Автоматизированное управление уличным освещением - Физика и энергетика курсовая работа
Главная
Физика и энергетика
Автоматизированное управление уличным освещением
История создания и принцип действия солнечной батареи. Преимущества и недостатки солнечных батарей. Системы управления уличным освещением. Сравнение ламповых и светодиодных светильников. Рабочие схемы проекта с описанием используемого оборудования.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В наше время тема развития альтернативных способов получения энергии как нельзя более актуальна. Традиционные источники стремительно иссякают и уже через каких-нибудь пятьдесят лет могут быть исчерпаны. И уже сейчас энергетические ресурсы довольно дороги и в значительной мере влияют на экономику многих государств.
Всё это заставляет жителей нашей планеты искать новые способы получения энергии. И одним из наиболее перспективных направлений является получение солнечной энергии. И это вполне естественно. Ведь именно Солнце даёт жизнь нашей планете и обеспечивает нас теплом и светом. Солнце обогревает все уголки Земли, управляет реками и ветром. Его лучи выращивают не менее одного квадриллиона тонн всевозможных растений, которые, в свою очередь, являются пищей для животных.
Таким образом, мы уже используем солнечную энергию в своих нуждах и все традиционные источники энергии (нефть, уголь, торф) появились на земном шаре благодаря Солнцу.
Человек с самых древних времён учился пользоваться дарами Солнца. Даже простой костёр, который согревал наших предков тысячи лет назад и продолжает это делать теперь, является по сути дела использованием солнечной энергии, которую накопила древесина. Но Солнце способно удовлетворять и более масштабные потребности человека. По подсчётам учёных, человечество нуждается в десяти миллиардах тонн топлива. Если высчитать количество таких условных тонн, которые предоставляются Солнцем в течение года, мы получим фантастическую сумму - около ста триллионов тонн. Таким образом, люди получают количество энергии, превышающее необходимые ресурсы в десять раз. Нужно только взять это энергетическое богатство. Вот этот вопрос и является крайне актуальным для науки.
Возобновляемые источники энергии важны не только с точки зрения диверсификации технологической базы электрогенерации. Сегодня мировое сообщество испытывает серьезную озабоченность по поводу глобального изменения климата.
Как показало исследование, проведенное компанией Exxon Mobile, мировые энергетические потребности ежегодно возрастают на 1.3% и к 2030 г. увеличатся на 40% по сравнению с 2005 г. 40% этого роста придется на энергогенерируюший сектор. Соответственно, выбросы углекислого газа (CO2), связанные с сектором энергетики, тоже возрастут.
Важным преимуществом систем солнечной фотоэнергетики является отсутствие выбросов углекислого газа в процессе работы систем. Хотя непрямые выбросы присутствуют на других стадиях жизненного цикла системы, фотоэлектрические технологии генерируют гораздо меньше выбросов на ГВт вырабатываемой энергии на протяжении всего жизненного цикла, чем технологии, использующие традиционные виды топлива. Как минимум 89% выбросов, связанных с производством энергии, можно было бы предотвратить, заменив традиционные источники энергии фотоэлектрическими.
Результатом многолетней работы стало такое устройство как солнечная батарея.
В 2012 году, в Приморье будет проходить саммит АТЭС, подготовка к которому активно ведётся уже сейчас. Один из проектов АТЭС во Владивостоке - строительство и реконструкция автодорог территории объектов саммита. Одной из главных задач данного проекта - является организация освещения автодорог. Темой данного диплома является: «Автоматизированное управление уличным освещением». Тема предполагает рассмотрение возможности применения данного метода для нашего региона.
уличное освещение солнечный батарея
1 ИНТЕЛЛЕКТУАЛЬНОЕ УЛИЧНОЕ ОСВЕЩЕНИЕ НА СОЛНЕЧНЫХ БАТАРЕЯХ
1.1 История создания солнечной батареи
Начальной точкой развития солнечных батарей является 1839 год, когда был открыт фотогальванический эффект. Это открытие было сделано Александром Эдмоном Беккерелем.
Следующим этапом в истории солнечных батарей стала деятельность Чарльза Фриттса. Через сорок четыре года после открытия Беккереля, в 1883 году, Фриттс сконструировал первый модуль с использованием солнечной энергии. Основой изобретения послужил селен, покрытый тонким слоем золота. Исследователь пришёл к выводу, что данное сочетание элементов позволяет, пусть в минимальной степени (не более одного процента), преобразовывать солнечную энергию в электричество.
Разумеется, до создания современных солнечных батарей было ещё далеко. В течение последующих десятилетий это направление научных исследований развивалось нестабильно. Периоды интенсивной деятельности сменялись резкими спадами. Многие склонны считать, что история солнечных батарей ведёт своё начало с деятельности Альберта Эйнштейна. В частности, великий учёный получил в 1921 году Нобелевскую премию именно за изучение особенностей внешнего фотоэффекта, а не за обоснование знаменитой теории относительности.
В 30-ых годах советские физики получили электрический ток, используя фотоэффект. Разумеется, коэффициент полезного действия (КПД) тогда не впечатлял. Он не превышал один процент, но и это являлось серьёзным научным шагом.
Уже в 1954 году группа американских учёных добилась КПД, достигающего шести процентов. В этом году свет увидела первая кремниевая солнечная батарея.
В 1958 году солнечная батарея стала основным источником получения электроэнергии на космических аппаратах, как на советских, так и на американских. Но приборы продолжали совершенствовать.
В семидесятых годах КПД составлял десять процентов. Такие показатели были вполне приемлемыми для использования альтернативных устройств получения энергии на космических аппаратах, но использовать солнечные батареи на Земле пока не имело смысла. Да и стоили солнечные батареи весьма дорого. Это объяснялось дороговизной материала. Например, цена одного килограмма кремния составляла около ста долларов. Только в девяностых годах наметились определённые позитивные сдвиги в развитии альтернативных источников энергии и солнечных батарей в частности.
Успешное и стабильное производство было налажено только в конце восьмидесятых. Сегодня выпускаемые солнечные батареи имеют КПД, немногим превышающий двадцать процентов.
1.2 Принцип действия солнечной батареи
Преобразование энергии в фотоэлектрическом преобразователь основано на фотовольтаическом эффекте (фотоэффекте), который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.
Фотоэффект -- это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения)[1]. В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект. Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.
Неоднородность структуры может быть получена легированием (добавление небольших количеств примесей с целью контролируемого изменения электрических свойств полупроводника, в частности, его типа проводимости) одного и того же полупроводника различными примесями (создание p - n-переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны. Возможны также различные комбинации перечисленных способов.
1.2.1 P-n переход или электронно-дырочный переход
P-n переход (n-negative - отрицательный, электронный, p-positive - положительный, дырочный), или электронно-дырочный переход - разновидность гомопереходов. Зоной p-n перехода называется область полупроводника, в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p.
Рисунок 1.1 - Электронно-дырочный переход.
При контакте двух областей n- и p- типа из-за градиента концентрации носителей заряда возникает диффузия в области с противоположным типом электропроводности. Диффузия (лат. diffusio -- распространение, растекание, рассеивание) -- процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией[2]. В p-области вблизи контакта после диффузии остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области -- нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда, состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт -- устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n- и p-областями при этом существует разность потенциалов, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта. Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение), а область пространственного заряда сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p -- n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает. Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p -- n-переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p -- n-переход течёт ток Is (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p -- n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 105 -- 106 раз. Благодаря этому p -- n-переход может использоваться для выпрямления переменных токов.
Гетеропереходом называют контакт двух полупроводников различного вида и разного типа проводимости, например, pGe - nGaAs. Отличие гетеропереходов от обычного p-n перехода заключается в том, что в обычных p-n переходах используется один и тот же вид полупроводника, например, pSi - nSi. Поскольку в гетеропереходах используются разные материалы, необходимо, чтобы у этих материалов с высокой точностью совпадали два параметра: температурный коэффициент расширения и постоянная решетки.
Количество материалов для гетеропереходов ограничено. Наиболее распространенными из них являются германий Ge, арсенид галлия GaAs, фосфид индия InP, четырехкомпонентный раствор InGaAsP.
1.3 Преимущества и недостатки солнечных батарей
1) главное достоинство солнечных батарей -- их предельная конструктивная простота и полное отсутствие подвижных деталей.
2) солнечные батареи не нуждаются в каком-либо топливе и способны работать на внутренних ресурсах. Владельцу не нужно волноваться о сохранности прибора и постоянно поддерживать его сохранность. Солнечные батареи практически не боятся механического износа. Да и обслуживание им никакое не нужно.
3) небольшой удельный вес, неприхотливость, максимально простой монтаж и минимальные требования к обслуживанию во время эксплуатации (обычно достаточно лишь протирать грязь с рабочей поверхности).
4) данные устройства способны прослужить не менее двадцати пяти лет.
5) не стоит забывать и об экологическом факторе. Применяемые технологии и материалы полностью соответствуют самым высоким экологическим нормам, солнечные батареи не производят выбросов вредных веществ в окружающую среду и абсолютно безопасны.
6) получения энергии с использованием солнечных батарей позволяет сэкономить немалые финансовые средства.
7) в отличие от традиционных источников, этот тип ресурсов практически неиссякаем. Получение традиционных источников энергии сегодня становится всё более дорогим удовольствием и серьёзно бьёт как по карману простых потребителей, так и по бюджетам многих государств.
1) невысокий КПД. Солнечные батареи преобразуют энергию избирательно -- для рабочего возбуждения атомов требуются определённые энергии фотонов (частоты излучения), поэтому в одних полосах частот преобразование идёт очень эффективно, а другие частотные диапазоны для них бесполезны. Кроме того, энергия уловленных ими фотонов используется квантово -- её «излишки», превышающие нужный уровень, идут на вредный в данном случае нагрев материала фотопреобразователя. Во многом именно этим и объясняется их невысокий КПД. Кстати, неудачно выбрав материал защитного стекла, можно заметно снизить эффективность работы батареи. Дело усугубляется тем, что обычное стекло довольно хорошо поглощает высокоэнергетическую ультрафиолетовую часть диапазона, а для некоторых типов фотоэлементов весьма актуален именно этот диапазон, -- энергия инфракрасных фотонов для них слишком мала.
2) чувствительность к загрязнениям. Даже довольно тонкий слой пыли на поверхности фотоэлементов или защитного стекла может поглотить существенную долю солнечного света и заметно снизить выработку энергии. В пыльном городе это потребует частой очистки поверхности солнечных батарей, установленных горизонтально или наклонно. Безусловно, такая же процедура необходима и после каждого снегопада, и после пыльной бури.
3) уменьшение эффективности в течение срока службы. Полупроводниковые пластины, из которых обычно состоят солнечные батареи, со временем деградируют и утрачивают свои свойства, в результате и без того не слишком высокий КПД солнечных батарей становится ещё меньше. Длительное воздействие высоких температур ускоряет этот процесс. Тем не менее, современные фотопреобразователи способны сохранять свою эффективность в течение многих лет. Считается, что в среднем за 25 лет КПД солнечной батареи уменьшается на 10%. Так что обычно гораздо важнее вовремя протирать пыль.
4) Солнечные батареи невозможно использовать в большинстве районов нашей страны из-за погодных условий и недостаточного количества солнечных дней.
5) Чувствительность к высокой температуре. С повышением температуры эффективность работы солнечных батарей, как и большинства других полупроводниковых приборов, снижается. При температурах выше 100..150°С они могут временно стать неработоспособными, а ещё больший нагрев может привести к их необратимому повреждению. Поэтому необходимо принимать все меры для снижения нагрева, неизбежного под палящими прямыми солнечными лучами. Дополнительно осложняет ситуацию то, что чувствительная поверхность довольно хрупких фотоэлементов часто закрывается защитным стеклом или прозрачным пластиком. В результате образуется своеобразный «парник», усугубляющий перегрев. Правда, увеличив расстояние между защитным стеклом и поверхностью фотоэлемента и соединив сверху и снизу эту полость с атмосферой, можно организовать конвекционный поток воздуха, естественным образом охлаждающий фотоэлементы. Однако на ярком солнце и при высокой температуре наружного воздуха этого может оказаться недостаточно. Поэтому солнечная батарея даже не очень больших размеров может потребовать специальной системы охлаждения. Справедливости ради надо заметить, что подобные системы обычно легко автоматизируются, а привод вентилятора или помпы потребляет лишь малую долю вырабатываемой энергии. При отсутствии яркого солнца такого большого нагрева нет и охлаждение вообще не требуется, так что энергия, сэкономленная на приводе системы охлаждения, может быть использована для других целей.
Таблица 1.1- Максимальные значения КПД фотоэлементов и модулей, достигнутые в лабораторных условиях
Коэффициент фотоэлектрического преобразования, %
Аморфный/Нанокристаллический кремний
На базе органических красителей (субмодуль)
1.4 Погодные условия и количество солнечного излучения города Владивостока
Солнечные батареи, в том числе аккумуляторы чувствительны к перепадам температуры. Для определения целесообразности использования солнечных батарей в Приморском крае нужно знать:
· Температурный режим, а именно определение средних минимумов и абсолютного минимума.
Какой же температурный фон на территории нашего края в ночные часы возможен в середине зимы. Этот фон можно охарактеризовать такими основными параметрами, как средний минимум, абсолютный и средний из абсолютных минимумов температуры воздуха.
Средний минимум температуры воздуха - это величина, полученная путем осреднения ежедневного отсчета по минимальному термометру, установленному в психрометрической будке[3]. Естественно, что такая температура может существенно отличаться от той, которую пытаются измерить за окном на балконе или еще где-то на открытом воздухе и при этом обычным, а не метеорологическим термометром. Средний минимум температуры воздуха дает представление о преобладающей температуре в течение месяца в наиболее холодную часть суток и, как показывает суточный ход, такая температура держится зимой в среднем несколько часов в конце ночи и утром. На эту температуру местные условия влияют в гораздо большей степени, чем на среднесуточную. При одной и той же высоте станции над уровнем моря в низинах, котловинах и узких долинах, куда стекает и где застаивается холодный воздух, минимальная температура может быть ниже, чем на склонах или вершинах сопок.
В январе средние минимальные температуры воздуха в большинстве районов края составляют 22-27°C, в горах до 30°C, в южных районах и на побережье, в основном, 14-18°C мороза.
В континентальной части Приморья абсолютный минимум регистрируется обычно в тихие ясные морозные ночи при ослабленном турбулентном обмене, поэтому он еще более зависим от местных условий. А вот на побережье такая закономерность не наблюдается, здесь чаще всего самые сильные морозы регистрируются при резком похолодании с усилением ветра до штормового, то есть понижение температуры осуществляется не за счет радиационного фактора. Чаще всего абсолютный минимум принадлежит январю, но в отдельные годы может отмечаться в феврале и еще реже в декабре.
Первое место по числу наблюденных абсолютных (исторических) минимумов занимает январь 1915 года, для станций, открытых в более поздние сроки таковым является январь 1951 года, а для южной части края январь 1931 года. В холодный январь 2000г. был перекрыт абсолютный минимум в п. Барабаш (Хасанский район) и п. Кавалерово.
Для большинства континентальных районов края абсолютный минимум достигал 40-44°C мороза, в Красноармейском, Чугуевском и Пожарском районах еще ниже 47-49°C; в западных и местами в южных районах 36-39°C, а на побережье 26-30°C мороза. Во Владивостоке абсолютный минимум (-31.4°C) был зарегистрирован в далеком 1931 году.
Конечно, такие экстремумы явление редкое и регистрируется 1-2 раза в
50-100 лет, но средние значения из ежегодных абсолютных минимумов представляют собой вполне ожидаемые величины и являются достаточно реальными показателями самой низкой температуры воздуха. На рисунке 4.1 представлены значения среднего абсолютного минимума. Как видим, разброс значений достаточно велик: от -31.8°C в п. Глубинное (Красноармейский район) - до 12.8°C мороза в п. Преображение (Лазовский район). Разница между абсолютным и средним минимумом составляет в большинстве районов края 6-9°C, на побережье местами 3-5°C. Анализ динамики хода средней из минимальных температур воздуха показывает наличие положительного тренда. По сравнению со средними значениями, рассчитанными по 1980г., эти значения за последние 30 лет в большинстве районов края повысились на 0.7-1.2°C, а в отдельных районах на 2.3-2.9°C.
Рисунок 1.2 - Средние температурные режимы Приморского края
В ясную погоду на 1мІ земной поверхности в среднем падает 1000 Ватт (Вт) световой энергии солнца[4]. В зависимости от местности участка земли солнечная энергия поступает неравномерно из-за облачности в пасмурную погоду, есть места, где солнце светит 320-350 дней в году, а есть такие места, где солнца не бывает вообще. Исходя из этого, прежде чем ставить солнечные батареи с целью выработки электричества, необходимо определить эффективность применения данного метода.
Как только Солнце начинает склоняться к горизонту, путь его лучей сквозь атмосферу начинает увеличиваться, соответственно, возрастают и потери на этом пути. Однако и в средней полосе в летний полдень на каждый квадратный метр, ориентированный перпендикулярно солнечным лучам, приходится более 1 кВт солнечной энергии.
Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Приморский край относится к регионам России, где целесообразно использовать солнечную энергию для целей энергообеспечения. Число солнечных дней в году в среднем по Приморскому краю составляет 310, при общей продолжительности солнечного сияния более 2000 часов. По продолжительности поступления солнечной энергии, есть районы, где число дней без солнца всего 26 в году, а продолжительность солнечного сияния 2494 часа (п. Пограничный). На северном побережье Приморского края продолжительность солнечного сияния от 1900 до 2100 часов, на южном - от 2000 до 2200 часов.
В целом, мощность поступления солнечной энергии на территорию Приморского края составляет около 30 миллиарда киловатт (кВт).
Рисунок 1.3 - Карта солнечного излучения России
1.5 Традиционные системы управления уличным освещением
Сегодня наиболее распространенны газоразрядные лампы уличного освещения, заполненные парами ртути или натрия. В последнее время наблюдается тенденция перехода на светодиодные излучатели, но в массовом порядке эта технология пока не применяется. В традиционных системах управления газоразрядными лампами важнейшую роль играют балластные сопротивления или балласты. Балласты ограничивают мощность до номинального уровня и широко используются для реализации простейших функций управления.
Индукционные балласты (ИБ) формируют бросок тока при подаче питания, необходимый для поджига газоразрядной лампы. На этапе устойчивого свечения индукционный балласт (его еще называют магнитным балластом) ограничивает мощность на лампе за счет реактивного сопротивления индуктивности (сам балласт не нагревается). Недостаток магнитных балластов - сдвиг фаз между током и напряжением исправляют за счет применения конденсаторов и разнообразных схем противофазного включения нескольких ламп, что также снижает стробоскопический эффект[5] от мерцания ламп на промышленной частоте. Стробоскопический эффект показывает, как быстро меняется скорость тела при его неравномерном движении. Различают два типа стробоскопических эффектов. Первый состоит в том, что при наблюдении быстро сменяющих друг друга отдельных фаз движения (каждая из которых фиксируется в состоянии покоя) возникает иллюзия непрерывного движения. Это связано с инерцией зрения, то есть со способностью клеток сетчатки глаза сохранять зрительный образ объекта в течение некоторого промежутка времени (примерно 0,1 секунды) после исчезновения самого зримого объекта. И если время между появлениями отдельных изображений меньше этого промежутка, образы сливаются и движение воспринимается как непрерывное. На этом, в частности, основано восприятие движения в кинематографе и телевидении.
Стробоскопический эффект второго типа заключается в том, что при определенных условиях возникает, наоборот, иллюзия покоя предмета, который на самом деле движется. Представьте себе, например, какое-то вращающееся тело, скажем колесо со спицами, которое освещается импульсной лампой, дающей короткие, повторяющиеся через равные промежутки времени вспышки. Ясно, что наблюдатель будет видеть колесо только в те моменты, когда оно окажется освещенным. Если частота вращения колеса в точности совпадает с частотой повторения вспышек, колесо будет освещено каждый раз в одном и том же положении. При достаточно большой частоте вращения (и вспышек) глаз будет сохранять это зрительное ощущение в течение промежутков времени между вспышками, и колесо будет казаться неподвижным. Приборы, в которых используется этот эффект, называют стробоскопами[6]. В современных стробоскопах прерывистое освещение осуществляется с помощью импульсных ламп с регулируемой частотой вспышек.
Электронные балласты (ЭБ) - это полупроводниковые устройства, обеспечивающие нужную последовательность подачи токов поджига и поддержания напряжения на лампе. ЭБ обычно состоят из инвертора преобразующего токи промышленной частоты в токи частотой примерно 20 кГц. Это дает ряд преимуществ: устраняется стробоскопический эффект и повышается яркость свечения газа за счет постоянной ионизации на повышенной частоте. Яркость свечения резко возрастает (на 9%) на частоте около 10 килогерц (кГц), и далее плавно возрастает при повышении частоты приблизительно до 20 кГц. Работа на высокой частоте позволяет также резко сократить габариты электронных компонентов, повысить их КПД и использовать для ограничения тока через лампу не индуктивность, а конденсатор, тем самым минимизируя потери электрической мощности. Современные ЭБ позволяют плавно регулировать яркость свечения и реализовать различные режимы поджига газоразрядных ламп:
· Мгновенный старт: поджиг ламп без предварительного разогрева катодов импульсом напряжения около 600 В. С энергетической точки зрения это наиболее эффективный способ, но он приводит к мощной эмиссии ионов с поверхности холодного катода, что укорачивает срок службы ламп при частом включении;
· Быстрый старт: одновременная подача энергии поджига и прогрев катодов. При работе в таком режиме тратится некоторое количество энергии на постоянный подогрев катодов;
· Программируемый старт: последовательная подача энергии сначала на подогрев катодов, а затем на поджиг электронной дуги. Этот способ обеспечивает наиболее длительный срок службы газоразрядных ламп, высокую экономичность и максимальное количество циклов включения - выключения.
ЭБ часто оснащают средствами дистанционного управления контроля. В качестве сетевых протоколов обычно используются LonWorks, DMX-512, DALI, DCI. Например, широко распространенный протокол LonWorks, разработанный Echelon Corporation, может использовать в качестве транспортной среды силовой кабель, по которому подается питание на лампу. В этом протоколе определены методы адресации, маршрутизации и управления. Таким образом, ЭБ является своеобразным «выключателем» для ламп уличного освещения, обеспечивая энергосбережение, продление ресурса ламп и дистанционное управление. Для автоматизации включения и выключения ламп уличного освещения чаще всего используют датчики уровня освещенности. Алгоритм работы таких систем предельно прост: при снижении уровня яркости ниже заданного порога лампы включаются, и выключаются при превышении порога срабатывания.
К недостаткам таких систем можно отнести трудности калибровки датчиков, чувствительность датчиков к загрязнению, невозможность реализации энергосберегающих алгоритмов работы (например, затемнения или выключения части ламп в глухое ночное время, когда полное освещение не требуется).
Альтернативным методом автоматического управления в системах уличного освещения является использование графика включений и выключений освещения. При таком подходе контроллер на основании даты, дня недели (будни или выходные) и времени суток включает или выключает освещение. Этот метод является простым и эффективным.
1.6 Системы автоматического управления уличным освещением
Системы автоматического управления уличным освещением обычно работают под управлением зонального контроллера или сервера. В зависимости от алгоритма управления, контроллер формирует сигнал, например, включения группы уличных фонарей. Для передачи этого сигнала на исполнительные устройства (обычно электронные балласты ламп уличных фонарей) используются следующие средства:
· слаботочные сигнальные линии (витые пары, RS-485, Ethernet и т.д.);
· передача сигнала по силовому кабелю.
Таблица 1.2 - Сравнение способов передачи сигналов управления
Адресация (экономически целесообразно)
Возможно управления отдельными лампами
Цифровой протокол управления например на основе календарного графика
Телефонный звонок или SMS на контроллер в шкафу управления
Управление по силовому кабелю, подключенному к контроллеру в шкафу управления
Передача радиосигнала из диспетчерской на приемник в шкафу управления
Зависимость от загруженности публичной сети оператора GSM.
При отказе требуется ручное переключение кабеля.
Радиопомехи могут вызвать невозможность приема сигнала управления
Низкие трудозатраты за счет использования сети публичного использования
При индивидуальном управлении лампами прокладка кабелей трудозатратна
Высокие трудозатраты при установке приемопередатчиков
Длина контрольного силового кабеля не может превышать 1 км.
Управление возможно лишь в зоне
Автоматизированное управление уличным освещением курсовая работа. Физика и энергетика.
Дипломная работа: Понятие трудового договора, его стороны и содержание
Личные Правила Безопасного Отдыха На Водоемах Реферат
Сочинение Какого Человека Можно Считать Бездушным
Рекомендации Фипи К Итоговому Сочинению 2022 2022
Примерное Сочинение На Тему
Курсовая работа по теме Процесс формирования непроизвольной памяти будет наиболее эффективным при использовании дидактических игр
Контрольная Работа Понятие Рисков И Трудовых Отношений
Курсовая работа по теме Соотношение личных и имущественных отношений в предмете семейного права
Курсовая работа: Методика обучения школьников приемам решения текстовых арифметических задач. Скачать бесплатно и без регистрации
Шпаргалка: Гидрология (шпаргалка)
Реферат: Gene
Куриное Мясо Маринованное Курсовая Работа
Реферат по теме политика протекционизма экономики Украины
Сочинение Про Тетю 4 Класс
Курсовая работа по теме Организация внеурочной деятельности по социальному творчеству с младшими школьниками
Реферат: Аудит денежных средств 5
Реферат На Тему Понятие Брэнд В Социальной Психологии
Развитие Медицинской Этики В Истории Медицины Реферат
Диссертация Строительные Материалы
Что Значит Эссе Рассуждение
Лингвистический синкретизм как актуальная категория современного языкознания - Иностранные языки и языкознание курсовая работа
Встановлення радянсько-польського кордону та депортація українців з прикордонної смуги у 1945-1946 рр. - История и исторические личности статья
Император Петр I Алексеевич "Великий" - История и исторические личности реферат