Атом во Вселенной, Вселенная в атоме - Биология и естествознание курсовая работа

Атом во Вселенной, Вселенная в атоме - Биология и естествознание курсовая работа




































Главная

Биология и естествознание
Атом во Вселенной, Вселенная в атоме

Революция в естествознании, возникновение и дальнейшее развитие учения о строении атома. Состав, строение и время мегамира. Кварковая модель адронов. Эволюция Метагалактики, галактик и отдельных звезд. Современная картина происхождения Вселенной.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


ПО КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ
Тема: Атом во Вселенной, Вселенная в атоме
Глава I. Концепция атомизма и элементарные частицы
1.1 Революция в естествознании и возникновение учения о строении атома
1.2 Дальнейшее развитие концепции атомизма
Глава II. Мегамир в его многообразии и единстве
2.3 Эволюция Метагалактики, галактик и отдельных звезд
Глава III. Современная картина происхождения Вселенной
3.2 Ранний этап эволюции Вселенной4
Ничтожно малый атом и бесконечно большая вселенная - что общего между ними? Это миры, в познании которых нет конца и края. И хотя наш вооруженный глаз все глубже проникает и во вселенную и в недра вещества, мы сейчас так же далеки от конца этого путешествия, как и в начале его.
К чему же, однако, путешествовать, если известно наперед, что никогда не достигнешь цели? Да и познаем ли мы мир вообще? Не обман ли чувств все, что доносят нам приборы? Слабый луч света, пришедший откуда-то издалека, - вот единственный источник наших знаний о бесконечно далеких небесных светилах. Не обманывает ли он нас? Мы не видим глазом даже молекул, лишь приборы говорят о мельчайших частичках - атомах и электронах. Как знать, насколько правдив их рассказ?
Так или примерно так рассуждают некоторые зарубежные ученые-идеалисты, отрицающие возможность познания мира. Но жизнь блестяще опровергает тех, кто не верит в могущество разума. Истинность познания проверяется практикой. И часто то, что происходит невообразимо далеко от нас, вдруг оказывается частью нашей жизни. Атом и вселенная - превосходный пример. Наука, изучая атом, нашла пути для атаки атомного ядра. Открылась новая эпоха, открылась перспектива такого энергетического могущества человека, перед которой бледнеет самая смелая фантазия. В наших лабораториях взрыв атома «доставил» космос на Землю - температуры в миллионы градусов, господствующие на звездах, получены человеком. Мы говорим теперь об освобождении атомной энергии, об атомных двигателях, кораблях и электростанциях, которым не нужны бензин, уголь и нефть.
В данной работе я поставил следующие задачи:
- охарактеризовать концепцию атомизма в широкой исторической перспективе;
- рассмотреть мегамир в его многообразии и единстве;
- охарактеризовать современную картину происхождения Вселенной.
Глава I . Концепция атомизма и элементарные частицы
Представление о неделимых мельчайших частицах материи, возникшее еще в глубокой древности, сопровождало развитие воззрений на природу на протяжении всей их истории. Впервые понятие об атоме как последней и неделимой частице тела возникло в античной Греции в рамках натурфилософского учения школы Левкиппа-- Демокрита, согласно которому в мире существуют только атомы, которые движутся в пустоте. Различные комбинации атомов образуют самые разнообразные видимые тела. Конечно, эта гипотеза не основывалась на каких-либо эмпирических данных и была лишь гениальной догадкой, но тем не менее она определила на многие столетия вперед все дальнейшее развитие естествознания. И хотя сейчас мы знаем, что атом вовсе не является последней и неделимой частицей материи и имеет сложное строение, все же тенденция к поиску последних элементарных частиц, из которых построено все мироздание, продолжает существовать в новых формах атомистической концепции.
Эта концепция, как уже отмечалось выше, несомненно обладает огромными возможностями для объяснения свойств сложных тел и систем с помощью свойств более простых элементов и частиц. Однако такое объяснение достигается, как легко заметить, посредством редукции, т. е сведения сложного к простому, и поэтому трудно согласиться с идеей, что все многообразие сложного и качественно разнообразного мира может быть сведено к немногим свойствам небольшого числа простых, элементарных частиц.
1.1 Революция в естествознании и возникновение учения о строении атома
Гипотезу об атомах как неделимых частицах вещества была возрождена в естествознании и прежде всего в физике и химии для объяснения таких эмпирических законов, как законы Бойля -- Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и различных химических законов. В самом деле, закон Бойля -- Мариотта утверждает, что объем газа обратно пропорционален его давлению, но не объясняет почему. Аналогично этому при нагревании тела его размеры увеличиваются, но эмпирический закон теплового расширения не объясняет причину такого расширения.
Очевидно, что для такого объяснения необходимо выйти за рамки наблюдаемых зависимостей, которые выражаются; в эмпирических законах, и обратиться к теоретическим гипотезам и законам. В отличие от эмпирических законов они содержат понятия и величины, относящиеся к ненаблюдаемым объектам. Именно такими объектами являются атомы, а также образованные из них молекулы. С помощью атомов и молекул в кинетической теории вещества убедительно объясняются все перечисленные и другие известные эмпирические законы. Действительно, чтобы ответить на вопрос: почему объем газа увеличивается вдвое, когда его давление уменьшается на столько же, мы представляем себе газ, состоящий из огромного числа атомов или молекул, движущихся беспорядочно в разных направлениях и с разной скоростью. Непосредственно наблюдаемое и измеряемое уменьшение давление газа мы истолковываем как увеличение свободного пробега составляющих его атомов и молекул, вследствие чего возрастает объем, занимаемый газом. Аналогично этому расширение тел при нагревании объясняют возрастанием средней скорости движущихся молекул.
Таким образом, свойства наблюдаемых нами тел и законов их поведения мы объясняем с помощью простых свойств невидимых атомов и молекул. При этом свойства, более сложных образований, какими являются молекулы, объясняются также с помощью атомов, так что атомы оказываются последними, далее неразложимыми частицами вещества, а точнее, химических элементов. Поэтому атом в химии обычно определяют как наименьшую часть или единицу химического элемента.
Объяснения, при которых свойства сложных веществ или тел пытаются свести к свойствам более простых их элементов или составных частей, называют редукционистскими. Такой способ анализа способствовал большому прогрессу в развитии естествознания. С его помощью удалось объяснить не только свойства многочисленных тел и явлений, но и эмпирических законов, которые управляют ими.
Однако попытка сведения всех многообразных и сложных свойств и закономерностей тел и явлений окружающего мира к более простым вряд ли могла считаться успешной, хотя бы потому, что на каждом уровне познания раскрывались новые границы и находились новые неделимые последние частицы материи. Вплоть до конца прошлого века такой частицей считался атом, но крупнейшие открытия в физике привели к отказу от такой точки зрения. Среди этих открытий следует отметить, во-первых, обнаружение явлений естественной радиоактивности таких химических элементов, как радий и уран. Оказалось, что эти элементы в естественных условиях испускают специфические радиоактивные лучи и в результате превращаются в другие химические элементы, а в конечном итоге -- в свинец. Именно так истолковали радиоактивные превращения английские физики Эрнест Резерфорд (1871--1937) и Фредерик Содци (1877--1956). Отсюда непосредственно следовало, что атомы вовсе не являются неизменными, неделимыми и последними кирпичиками мироздания. Вскоре после радиоактивности была открыта мельчайшая частица электричества -- электрон. В 1913 г. Э. Резерфорд, исследуя рассеяние ос-частиц атомами тяжелых элементов, показал, что основная часть массы атома сосредоточена в его центральной части -- ядре, так как вдали от него б-частицы проходят беспрепятственно. Основываясь на этих экспериментах, он предложил планетарную модель атома, согласно которой вокруг массивного ядра вращаются по своим орбитам отрицательно заряженные электроны.
Впоследствии эта модель была значительно модифицирована известным датским физиком Нильсом Бором (1885--1962) и другими учеными. Оказалось, что электроны не могут вращаться по любым орбитам, а только по стационарным, ибо в противном случае они бы непрерывно излучали энергию и упали бы на ядро, и атом самопроизвольно разрушился. Ничего подобного, однако, не наблюдается, так как атомы являются весьма устойчивыми образованиями. Все эти и связанные с ними революционные открытия невозможно было понять и объяснить с точки зрения старой, классической физики, и поэтому в первое время немало ученых считали, что они не только подрывают материалистический взгляд на природу, но и отрицают объективное содержание физической науки. Если прежние понятия и принципы этой науки меняются, то, следовательно, в них не содержится никакой истины. Так восприняли новые открытия в физике некоторые ученые. Соответственно одна часть ученых стаяла рассматривать научные истины просто как условные соглашения, принимаемые в целях обобщения эмпирического материала, другая -- как полезные инструменты для предсказаний, третья -- как средства для "экономии мышления".
Таким образом, из относительности научных истин, из того что они неполно, не целиком верно, а лишь приблизительно отражают свойства и закономерности природы, был сделан совершенно ошибочный вывод, что они вообще не являются объективными истинами, т. е. знание, содержащееся в них, не зависит от человека. Все это породило кризис в физике в конце XIX-- начале XX вв., выход из которого следовало искать в переходе от старых понятий и принципов классической физики, оказавшихся неадекватными для изучения свойств материи на атомном уровне, к новым понятиям и теориям, которые бы верно отражали эти свойства и закономерности.
Такой новой фундаментальной теорией, как мы видели, стала квантовая механика, которая ввела совершенно неизвестные для классической физики принципы дуализма волны и частицы, неопределенности (неточности) и дополнительности, а вместо универсальных законов прежней физики стала широко применять статистические законы и вероятностные методы исследования.
1.2 Дальнейшее развитие концепции атомизма
После того, когда физики установили, что атом не является последним кирпичиком мироздания и сам он построен из более простых, элементарных частиц, идея поиска таких частиц заняла главное место в их исследованиях. По-прежнему мысль физиков была устремлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных, фундаментальных частиц, которые впоследствии были названы элементарными. В строгом смысле слова такие частицы не должны содержать в себе какие-либо другие элементы. Однако в обычном употреблении физики называют элементарными такие частицы, которые не являются атомами или атомными ядрами, за исключением протона и нейтрона. Наиболее известными элементарными частицами являются электрон, фотон, пи-мезоны, мюоны, тяжелые лептоны и нейтрино. Позже были открыты частицы с весьма экзотическими названиями: странные частицы, мезоны со скрытым "очарованием", "очарованные" частицы, ипсилион -частицы, разнообразные резонансные частицы и многие другие. Общее их число превышает 350. Поэтому вряд - ли все такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеждение усиливается в связи с гипотезой о существовании кварков, из которых, по предположению, построены все известные элементарные частицы. По-видимому, все частицы, которые в настоящее время считаются элементарными, являются специфическими формами существования материи, которые не объединены в ядра и атомы, вследствие чего их часто называют субъядерными частицами.
Исторически электрон был первой элементарной частицей, открытой еще в конце прошлого века известным, английским физиком Дж. Дж. Томсоном. В 1919 г. Э. Резерфорд, бомбардируя атомы б-частицами, открыл протоны. В начале века был открыт фофон, в 1932 г. такая необычная частица, как лишенный заряда нейтрон, спустя четыре года -- первая античастица -- позитрон, которая по массе равна электрону, но обладает положительным зарядом. В дальнейшем при исследовании космических лучей были обнаружены и другие частицы, в частности мюоны и разные типы мезонов.
С начала 50-х годов основным средством открытия и исследования элементарных частиц стали ускорители заряженных частиц. С их помощью удалось открыть такие античастицы, как антипротон и антинейтрон. С того времени физики стали выдвигать гипотезы о существовании антивещественного и даже антиматериального мира. В 1970 и 1980-е годы поток открытий новых элементарных частиц усилился, и ученые заговорили даже о семействах элементарных частиц, которые назвали "странными", “очарованными” и "красивыми".
Одна из характерных особенностей элементарных частиц состоит в том, что они имеют крайне незначительные массы и размеры. Масса большинства из них -- порядка массы протона, т. е. 1,6 х 10-24 г, а размеры порядка 10-16 см. Другое их свойство заключается в способности рождаться и уничтожаться, т. е. испускаться и поглощаться при взаимодействии с другими частицами. Мы уже приводили пример превращения пары электрон и позитрон в два фотона:
Подобные же взаимопревращения происходят и с другими элементарными частицами, поэтому термин "аннигиляция", означающий буквально исчезновение или превращение в ничто, не совсем подходит для характеристики взаимопревращения элементарных частиц.
По интенсивности, с которой происходят взаимодействия между элементарными частицами, их делят на сильное, электромагнитное, слабое и гравитационное.
· Сильное взаимодействие является наиболее интенсивным и именно оно обусловливает связь между протонами и нейтронами в атомных ядрах.
· Электромагнитное взаимодействие менее интенсивно по своему характеру и определяет специфику связи между электронами и ядрами в атоме, а также между атомами в молекуле.
· Слабое взаимодействие -- наименее интенсивно, оно вызывает медленно протекающее процессы с элементарными частицами, в частности распад так называемых квазичастиц.
· Гравитационное взаимодействие происходит на чрезвычайно коротких расстояниях и вследствие крайней малости масс частиц дает весьма малые эффекты, но его сила значительно возрастает при взаимодействии больших масс.
Приведенная классификация взаимодействий имеет относительный характер, так как существенно зависит от энергии частиц. Во всяком случае она относится лишь к взаимодействию частиц, обладающих не слишком большой энергией.
По типу взаимодействия, в котором участвуют элементарные частицы, все они, за исключением фотона, могут быть отнесены к двум группам.
· К первой относятся адроны, для которых характерно наличие сильного взаимодействия, но они могут участвовать также в электромагнитном и слабом взаимодействиях.
· Ко второй группе принадлежат лептаны, участвующие только в электромагнитном и слабом взаимодействиях.
Помимо общих групповых характеристик, элементарные частицы обладают также специфическими, индивидуальными признаками, которые характеризуются их квантовыми числами. К ним относят массу частицы, время ее жизни, спин и электрический заряд. По массе частицы делятся на тяжелые, промежуточные и легкие. По времени жизни различают стабильные, квазистабильные и нестабильные частицы. К стабильным частицам относят электрон, протон, фотон и нейтрино. Квазистабильные частицы распадаются вследствие электромагнитного и слабого взаимодействия. Нестабильные частицы распадаются за счет сильного взаимодействия. Спин характеризует собственный момент количества движения частицы и измеряется целым или полуцелым значением, кратным постоянной» Планка. Так, у протона и электрона он равен 1/2, а у фотона 0. Электрические заряды элементарных частиц являются кратными наименьшего заряда, присущего электрону.
Большое число элементарных частиц и в особенности адронов уже в начале 1950-х годов побудило физиков заняться поиском закономерностей в распределении их масс и других квантовых чисел. Эти поиски привели американского физика М. Гелл-Мана (р. 1929) к гипотезе, что все адроны являются комбинациями кварков.
По современным представлениям кварки -- гипотетические материальные объекты, из которых состоят все адроны, т. е частицы, участвующие в сильном взаимодействии. К ним относятся все мезоны и барионы, а также многочисленные нестабильные (резонансные) элементарные частицы. Согласно новой гипотезе, мезоны состоят из кварка и антикварка, барионы (тяжелые частицы, такие, как протон, нейтрон и им подобные) -- из трех кварков. Гипотеза кварков стала необходимой для объяснения динамики различных процессов, в которых участвуют адроны. Но хотя она теоретически необходима, никакого экспериментального подтверждения, несмотря на: многочисленные поиски с помощью ускорителей высоких энергий, в космических лучах и окружающей среде, их не было найдено. Это заставило физиков предположить, что здесь мы встречаемся с принципиально, новым явлением приводы, которое называют удержание кварков. Однако это мнение не является общепринятым и встречает различные возражения.
На пути создания непротиворечивой теории элементарных частиц возникает немало трудностей, связанных, например, с получением бесконечно большого значения для некоторых физических величин, неясностью механизма определения массы "истинных" элементарных частиц и рядом других проблем. В последние годы наметилась тенденция преодоления этих трудностей путем отказа, от представления об элементарных частицах как о точечных образованиях и признания их конечной протяженности, а также принятия новой геометрии на весьма малых расстояниях. По-видимому перспективным является также учет влияния гравитации на таких расстояниях. Новые пути исследования открываются также включением гравитационного взаимодействия в общую структуру взаимодействия элементарных частиц.
Атомистическая концепция опирается на представление о дискретном строении материи, согласно которому объяснение свойств физического тела можно в конечном итоге свести к свойствам составляющих его мельчайших частиц, которые на определенном этапе познания считаются неделимыми. Исторически такими частицами сначала признавались атомы, затем элементарные частицы, теперь кварки. Трудности, которые возникают при таком подходе, с общей, мировоззренческой точки зрения связаны, во-первых, с абсолютизацией аспекта дискретности, неограниченной делимости материи, во-вторых, с полной редукцией сложного к простому, при которой не учитываются качественные различия между ними.
Поэтому с философской точки зрения особенно интересными представляются новые подходы к изучению строения материи, которые основываются не на поиске последних, неделимых и фундаментальных ее частиц, а скорее на выявлении их внутренних связей для объяснения целостных свойств других материальных образований. По-видимому, на объединении концепций атомизма и дискретности, с одной стороны, и непрерывности, целостности и системного подхода -- с другой, следует ждать дальнейшего прогресса в познании фундаментальных физических свойств материи. Во всяком случае редукционистская тенденция, связанная с попытками сведения свойств и закономерностей разнообразных сложных объектов и явлений к простым свойствам составляющих их элементов, в настоящее время наталкивается на серьезные трудности, преодоление которых возможно путем поиска альтернативных путей исследования.
Глава II . Мегамир в его многообразии и единстве
Нет жесткой границы, однозначно разделяющей микро-, макро- и мегамиры. При несомненном качественном различии они связаны конкретными процессами взаимопереходов. Наша Земля представляет макромир. Но и качестве одной из планет Солнечной системы она одновременно выступает и как элемент мегамира.
В Солнечную систему входят 9 планет, их спутники, свыше 100 тыс. астероидов, множество комет и метеоритных тел. Расстояние от Солнца до наиболее удаленной планеты Плутона 6 млрд км. Различают планеты земной группы и планеты-гиганты. Планеты земной группы -- Меркурий, Венера, Земля, Марс -- сравнительно невелики и состоят из плотного вещества. Юпитер, Сатурн, Уран, Нептун и Плутон относятся к гигантам, они гораздо массивнее, но в их состав входят легкие вещества и поэтому их плотность меньше. В отличие от атмосфер планет земной группы, четко отделенных от твердой поверхности, атмосферные газы планет-гигантов постепенно переходят в конденсированное состояние, в «тело» самих планет. У них нет привычной нам твердой или жидкой поверхности.
Входящие в Солнечную систему астероиды представляют собой малые планеты. Хотя их много, но суммарная их масса оказывается меньше 0,001 массы Земли. Самый крупный астероид -- планета Церера -- имеет поперечник около 1000 км. Сталкиваясь друг с другом, астероиды дробятся на метеориты.
Своеобразными объектами Солнечной системы являются кометы. Они состоят из головы, небольшого плотного ядра и хвоста длиной в десятки миллионов километров. Ядра комет имеют размеры в несколько километров и состоят из каменных и металлических образований, заключенных в ледяную оболочку из замерзших газов. Кометы обычно -- самые дальние объекты Солнечной системы. Некоторые из них удаляются от Солнца на 10 000 млрд км -- на расстояние одного светового года, т.е. расстояние, которое свет со скоростью 300 000 км/с проходит за один год (1 световой год = 10 000 млрд км = 1013 км). Считается, что на этом удалении от Солнца и проходит граница Солнечной системы. Далее начинается сфера влияния других звезд. Для сравнения: свет от Солнца до Земли доходит за 8 мин, а от второй по близости к нам звезды (Проксима Центавра) свет идет к Земле более четырех лет. Эта звезда находится от нас в 100 000 раз дальше, чем Солнце.
Массы звезд составляют от 0,1 до 50 солнечных масс. Размеры диаметров звезд различаются очень сильно -- от 10--20 км (нейтронные звезды) до сотен миллионов километров (красные сверхгиганты). Плотности вещества звезд колеблются от 1 г/см3 до 1014 г/см3 (нейтронные звезды). Светимости звезд колеблются от 0,001 до 1 млн солнечной светимости, т.е. различаются на 9 порядков (в миллиард раз). Атмосфера звезд на 98% состоит из водорода и гелия.
Звезды образуют галактики, включающие сотни миллиардов звезд, туманности, межзвездную среду, космические лучи, электромагнитные волны. Наша галактика выглядит как двояко выпуклая линза (диск), толщина которого 1,5 тыс. световых лет, а диаметр -- 100 тыс. световых лет. Полная масса галактики равна 150 млрд. солнечных масс. Ближайшие к нам галактики, видимые невооруженным взглядом, -- Магеллановы облака и Туманность Андромеды.
И самый большой объект в мире, включающий все известные современной науке, -- это Метагалактика. Размеры ее 15-20 млрд световых лет, а возраст 15--20 млрд лет. Таков состав мегамира, а что известно о его истории, эволюции?
Да, по сегодняшним представлениям у времени есть начало. Это начало -- Биг Бэнг, то гигантское событие, с которого началась история нашей Вселенной, тот момент, когда она «родилась». Оно возникло вместе с миром. Время, как и пространство, как бы дается нам «в придачу» к миру. С момента рождения мира его время начинает «течь», его пространство -- расширяться.
Скорость такого расширения пространства не ограничена ничем, даже скоростью света. Ибо скорость света ограничивает движение только материальных тел, а пространство -- не тело. А раз так, то в начальные миги существования Вселенной оно претерпело, как утверждает теория, такое стремительное расширение, которое сделало Вселенную много-много больше тех нынешних 10 миллиардов световых лет, куда достигают наши телескопы. Ученые полагают, что это -- только ничтожная часть нашей Вселенной, а она -- лишь ничтожная часть огромной грозди вселенных, каковая образовалась из этого самого «праатома» или «сингулярности» за те 13-14 миллиардов лет, которые прошли с «рождения» Вселенной.
Подавляющая часть звезд и галактик находится на таком расстоянии от нас, с которого свет придет только через миллиарды миллиардов лет. За прошедшие 13-14 миллиардов лет их свет еще не успел прийти к нам. Ему не хватило времени. Эти звезды и галактики, от которых свет еще не пришел к нам, находятся как бы за «краем времени», если определить этот «край», как те 13-14 миллиардов лет, которые существует Вселенная.
Те звезды и галактики, от которых свет уже успел за это время к нам прийти (то есть те, которые не ушли за «край времени»), составляют ничтожную часть всего бесконечно большого числа звезд и галактик во Вселенной. Поэтому и яркость их света вполне конечна. Более того, она ничтожно мала. Поэтому ночью темно. Вот если бы свет распространялся мгновенно, как думал Ньютон и все прочие до Эйнштейна, тогда да -- тогда мы должны были бы видеть сразу все звезды и галактики во всей Вселенной, и ночное небо было бы бесконечно ярким.
Как видите, темнота ночного неба, этот «парадокс Ольберса», по имени немецкого астронома XIX века, напрямую связан с фундаментальными представлениями современной теории «Мегамира», а проще говоря -- Вселенной. Этими представлениями мы опять-таки обязаны Эйнштейну. Воистину он -- великий нарушитель спокойствия.
Стоило нам, хотя бы мысленно, двинуться с места на околосветовых скоростях, и природа открылась во всей своей истинной и жутковатой сложности. Длительность одного и того же промежутка времени в разных инерциальных системах оказалась различной, одновременность -- своей для каждой из них, само время -- неразрывно связанным с пространством, чем-то вроде еще одного, четвертого измерения.
Так родились и наши представления о «мегавремени», то бишь о свойствах времени в мегамасштабе. Оказалось, что они весьма не похожи на свойства того времени, которое показывают наши наручные часы. Главное среди этих отличий состоит в фундаментальном факте зависимости течения («хода») времени не только от движения системы отсчета, с которой связан наблюдатель, но также от гравитационного поля в той точке пространства, где он находится.
Почему же мы этой зависимости никогда не замечаем? Тут снова виной ограниченность нашего житейского опыта. Пока мы живем на поверхности крохотной планетки и имеем дело с предметами обычной массы, нам кажется, что поток вселенского времени не замечает гравитационных рытвин, рассеянных на своем пути. И действительно, не замечает -- уж очень они малы. Но стоит нам задуматься -- вместе с Эйнштейном -- над свойствами мегавремени, иначе говоря, стоит поднять взор свой от ничтожного к великому, от наших будней к торжественно-величавому космосу, как тотчас становится очевидно, что чем массивнее такое тело, тем медленней в его окрестностях течет время.
Сегодня все это уже не гипотеза, а теория. Точно так же, как предсказания специальной теории относительности касательно зависимости течения времени от скорости движения, так и новые предсказания общей теории относительности касательно зависимости хода времени от гравитационного поля тоже проверены на практике и тоже подтвердились.
Впрочем, гравитационное «замедление» времени можно и увидеть. Природа позаботилась о создании устройства, которое самым наглядным и убедительным образом демонстрирует любому желающему этот эффект -- и даром. Устройство это называется «черная дыра».
2.3 Эволюция Метагалактики, галактик и отдельных звезд
Теория расширяющейся Вселенной основана на истолковании экспериментально зафиксированного красного смещения спектральных линий галактик как следствия эффекта Допплера, объясняющего красное смещение разбеганием галактик. Однако такое истолкование не единственное, за последние десятилетия все больше накапливается сомнений в реальности расширения Вселенной. Эволюция космических систем несомненна, но следует различать объективные законы эволюции и теоретические выражения их с помощью различных моделей. В частности, явление красного смещения линий спектра может быть объяснено как следствие уменьшения энергии и собственной частоты фотонов в результате взаимодействия с гравитационными полями при движении света в течение многих миллионов лет в межгалактическом пространстве.
Эволюцию претерпевают все космические объекты -- звезды, планеты, галактики. Сейчас известно, что обычные звезды в ходе претерпеваемых изменений превращаются в так называемые «белые карлики», «нейтронные звезды» и «черные дыры».
Что такое «белый карлик»? Это электронная постзвезда, образующаяся в том случае, когда звезда на последней стадии своей эволюции имеет массу, меньшую 1,2 солнечной массы. Превращение происходит путем медленного сжатия звезды, которая продолжает светить уже не за счет ядерных реакций, а в результате освобождающейся в процессе сжатия гравитационной энергии. Диаметр «белого карлика» равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность - 10 т/см3 - в сотни тысяч раз больше земной плотности. Такую плотность можно получить, утрамбовав грузовой автомобиль в объем наперстка. В течение 1 млрд лет «белый карлик» медленно остывает, превращаясь в «черный карлик» -- ничего не излучающий холодный «труп» звезды.
Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. В этом случае на предконечном этапе происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурный процесс ядерных реакций, в которые вступают остатки ядерного вещества звезды. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Остаток звезды уменьшается до размеров в 20--30 км, а средняя ее плотность возрастает до 100 млн т/см3, что, используя прежнее сравнение, равнозначно утрамбовке в наперсток миллиона грузовых автомобилей. Образующийся объект и получил название «нейтронная звезда». Она состоит из протонов и нейтронов, силы гравитации разрушили в ней сложные ядра и вещество снова стало состоять из отдельных элементарных частиц. Открытые в 1967 г. пульсары (источники пульсирующего, периодически изменяющегося импульсного излучения) как раз и являются намагниченными вращающимися нейтронными звездами.
В случае же, если масса постзвезды (звезды на заключительной стадии своего существования) превысит 2 солнечные массы, она должна превратиться в «черную дыру» с радиусом 5т 10 км. Черные дыры имеют и д
Атом во Вселенной, Вселенная в атоме курсовая работа. Биология и естествознание.
Реферат: Виды соучастников преступления. Скачать бесплатно и без регистрации
Курсовая работа по теме Технологія виготовлення тонкоплівкових резисторів
Сочинение О Князе Петре
Функции Науки В Жизни Общества Реферат
Эссе Основные Функции Семьи
Реферат На Тему Профессиональная Этика
Форма Реферата Образец
Доклад: Эмпирические методы познания
Реферат: Правила деловых отношений
Реферат: Культура Эпохи Просвещения. Скачать бесплатно и без регистрации
Курсовая работа по теме Административные нарушения в таможенной сфере
Изложение С Элементами Сочинения Пример
Курсовая работа: Радиоэлектронная промышленность
Курсовая работа по теме Обучение чтению детей на начальном этапе
Лабораторная Работа Проверка Закона
Курсовая работа по теме Выборы президента РФ. Прекращение полномочий и отрешение от должности Президента РФ
Курсовая Работа На Тему Парки Как Социально-Культурный Институт
Реферат: Основные задачи и этапы разработки финансового плана предприятия
Ювенальная юстиция и гражданское общество
Лекция 20. Правотворчество.
Психологія безпеки життєдіяльності - Безопасность жизнедеятельности и охрана труда реферат
Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека нейтронного излучения - Безопасность жизнедеятельности и охрана труда контрольная работа
Экономика пожарной безопасности - Безопасность жизнедеятельности и охрана труда курсовая работа


Report Page