, несомненно, позволила немного улучшить качество воздуха в жилых помещениях по сравнению с прежними временами, благодаря повышению в широких масштабах культуры жилища, выразившемуся в применении более совершенного отопления, освещения и использовании канализации. В наши дни трудно представить себе, какое влияние в свое время оказывала на распространение легочных заболеваний копоть - неизменный спутник свечного или керосинового освещения.
Результаты анализов состава воздуха уже обусловили не только совершенствование методики их выполнения, но и повлекли за собой самые разносторонние изменения в области техники, общественной гигиены и т. п. С другой стороны, требования повседневной практики относительно чувствительности, специфичности, длительности и частоты проведения анализов состава воздуха становятся все более жесткими и многообразными. В то же время они послужили толчком к дальнейшему развитию методики проведения анализов с помощью меченых атомов и созданию автоматических, аналитических приборов непрерывного действия, причем определенный «вклад» внесла здесь проблема применения отравляющих газов в период обеих мировых войн. Такое взаимное стимулирование развития методов и средств лабораторного анализа, с одной стороны, и требований повседневной практики, с другой, происходит в полной мере и в наши дни. Результатом этого можно считать постоянное появление интересных и важных новшеств в области методики анализа состава воздуха, что, в свою очередь, приводит к накоплению ценного опыта и прогрессу техники, направленному на сохранение чистоты воздуха.
Более 99,9% сухого атмосферного воздуха состоит из азота, кислорода и аргона и лишь около 0,1% приходится из долю диоксида углерода, криптона, неона, гелия, ксенона и водорода. Однако даже в чистом воздухе содержатся следовые количества (от 0,003 до 0,25 мг/м 3 ) оксида углерода, озона, оксидов азота и аммиака, а также 0,5-1,5 мг/м 3 водорода и метана. Присутствие небольших количеств этих газов в воздухе объясняется существованием свободного озона в верхних слоях атмосферы, а также процессами гниения и разложения (аммиак, метан, оксиды углерода и азота) или атмосферными явлениями (диоксид азота). Все другие соединения (твердые, жидкие и газообразные вещества, изменяющие естественный состав атмосферы), попадающие в воздух из различных источников (в основном антропогенного происхождения), классифицируются как загрязнители. К ним относят оксиды углерода, серы и азота, углеводороды, различные оксиданты, аэрозоли металлов, твердые частицы (пыль, сажа, органические аэрозоли) и радиоактивные вещества.
1.2 Источники загрязнения атмосферы
Главный вклад в загрязнение воздушного бассейна вносит промышленность, особенно в местах её концентрации. Основными источниками индустриальных загрязнений воздуха являются тепловые электростанции (ТЕС), работающие на каменном угле и выбрасывающие в атмосферу сажу, золу и диоксид серы; металлургические заводы, выбросы которых содержат сажу, пыль, оксид железа и диоксиды серы, а иногда и фториды; цементные заводы - источники огромного количества пыли. Крупные предприятия по производству продукции неорганической химии загрязняют атмосферу, в зависимости от технологического процесса, самыми различными по составу газами (диоксид серы, тетрафторид кремния, фтороводород, оксиды азота, хлор, озон). Заводы по производству целлюлозы, очистке нефти, отличаются выбросами в атмосферу дурнопахнущих газообразных отходов (одорантов). Предприятия нефтехимии (нефтеперегонные заводы, переработка нефти, органический синтез) служат источником поступления в воздух углеводородов и органических соединений других классов (амины, меркаптаны, сульфиды, альдегиды, кетоны, спирты, кислоты, хлоруглеводороды и др.).
Кроме того, все промышленные предприятия располагают собственными отопительными и энергетическими системами, отходящие газы которых также загрязняют воздух.
Загрязнение атмосферного воздуха предприятиями химической промышленности, обусловлено следующими причинами:
1. Неполный выход продукции (неполнота протекания реакции, потери конечного продукта и др.).
2. Выброс в атмосферу примесей и загрязнений при переработке сырья (фтористых соединений из природных фосфатов и руд; диоксида серы и сероводорода из природного газа, сырой нефти и каменного угля; мышьяка и селена из серного колчедана при производстве серной кислоты и т. д.).
3. Потери веществ, используемых в производственных процессах, (летучих органических растворителей, сероуглерода и сероводорода при изготовлении искусственного шелка и вискозы; оксидов азота при камерном и башенном способах производства серной кислоты; соединений фтора при производстве алюминия и др.).
4. Попадание в воздухе пахучих веществ и продуктов окисления и деструкции в результате процессов термоокислительной деструкции, нагревания или сушки (производство продуктов питания, мыла, клея и изделий из дерева, окраска автомобилей, синтез и переработка полимерных материалов, производство растворителей и др.).
Весьма существенную роль в загрязнении воздуха крупных городов играют отработавшие газы автомобилей, а также процессы испарения топлива. Содержание вредных веществ в отработавших газах автомобилей в значительной степени зависит от условий эксплуатации двигателей. Двигатель, работающий на бензине, практически не оказывает какого-либо влияния на содержание и атмосферном воздухе диоксида углерода, но он является непосредственным источником загрязнения воздуха такими веществами, как оксид углерода: (образуется в результате неполного сгорания бензина в цилиндрах двигателя), газообразные углеводороды парафинового и олефинового ряда и неизменившиеся составные части топлива, высококипящие полициклические ароматические углеводороды и сажа, продукты неполного окисления топлива (например, альдегиды), тяжелые металлы (например, свинец в этилированном бензине) и оксиды азота, образованию которых способствуют процессы, происходящие при сгорании топлива. Выхлопные газы, содержащие реакционноспособные олефиновые углеводороды и оксиды азота, могут под действием солнечной радиации вступать в фотохимические реакции в атмосфере, приводящие к образованию токсичного смога, губительного для растений и конструкционных материалов и вредного для живых организмов.
Стационарные источники промышленного происхождения (дымовые газы, отходящие газы плавильных печей металлургического производства, установок каталитического крекинга, отходящие газы ТЭС и других энергетических комплексов) и извержение вулканов загрязняют атмосферу углеводородами. Значительно большее количество углеводородов и оксидов углерода выделяется в воздух в результате лесных пожаров.
1.3 Классификация загрязнителей воздуха
В зависимости от источника и механизма образования различают первичные и вторичные загрязнители воздуха. Первые представляют собой химические вещества, попадающие непосредственно в воздух из стационарных или подвижных источников. Вторичные образуются в результате взаимодействия в атмосфере первичных загрязнителей между собой и с присутствующими в воздухе веществами (кислород, озон, аммиак, вода) под действием ультрафиолетового излучения. Часто вторичные загрязнители, например вещества группы пероксиацетилнитратов (ПАН), гораздо токсичнее первичных загрязнителей воздуха. Большая часть присутствующих в воздухе твердых частиц и аэрозолей является вторичными загрязнителями.
С учетом токсичности и потенциальной опасности загрязнителей, их распространенности и источников эмиссии они были разделены условно на несколько групп:
1) основные (критериальные) загрязнители атмосферы - оксид углерода, диоксид серы, оксиды азота, углеводороды, твердые частицы и фотохимические оксиданты;
2) полициклические ароматические углеводороды (ПАУ);
3) следы элементов (в основном металлы);
4) постоянные газы (диоксид углерода, и др.);
6) абразивные твердые частицы (кварц, асбест и др.);
7) разнообразные загрязнители, оказывающие многостороннее действие на организм, (нитрозамины, озон, полихлорированные бифенилы (ПХБ), сульфаты, нитраты, альдегиды, кетоны и др.).
Все критериальные загрязнители откосятся к первичным загрязнителям атмосферы. Оксиды азота образуются преимущественно при высокотемпературной фиксации азота и кислорода в силовых установках и двигателях внутреннего сгорания. Оксид азота образуется при электрических разрядах в атмосфере и присутствует в отработавших газах автомобилей. Ежегодно в атмосферу поступает около 5-10 7 т. оксидов азота, из них 53% из антропогенных источников. В конечном итоге оксиды азота превращаются в атмосфере в нитраты.
Диоксид серы относят к главным и наиболее важным загрязнителям воздуха, опасным для животных и растений и участвующим в образовании фотохимического смога. Общая эмиссия диоксида серы в атмосферу составляет 8-10 7 т. в год, т. е. значительно превосходит поступление в атмосферу большинства других токсичных химических веществ, и постоянно возрастает пропорционально росту потребления энергии.
Оксид углерода - наиболее опасный и чрезвычайно распространенный из газообразных загрязнителей воздуха, токсичность которого обусловлена реакцией с гемоглобином крови. Образование СО происходит при неполном сгорании различного топлива. Естественным источником СО являются лесные пожары и фотохимическое превращение органических соединений в атмосфере. Около 25% СО антропогенного происхождения. Значительное количество оксида углерода поступает в атмосферу городов и промышленных регионов с отработавшими газами автотранспорта. Средняя концентрация СО в атмосфере (около 10 5 %) значительно увеличивается (до 3 10 3 %) в районах автострад и в городах в часы пик.
Предполагается, что в будущем снизится загрязнение воздуха от стационарных источников такими токсичными веществами, как пыль и оксиды серы, углерода и азота. Однако большую опасность будут представлять газы и пары органических веществ и тяжелые металлы (свинец, кадмий, бериллий и др.).
Концентрация углеводородов, выделяющихся в воздух из природных источников, немногим более 1 мг/м 3 . Ежегодная эмиссия углеводородов составляет 3-10 8 т. в год, причем 50% этого количества обусловлено работой транспорта, около 15% составляет выделение углеводородов при сгорании жидкого топлива в жилых районах и ТЭС, а 26% приходится на сгорание угля, мусора (в среднем на планете приходится уничтожать около 1 м 3 отходов в год на человека) и испарение топлива и растворителей. В «усредненном» автомобильном выхлопе содержится около 400 мг/м 3 парафиновых, 120 мг/м 3 ацетиленовых, 200 мг/м 3 ароматических и 300 мг/м 3 олефиновых углеводородов.
Содержащиеся в атмосфере твердые частицы представляют собой пыль, песок, золу, сажу, вулканическую пыль и аэрозоли органической (высокомолекулярные соединения) и неорганической природы. Часто токсичность твердых частиц обусловлена адсорбцией на их поверхности таких опасных соединении, как ПАУ или нитрозамииы.
Фотооксиданты образуются в атмосфере при взаимодействии реакционноспособных углеводородов и оксидов азота под действием УФ радиации. В конечном итоге образуются высокотоксичные вещества: (пероксиацетилнитрат, пероксибензоилнитрат и др.). Уже при концентрации 0,2 мг/м 3 эти соединения обладают резким лакриматорным действием, повреждают растения и разрушают резину. Еще более токсичны пероксибутил- и пероксипропилнитраты. Соединения этой группы нестойкие, особенно при повышенной температуре, и разлагаются с образованием более простых продуктов, например метилнитратов и диоксида углерода. Оксиданты загрязняют воздушный бассейн большинства крупных городов мира, поскольку их образование связано с развитием промышленности и автотранспорта.
Следующая группа загрязнителей - полициклические ароматические углеводороды (ПАУ) - могут быть как первичными, так и вторичными загрязнителями атмосферы и обычно адсорбируются на твердых частицах. Многие из ПАУ отличаются выраженным канцерогенным, мутагенным и тератогенным действием и представляют серьезную угрозу для человека. Основным источником эмиссии ПАУ являются ТЭС, работающие на нефти или каменном угле, а также предприятия нефтехимической промышленности и автотранспорта. Из нескольких миллионов известных в настоящее время химических соединений лишь около 6000 были проверены на канцерогенную активность. В настоящее время установлено, что 1500 химических соединений, являющихся потенциальными загрязнителями атмосферы, обладают выраженными канцерогенными свойствами (ПАУ, нитрозамины, и др.). Содержание ПАУ и других канцерогенных веществ, попадающих в атмосферу с выбросами промышленных предприятий, составляет в крупных индустриальных центрах около 80% от общего загрязнении окружающей среды.
Следовые количества химических элементов представлены в атмосфере такими высокотоксичными загрязнителями, как мышьяк, бериллий, кадмий, свинец, магний и хром. Они обычно присутствуют в воздухе в виде неорганических солей, адсорбированных на твердых частицах. Около 60 металлов идентифицировано в продуктах сгорания угля. В дымовых газах ТЭС обнаружены ртуть, мышьяк, барий, бериллий, висмут, бром, кадмий, хлор, кобальт, медь, железо, фтор, свинец, марганец, сурьма, молибден, никель, селен, теллур, таллий, олово, титан, уран, ванадий, цинк и цирконий. Для большинства перечисленных элементов их выброс в атмосферу с дымовыми газами ТЭС составляет 3 /4 от абсолютного уровня загрязнения воздуха всеми источниками эмиссии этих элементов. При этом максимальное количество загрязнителей попадает в атмосферу при сжигании угля. На долю этого источника приходится более 95% твердых частиц, 85% оксидов серы, 70% оксидов азота и более 90% следов элементов от общего количества выбросов для всех ТЭС, работающих на угле, нефти и газе.
Помимо продуктов сжигания нефти, свинец выделяется в воздух при извержении вулканов, с отработавшими газами автомобилей и в результате различных производственных процессов. Ежегодно в воздушный бассейн в виде галогенидов попадает около 2-10 5 т. свинца, а ежегодный прирост содержания ртути в окружающей среде промышленно развитых стран составляет 5%. Металлическая ртуть и свинец, а также их металлорганические соединения очень токсичны. Ртуть поступает в атмосферу при извержении вулканов и с выбросами химической, электронной и приборостроительной промышленности. Особенно токсичны и опасны для человека галогенсодержащие металлорганические соединения ртути, которые образуются из металлической ртути и ее неорганических солей под действием микроорганизмов. При сгорании различного топлива только в атмосферу ФРГ ежегодно попадает 40 т. ртути, которая оседает на поверхности почвы и водоемов.
Скапливаясь в атмосфере, загрязнители взаимодействуют друг с другом, гидролизуются и окисляются под действием влаги и кислорода воздуха, а также изменяют свой состав под воздействием радиации. Вследствие этого продолжительность пребывания токсичных примесей в атмосфере тесно связана с их химическими свойствами. Для диоксида серы этот период составляет 4 дня, сероводорода - два, оксида азота - пять, аммиака-семь дней, а СО и СН 4 в силу своей инертности сохраняются неизменными в течение трех лет.
Из пестицидов, которые обычно распыляют с самолетов, особенно токсичны фосфорорганические пестициды, при фотолизе которых в атмосфере образуются продукты еще более токсичные, чем исходные соединения.
Так называемые «абразивные» частицы, к которым относятся диоксид кремния и асбесты, при респираторном проникновении в организм человека вызывают серьезные заболевания (например, силикозы). Загрязнения последнего класса, из которых наиболее важны сульфаты, нитраты и нитрозамины. являются продуктами реакций первичных загрязнителей атмосферы.
Таблица 1. Концентрации загрязнителей атмосферы
Концентрация в сельских районах, мг/м3.
Атмосферное фотоокисление олефинов.
Сумма углеводородов (кроме метана).
2. Классификация автоматических методов анализа состава воздуха и их краткая характеристика
Автоматические методы анализа - наиболее перспективны для непрерывного контроля загрязнения воздушного бассейна. Применяемые при этом приборы обеспечивают быстроту и непрерывность, большую точность и объективность результатов анализов, но являются сложными и дорогими.
В соответствии с требованиями стандартов наблюдения за загрязнением атмосферы по полной программе должны проводиться за содержанием пыли, сернистого газа, оксида углерода, диоксида азота (основные загрязнители) и за рядом специфических веществ, которые свойственны промышленным выбросам данного населенного пункта.
Содержание пыли в атмосферном воздухе может быть определено прямым или косвенным способом. Прямой способ заключается в отборе пробы запыленного воздуха и взвешивании осажденных из нее частиц с последующим отнесением их массы к единице объема воздуха. Косвенные методы используют закономерности изменения физических свойств запыленного воздуха в зависимости от концентрации пыли - величины поглощения световых, тепловых и ионизирующих излучений, способности воспринимать электростатический заряд и т. л. Наиболее часто в этом случае применяют гравиметрический (прямой) или радиоизотопные и оптические (косвенные) методы.
Гравиметрический метод определения взвешенных частиц пыли к атмосферном воздухе регламентирует ГОСТ 17.2.4.05-83. Согласно требованиям стандарта разовую (С 30 ) и среднесуточную (С24) концентрации взвешенных частиц пыли в воздухе (мг/м 3 ) вычисляют по формуле:
Где m1 и m 2 - масса фильтра соответственно с пылью и без пыли, мг;
V 0 - объем пропущенного воздуха, приведенный к нормальным условиям, м 3 .
Радиоизотопный метод измерения концентрации пыли, основан на свойстве радиоактивного излучения поглощаться частицами пыли. Массу пыли в пробе определяют по степени ослабления радиоактивного излучения при прохождении его через запыленный воздух.
Оптические методы используют закономерности изменения физических свойств запыленного воздуха. Так, изменение оптической плотности по степени светопоглощения или рассеивания света называют фотометрическим методом анализа. С его помощью можно определять до 5 10- 3 мкг. вещества в пробе. Измерение степени рассеивания света взвешенными частицами, находящимися в растворе, положено в основу нефелометрического метода, чувствительность которого до 4-10 мкг. вещества в пробе. Абсорбционный метод, основанный на явлении поглощения света при прохождении его через пылегазовую среду, позволяет измерять концентрацию взвешенных частиц непосредственно в атмосферном воздухе без предварительного отбора пробы.
Радиоизотопные и оптические методы определения запыленности атмосферного воздуха находят применение в системах автоматизированного наблюдения и контроля окружающей среды (АНКОС).
Содержание оксида углерода, диоксида азота, сернистого газа и других вредных парообразных примесей в атмосферном воздухе определяется с помощью приборов-газоанализаторов. При лабораторном анализе применяют оптические, фотоколориметрические, кондуктометрические, кулонометрические и хроматографические газоанализаторы.
Принцип действия оптических газоанализаторов основан на избирательном поглощении газами лучистой энергии в инфракрасной, ультрафиолетовой или видимой областях спектра.
Широкое распространение имеют фотоколориметрические газоанализаторы, действие которых основано на поглощении лучистой энергии в видимой области спектра растворами или индикаторными лентами, изменяющими свою окраску при взаимодействии с определенными газовыми компонентами.
В последние годы получили распространение газоанализаторы, использующие эмиссию излучения анализируемой газовой примеси. Сущность этого метода состоит в том, что молекулы исследуемого газа, например, оксидов азота или соединений серы, приводят в состояние оптического возбуждения и затем регистрируют интенсивность люминесценции, возникающей при возвращении их о состояние равновесия.
В основу принципа действия кондуктометрических газоанализаторов положено поглощение анализируемого компонента газовой смеси соответствующим раствором и измерение его электропроводности. В кулонометрических газоанализаторах электрохимическая реакция протекает в ячейке между анализируемым газом и электролитом, в результате которой во внешней цепи появляется электродвижущая сила, пропорциональная концентрации определяемого компонента воздуха.
Для экспрессного определения токсических веществ применяют универсальные газоанализаторы (УГ-2, ГХ-4 и др.), основанные на линейно-калориметрическом методе. В этом случае при продвижении воздуха через индикаторные трубки, заполненные специальным порошком - поглотителем, происходит изменение его окраски; длина окрашенного слоя пропорциональна концентрации исследуемого вещества.
В последние десятилетия как самостоятельный раздел техники метеорологических измерений выделилась лазерная локация, позволяющая получить данные о состоянии запыленности и газового состава приземного слоя атмосферы. Она является перспективным направлением оперативного контроля загрязнения воздушного бассейна крупных городов.
Система наблюдения, контроля, прогнозирования и управления качественным состоянием атмосферного воздуха получила наименование атмосферного мониторинга (в переводе с английского - наблюдение, проверка, проводимая относительно какого-либо явления естественной или социальной жизни).
Рациональное сочетание наблюдения, контроля и прогнозирования загрязнения биосферы - основа эффективного управления качества ОПС и, в частности, воздушного бассейна, что реализуется в системах АНКОС-А.
3. Автоматизированные системы контроля загрязнения воздушного бассейна
Бурное развитие промышленности, энергетики, транспорта и сельскохозяйственного производства, в особенности во второй половине XX в., увеличило загрязнение атмосферы вредными газами, которое в ряде случаев привело в некоторых странах к катастрофическим последствиям - массовым заболеваниям и гибели люден (например, при лондонских смогах и др.,).
Борьба с загрязнением воздуха (3В) в промышленных районах, городах и на промышленных площадках заводов, фабрик и ТЭС представляет сложную научно-техническую задачу, основой для решения которой является наличие надежных методов и средств контроля и прогнозирования качества воздушной среды.
При решении комплекса перечисленных вопросов пользуются термином «мониторинг атмосферы», в который включают анализ, контроль (т. е. наблюдение и оценка), прогноз основных параметров состояния и управление качественным составом атмосферы. В нашей стране данная проблема решается под общим руководством Государственного комитета Украины по гидрометеорологии и контролю природной среды. Наиболее сложным и трудоемким вопросом является создание эффективных средств и методов контроля загрязнения воздушной среды современного промышленного города, содержащей множество веществ, в том числе - вредных, с постоянно меняющейся концентрацией. Так, для воздуха населенных пунктов стандартом установлена ПДК по 120 веществам к 25 их комбинациям.
Все методы и средства анализа состава атмосферного воздуха можно разделить на четыре группы:
1) аналитические методы лабораторного анализа воздуха;
2) автоматические приборы для определения концентрации загрязняющих атмосферу веществ;
3) автоматизированные системы контроля загрязнения окружающей среды - АСКЗ;
4) дистанционная лазерная локация загрязнения атмосферы. Аналитическому методу предшествует разовый эпизодический (или в установленные заданием определенные отрезки времени) отбор проб воздуха с последующим их анализом и обработкой. Применяются инструментальные, химические и биологические разновидности аналитического метода. Из химических наиболее широко используются микрокалориметры, позволяющие с необходимой для практики точностью производить экспресс-анализ концентраций паров и пылей металлов, формальдегидов, оксидов азота и углерода, аммиака, сероводорода, фтора и других соединений. Инструментальные методы (спектрофотомерия, ультразвуковой и др.) - сложные и в промышленных условиях практически не применяются, а биологические, хотя и обладают высокой чувствительностью, но в основном дают лишь качественную оценку определяемого вещества.
Автоматические методы газового анализа целесообразно использовать в автоматизированных системах контроля загрязнения атмосферы (АСКЗ-А) в виде непрерывнодействующих приборов-датчиков для телеконтроля основных вредных ее ингредиентов. Была создана серия автоматических приборов для определения в указанных ниже пределах концентраций пяти ингредиентов (табл.2).
В условиях возрастающего загрязнения атмосферы городов и промышленных центров возникла необходимость создания на базе автоматических приборов автоматизированных систем для оперативной оценки состояния о загрязнении воздуха (3В) и предупреждения опасных ситуаций, возникающих в отдельных районах.
Тип прибора - датчика и принцип действия.
При ззначительных выбросах вредных веществ предприятиями, транспортом и другими источниками в условиях изменяющейся метеорологической обстановки. АСКЗ-А состоит из разветвленной сети непрерывно действующих датчиков вредных ингредиентов и метеопараметров и включает телеметрическую аппаратуру централизованного сбора и обработки (с помощью ЭВМ) получаемой от датчиков информации, которая используется для прогноза ожидаемого уровня загрязнения и оперативного управления качеством атмосферы данного региона. Первые работы по научному обоснованию, разработке и внедрению АСКЗ-А в нашей стране были выполнены в Институте технической теплофизики (ИТТФ) под руководством академика А. Н. Щербаня и до
Автоматизированные системы контроля загрязнения воздушного бассейна курсовая работа. Экология и охрана природы.
Годовая Контрольная Работа По Литературы
Дипломная работа по теме Административное правонарушение как юридический феномен
Будет Ли Отмена Итогового Сочинения
Контрольная работа по теме Техническая эксплуатация и безопасность движения на железнодорожном транспорте
Эссе На Тему Инфляция В Экономике России
Реферат по теме Референдум: понятие, виды, конституционно-правовое регулирование, политическая роль.
Сочинение О Красоте Воды 2 Класс
Реферат: Леса Европы в голоцене - что было?
Реферат: Советская Армения в период Социалистического строительства
Курсовая Работа На Тему Нелитературная Лексика В Прессе (На Материале Воронежской Печати)
Общество Как Динамическая Система Эссе
Курсовая Работа На Тему Субстантивация В Поэтическом Контексте
Реферат по теме Морские грузовые перевозки Приморского края
Реферат: Законодательный процесс и его стадии 2
Логические Ошибки В Сочинении Огэ
Кассовое Оборудование Реферат
Курсовая Работа На Тему Рекламный Рынок Г. Архангельска
Курсовая Работа На Тему Отграничение Гражданского Права От Смежных Отраслей Права
Курсовая работа: Кадровая политика предприятия на примере ОАО "Загорская ГАЭС"
Рта Диссертации
Психологические аспекты измены - Психология реферат
Соотношение законности, правопорядка и демократии - Государство и право курсовая работа
Деловая репутация организации, особенности и проблемы отражения в учете (на примере конкретного предприятия) - Бухгалтерский учет и аудит курсовая работа


Report Page