Astronomía recreativa

Astronomía recreativa


Capítulo 1. La tierra, su forma y movimientos

Página 5 de 18

Las noches “blancas” son prueba clara de que la noción que conservamos desde nuestra niñez sobre la secuencia de las noches y los días, en espacios iguales de tiempo en la Tierra, resulta demasiado facilista. Realmente, la secuencia continua entre la luz del día y la oscuridad es más intrincada y no encaja en el modelo típico del día y la noche. Por esta razón, el mundo en que vivimos se puede dividir en cinco zonas, cada una con sus propias variaciones entre la luz diurna y la oscuridad.

La primera zona, exterior al ecuador en cualquier dirección, se extiende hasta los paralelos 49. Aquí, y solo aquí, se da un día completo y una noche completa cada 24 horas.

La segunda zona, entre el paralelo 49 y el 65 ½, abarca el conjunto de la Unión Soviética, el norte de Poltava, tiene un crepúsculo continuo alrededor del solsticio de verano[18]. Esta es la zona de las noches “blancas.”

Dentro de la estrecha tercera banda, entre los paralelos 65 ½ y 67 ½, el Sol no se pone durante varios días alrededor del 22 de junio.

Ésta es la tierra del Sol de media noche.

La característica de la cuarta zona, entre 67 ½º y 83 ½º, aparte del día continuo en junio, se presenta la larga noche de diciembre, cuando hay días sin ninguna salida del Sol, y la mañana y el crepúsculo de la tarde duran todo el día. Ésta es la zona de los días “negros.”

La quinta y última zona, al norte del paralelo 83 ½, tiene una notable variación entre la luz diurna y la oscuridad. Aquí, la ruptura que producen las noches “blancas” de Leningrado, en la sucesión de días y noches, perturba completamente el orden normal. Los seis meses entre el Verano y el Solsticio de Invierno, del 22 de junio al 22 de diciembre, se pueden dividir en cinco períodos o estaciones.

Primero, el día continuo; segundo, los cambios entre el día y el crepúsculo de media noche, sin las noches propiamente dichas (las noches “blancas” de verano en Leningrado, son una ligera imitación de este período); tercero, el crepúsculo continuo, sin noches apropiadas o días en absoluto; cuarto, un crepúsculo continuo que alterna con una verdadera noche alrededor de la medianoche; y quinto y último, oscuridad completa todo el tiempo. En los seis meses siguientes, de diciembre a junio, estos períodos siguen en orden inverso.

Al otro lado del ecuador, en el Hemisferio Sur, se observan los mismos fenómenos, lógicamente, en las latitudes geográficas correspondientes.

Si nunca hemos oído hablar de las noches “blancas” en el “Lejano Sur”, es sólo porque el allí reina el océano.

El paralelo en el Hemisferio Sur correspondiente a la latitud de Leningrado no cruza absolutamente nada de tierra; hay agua por todas partes; de modo que sólo los navegantes polares han tenido la oportunidad de admirar las noches “blancas” en el sur.

11. El enigma del Sol polar

Pregunta

Los exploradores polares notan un rasgo curioso de los rayos del Sol en verano, en las latitudes altas. Aunque calientan débilmente la superficie de la Tierra, su efecto es más pronunciado, en todos los objetos dispuestos verticalmente, en esa zona del mundo. Los precipicios escarpados y las paredes de las casas se calientan demasiado, se presentan quemaduras de Sol en la cara, y se pueden documentar muchos casos más. ¿Cuál es la explicación?

Respuesta

Esto puede explicarse por una ley de la física según la cual cuanto menos inclinados son los rayos, más fuerte es su efecto. Incluso en verano, en las latitudes polares, el Sol se eleva muy poco sobre el horizonte.

Más allá del círculo polar, su altura no excede la mitad de un ángulo recto; a mayor latitud su elevación es aún menor.

Tomando esta observación como nuestro punto de partida, no resulta difícil establecer que los rayos del Sol forman un ángulo superior a medio ángulo recto, con un objeto vertical (erguido); en otras palabras, los rayos del Sol caen de forma empinada sobre una superficie vertical.

Esto deja claro por qué los rayos del Sol en los Polos, calientan débilmente la superficie, al tiempo que lo hacen de forma intensa sobre los objetos verticales.

12. ¿Cuándo comienzan las estaciones?

Si está cayendo nieve, la escala de mercurio indica temperaturas bajo cero, o el tiempo es suave, las personas del Hemisferio Norte consideran el 21 de marzo como el final del Invierno y el comienzo de la Primavera, afirmación astronómicamente cierta. Muchas personas no comprenden por qué razón se escoge esta fecha particular como línea divisoria entre el Invierno y la Primavera, si podemos darnos cuenta cuando tenemos un tiempo lleno de escarcha insoportable y cuando llega un tiempo caluroso y agradable.

Lo cierto es que el principio de la primavera astronómica no tiene nada que ver con los caprichos y las vicisitudes del tiempo. El hecho de que se inicie la Primavera al mismo tiempo, en todos los lugares de este hemisferio, nos basta para mostrar que los cambios del tiempo no tienen ninguna importancia esencial. ¡De hecho, las condiciones meteorológicas no pueden ser idénticas en medio mundo!

Al fijar el punto de llegada de las estaciones, los astrónomos no tomaron como referencia los fenómenos meteorológicos sino los astronómicos, por ejemplo, la altitud del Sol del mediodía y la duración de la luz diurna. El tiempo, es solo una condición complementaria.

El 21 de marzo difiere de los otros días del año en que en esta fecha el límite entre la luz y la oscuridad corta los dos polos geográficos. Si sostenemos un globo junto a una lámpara, veremos que el límite del área iluminada sigue el meridiano, cruzando el ecuador y todos los paralelos, en ángulo recto.

Sostén el globo y gíralo sobre su eje: cada punto de su superficie describirá un círculo, del cual una mitad queda en la sombra, y la otra mitad en la luz. Esto quiere decir que en ese momento particular del año, el día y la noche tienen igual duración. En todo el mundo, desde el Polo Norte hasta el Polo Sur, se observa esta igualdad entre la noche y el día.

Así que el 21 de marzo se caracteriza porque en dicha fecha, en todo el mundo, el día y la noche tienen la misma duración. Este fenómeno notable se conoce como Equinoccio Vernal (Primaveral)—vernal porque no es el único equinoccio. Seis meses después, el 23 de septiembre de nuevo tenemos un día y una noche iguales, el Equinoccio Otoñal, con el que finaliza el Verano y llega el Otoño. Cuando se da en el Hemisferio Norte el Equinoccio de Primavera, en el Hemisferio Sur se da el Equinoccio Otoñal, y viceversa. En un lado del Ecuador el Invierno da paso a la Primavera, en el otro, el Verano se convierte en Otoño.

Las estaciones en el Hemisferio Norte no se corresponden con idénticas estaciones en el Hemisferio Sur.

Veamos cómo cambia la longitud comparativa del día y la noche, a lo largo del año. Comenzamos con el Equinoccio Otoñal, es decir, el 23 de septiembre, cuando en el Hemisferio Norte el día es más corto que la noche. Esto dura unos seis meses, cada día es más corto que el anterior hasta llegar al 22 de diciembre, cuando el día se empieza a prolongar, hasta el 21 de marzo, cuando el día alcanza a la noche. Desde ese momento, durante la otra mitad del año, el día del Hemisferio Norte es más largo que la noche, alargándose cada vez más, hasta el 22 de junio, y a partir de entonces empieza a reducirse de nuevo el día frente a la noche, pero permanece más largo que esta, hasta que se alcanza nuevamente el Equinoccio Otoñal, el 23 de septiembre.

Estas cuatro fechas marcan principio y fin de las estaciones astronómicas. Para el Hemisferio Norte se tienen las siguientes fechas:

21 de marzo, el día iguala a la noche. Comienza la Primavera.

22 de junio, el día más largo. Comienza el Verano.

23 de septiembre, el día iguala a la noche. Comienza el Otoño.

22 de diciembre, el día es más corto. Comienza el Invierno.

Debajo del ecuador, en el Hemisferio Sur, la Primavera coincide con nuestro Otoño, el Invierno con nuestro Verano, y así sucesivamente.

Para el beneficio del lector sugerimos algunas preguntas que le ayudarán a asimilar y memorizar lo que se ha dicho.

¿En nuestro planeta, dónde iguala el día a la noche durante todo el año?

¿El 21 de marzo, a qué hora —hora local— subirá el Sol en Tashkent, en Tokio y en Medellín?[19]?

¿El 23 de septiembre, a qué hora —hora local— se pondrá el Sol en Novosibirsk, en Nueva York, y en el Cabo de Buena Esperanza?[20]

¿A qué hora subirá el Sol en los puntos del ecuador el 2 de agosto y el 27 de febrero?

¿Es posible tener escarcha en julio y una ola de calor en enero?[21]

13. Tres “si”

A veces es más duro entender lo usual que lo extraño. Comprendemos la utilidad de la numeración decimal que aprendemos en la escuela, sólo cuando intentamos usar algún otro sistema, basado por ejemplo en el siete o en el doce. Para apreciar realmente el papel que juega la gravedad en nuestra vida, imaginemos una fracción, o al contrario, un múltiplo de lo que realmente es, artificio al que acudiremos después. Entretanto recurramos a los “si” para comprender bien las condiciones del movimiento de la Tierra alrededor del Sol.

Comencemos con el axioma, que determina que el eje de la Tierra forma un ángulo de 66 ½º, o aproximadamente ¾ de un ángulo recto, con respecto al plano orbital de la Tierra. Tú apreciarás lo que esto significa imaginando este ángulo no como tres cuartos de un ángulo recto, sino como un ángulo recto completo. En otras palabras, supón que el eje de rotación de la Tierra sea perpendicular a su plano orbital. ¿Qué cambios introducirá esta suposición en la rutina de la Naturaleza si el Eje de la Tierra Fuera Perpendicular al Plano Orbital?

Bien, supón que los artilleros de Julio Verne han logrado su proyecto de “enderezar el eje” de la Tierra, y le hacen formar un ángulo recto al plano del vuelo orbital de nuestro planeta alrededor del Sol. ¿Qué cambios observaríamos nosotros en la Naturaleza?

En primer lugar, la Estrella Polar —α Ursae Minoris Polaris— dejaría de ser polar, ya que la continuación del eje de la Tierra no pasaría cerca de ella, sino cerca de algún otro punto de giro de la cúpula celeste.

Además, la sucesión de las estaciones sería completamente diferente, o incluso no existiría ninguna alternancia. ¿Qué causa las estaciones? ¿Por qué el Verano es más caluroso que el Invierno? No evadamos esta pregunta tan común. En la escuela obtuvimos una vaga idea de ello, y después de la escuela muchos de nosotros estábamos demasiado ocupados en otras cosas y no disponíamos de tiempo como para molestarnos en pensar sobre el tema.

El Verano en el Hemisferio Norte es caluroso, en primer lugar, porque la inclinación del eje de la Tierra, hace los días más largos y las noches más cortas. El Sol calienta la tierra durante un tiempo más largo y no hay ningún enfriamiento pronunciado durante las pocas horas de oscuridad —el flujo de calor aumenta y las disminuciones del mismo disminuyen. En segundo lugar, (debido de nuevo a la inclinación del eje de la Tierra hacia el Sol), como el Sol se encuentra muy alto durante el día, sus rayos caen directamente sobre la Tierra.

De modo que, en verano el Sol proporciona más y más calor, mientras que la pérdida de calor durante la noche, es muy ligera. En invierno, sucede lo contrario, la duración del calor es más corta y, además, es más débil, ya que durante la noche, el enfriamiento es más pronunciado.

En el Hemisferio Sur este proceso tiene lugar seis meses después, o antes, si lo prefieres.

En Primavera y Otoño los dos polos son equidistantes respecto a los rayos del Sol; el círculo de luz casi coincide con los meridianos; el día y la noche prácticamente son iguales; y las condiciones climáticas están a medio camino entre el Invierno y el Verano.

a. ¿Qué sucedería si el eje de la Tierra fuera perpendicular al plano orbital? ¿Tendríamos esta alternancia? No, porque el globo siempre se enfrentaría a los rayos del Sol con el mismo ángulo, y tendríamos la misma estación en todos los momentos del año. ¿Qué sería esta estación? Podríamos llamarlo Primavera en las zonas templadas y polares aunque con tendría igual derecho a llamarse Otoño.

Siempre y en todas las partes del globo, día y noche serían iguales, el día igualaría a la noche, como sucede ahora sólo en el caso de la tercera semana de marzo y septiembre. (Éste es, de forma aproximada, el caso de Júpiter; su eje de rotación es casi perpendicular al plano de su desplazamiento alrededor del Sol.)

Figura 15. La refracción atmosférica. El rayo del astro S2 se refracta y se curva al atravesar las capas de la atmósfera terrestre, pensando el observador que se emite desde el punto S’2 punto más alto. Aunque el astro, S1 ya se ha hundido por debajo del horizonte, el observador todavía lo ve, debido a la refracción.

Ése sería el caso de la zona templada. En la zona tórrida, el cambio de clima no sería tan notable; en los polos sucedería lo contrario. Aquí debido a la refracción atmosférica, el Sol se elevaría ligeramente sobre el horizonte (Figura 15), en lugar de salir completamente, solo rozaría el horizonte. El día, o para ser más exactos, el comienzo de la mañana, serían perpetuos. Aunque el calor emitido por el Sol a tan baja altitud, sería ligero, ya que nunca dejaría de emitirlo durante todo el año; el clima polar, ahora yermo, sería mucho más apacible. Pero esa sería una pobre compensación para el daño que recibirían las áreas bastante desarrolladas del planeta.

b. Si el eje de la tierra se inclinara 45º en el plano orbital.

Imaginemos ahora una inclinación de 45º del eje de la Tierra con respecto al plano orbital.

Durante los equinoccios (alrededor del 21 de marzo y el 23 de septiembre) el día se alternaría como ahora con la noche. Sin embargo, en junio el Sol alcanzaría el cenit hacia el paralelo 45 y no en el 23 y medio; esta latitud llegaría a ser tropical. A la latitud de Leningrado (60º) el Sol estaría a no más de 15º del cenit, una altitud solar verdaderamente tropical. La zona tórrida limitaría directamente con la zona frígida, no existiendo la zona templada. En Moscú y Cracovia el mes de junio sería un continuo y largo día.

Al contrario, en invierno, la oscuridad polar prevalecería durante semanas en Moscú, Kiev, Kharkov y Poltava. Y la zona tórrida en esta estación sería más templada porque el Sol al mediodía no subiría por encima de los 45º. Naturalmente, las zonas tórridas y templadas perderían mucho con este cambio. Las regiones Polares, sin embargo, ganarían. Aquí, después de un invierno sumamente severo, peor que los actuales, habría un verano ligeramente caluroso, teniendo en cuenta que en el Polo el Sol al mediodía estaría sobre los 45º y brillaría durante más de la mitad del año. Los hielos eternos del ártico se retirarían de forma apreciable bajo la acción benéfica de los rayos del Sol.

c. Si el eje de la Tierra coincidiera con el plano Orbital

Nuestro tercer experimento imaginario es poner el eje de la Tierra en su plano orbital (Fig. 16). La Tierra giraría “acostada” alrededor del Sol, girando sobre su eje, de la misma manera que lo hace un miembro remoto de nuestra familia planetaria, Urano. ¿Qué pasaría en este caso?

En las proximidades de los polos habría un día de seis meses durante el cual, el Sol subiría en espiral del horizonte al cenit, y luego descendería de la misma forma hacia el horizonte.

Tras esto viviríamos una noche de seis meses. Día y noche quedarían divididos por un crepúsculo de varios días de duración. Antes de desaparecer bajo el horizonte, el Sol cruzaría los cielos durante varios días, rozando el horizonte. Un verano así fundiría todo el hielo acumulado durante el invierno.

Figura 16. Así se movería la Tierra alrededor del Sol si el eje de rotación estuviera en su plano Orbital.

En las latitudes medias los días rápidamente se harían más largos con el comienzo de la Primavera; tras esto, tendríamos luz diurna durante varios días. Ese largo día significaría aproximadamente el número de días que coincidiera con el número de grados que distan del Polo y su duración sería aproximadamente el número de días igual a los grados del doble de la latitud.

En Leningrado, por ejemplo, esta luz diurna continua, empezaría 30 días después del 21 de marzo, y duraría 120 días. Las noches reaparecerían 30 días antes del 23 de septiembre. En invierno sucedería lo contrario; una continua luz diurna sería reemplazada por una oscuridad continua de aproximadamente la misma duración. Sólo en el ecuador la noche y el día serían siempre iguales.

El eje de Urano se inclina sobre su plano orbital más o menos como se describe anteriormente; su inclinación hacia su propio plano en su camino alrededor del Sol es de sólo 8º. Uno podría decir de Urano que gira alrededor del Sol “echándose a su lado.”

Estos tres “si”, con toda seguridad, pueden dar una buena idea al lector, de la relación entre el clima y la inclinación del eje de la Tierra. No es accidental que en griego la palabra “clima” signifique “inclinación”.

d. Un “Si” más

Regresemos a otro aspecto de los movimientos de nuestro planeta, la forma de su órbita. Como cada planeta, la Tierra cumple la primera ley de Kepler, según la cual, cada planeta sigue un camino elíptico, del que el Sol, es uno de los focos.

¿Cómo es la elipse de la órbita terrestre? ¿Difiere significativamente de un círculo?

Los libros de texto y los folletos de astronomía elemental muestran a menudo la órbita del globo como una elipse bastante extendida. Esta imagen, mal entendida, queda fija en la mente de muchos lectores para toda la vida; muchas personas permanecen convencidas que la órbita de la Tierra es una elipse notablemente larga. Sin embargo, esto no es así en absoluto; la diferencia entre la órbita de la Tierra y una circunferencia es tan despreciable que no puede dibujarse de otra forma que no sea una circunferencia. Supongamos que en nuestro dibujo el diámetro de la órbita es de un metro. La diferencia entre la órbita mostrada y una circunferencia sería menor que el espesor de la línea trazada para ilustrarla. Incluso el ojo perspicaz del dibujante no distinguiría entre esta elipse y una circunferencia.

Figura 17. Una elipse y sus ejes, mayor (AB) y menor (el CD). El Punto O designa su centro

Sumerjámonos por un momento en la geometría elíptica. En la elipse de la Fig. 17, AB es su “eje mayor”, y CD, su “eje menor”. Además del centro O, la elipse tiene dos puntos importantes, los “focos”, ubicados simétricamente en el eje mayor a ambos lados del centro. Los focos se localizan tal como se indica a continuación (Fig. 18). Se abren los brazos del compás de modo que sus extremos cubran una distancia igual al semieje principal OB. Con una punta en C, en el extremo del eje menor, describimos con la otra punta un arco que corta en dos puntos el eje mayor.

Dichos puntos de intersección, F y F1, son los focos de la elipse.

Las distancias iguales OF y OF1 se indican con c, y los ejes, mayor y menor, 2a y 2b. La relación entre el segmento c y la longitud del semieje mayor, a, que corresponde a la fracción c/a, representa la medida del achatamiento de la elipse y se llama “excentricidad”. Cuanto mayor sea la diferencia entre la elipse y el círculo, mayor será la excentricidad.[22X]

Tendremos una idea exacta de la forma de la órbita terrestre cuando conozcamos el valor de su excentricidad. Esto se puede determinar sin medir el valor de la órbita. El Sol, ubicado en uno de los focos de la órbita, se variar en tamaño desde la Tierra, debido a que varia la distancia de cada punto de la órbita hasta dicho foco.

Figura 18. Cómo se localizan los focos de una elipse

Unas veces aumenta el tamaño del Sol, y otras veces disminuye; su tamaño varía proporcionalmente a la distancia entre la Tierra y el Sol, al realizar cada observación. Asumamos que el Sol se encuentre en el foco F1 de nuestra elipse (Fig. 18).

La Tierra pasa por el punto A de la órbita, el 1 de julio, cuando vemos el disco del Sol más pequeño, su tamaño angular es de 31’ 28”. La Tierra pasa por el punto B, el 1 de enero, cuando el disco del Sol alcanza su mayor tamaño angular, 32’ 32”.

De acá se obtiene la siguiente proporción:

de donde conseguimos la proporción derivativa:

ó

Esto significa que:

De donde se concluye que la excentricidad de la órbita de la Tierra es 0,017. Todo lo que necesitamos, por consiguiente, es tomar una medida cuidadosa del disco visible del Sol para determinar la forma de la órbita de la Tierra.

Ahora demostraremos que la órbita de la Tierra difiere muy poco de una circunferencia. Imaginemos un dibujo enorme cuyo semieje mayor, a, mide un metro.

¿Cuál será la longitud del semieje menor de la elipse? Del triángulo del ángulo recto OCF1 (Fig. 18) encontramos:

c2 = a2 — b2

ó

pero c/a es la excentricidad de la órbita de la Tierra, es decir, 1/60.

Reemplazamos la expresión algebraica

a2 — b2

por (a — b) x (a + b)

y (a + b) por 2a, ya que b difiere ligeramente de a.

Así obtenemos:

y por lo tanto:

es decir, menor que 1/7 mm

Hemos encontrado que incluso a gran escala, la diferencia de longitudes entre el semieje mayor y el semieje menor de la órbita de la Tierra es de menos de 1/7 mm. (Más delgada que una línea trazada con un lápiz fino)

Así que no estamos muy equivocados si dibujamos la órbita de la Tierra como una circunferencia.

¿Pero dónde encaja el Sol en nuestro esquema? ¿Para colocarlo en un foco de la órbita, a qué distancia debe estar del centro? ¿En otras palabras, cual debe ser la longitud de OF o de OF1, en nuestro dibujo imaginario? El cálculo es bastante simple:

c/a = 1/60

c = a/60 = 100/60 = 1,7 cm

En nuestro dibujo el centro del Sol debe estar alejado del centro de la órbita 1,7 cm. Pero como el propio Sol debe dibujarse como un círculo de 1 cm. de diámetro, sólo los ojos entrenados del pintor se darán cuenta de que no está en el centro de la circunferencia.

La conclusión práctica a la que llegamos, es que podemos dibujar la órbita de la Tierra como una circunferencia, colocando al Sol ligeramente al lado del centro.

¿E insignificante asimetría en la posición del Sol, podría influir en el clima de la Tierra?

Para descubrir el efecto probable, realizaremos otro experimento imaginario, jugando de nuevo al “Si.” Supongamos que la excentricidad de la órbita de la Tierra es mayor que la que hemos calculado, por ejemplo, 0,5. Aquí el foco de la elipse divide su semieje por la mitad; esta elipse se parecerá a un huevo. Ninguna de las órbitas de los planetas mayores del sistema solar tiene esta excentricidad; La órbita de Plutón, la más achatada, tiene una excentricidad de 0,25. (Los asteroides y los cometas, sin embargo, siguen elipses más pronunciadas.)

14. Si la trayectoria de la Tierra fuera más pronunciada

Imaginemos la órbita de Tierra notoriamente alargada, de modo tal que cada foco divida al semieje mayor correspondiente, por la mitad. Esta órbita se muestra en la figura 19. La Tierra estará en el punto A, el más cercano al Sol, el 1 de enero, y en el punto B, el más lejano, el 1 de julio. Ya que FB es tres veces FA, el Sol estará tres veces más cerca de nosotros en enero que en julio. Su diámetro en enero sería el triple del diámetro en julio, y la cantidad de calor emitido en enero, será nueve veces mayor que la emitida en julio (la proporción inversa del cuadrado de la longitud). ¿Qué pasará con nuestros Inviernos del Norte? Sólo que el Sol estará más bajo en el cielo, los días serán más cortos y las noches más largas. Pero, no tendremos un tiempo frío, ya que la proximidad del Sol compensa el déficit de luz diurna.

Figura 19. Ésta es la forma que tendría la órbita de la Tierra, si su excentricidad fuera 0,5. El Sol estaría en el foco F.

A esto debemos agregar otra circunstancia, proveniente de la segunda ley de Kepler, que dice que el “radio—vector” barre áreas iguales en tiempos iguales.

Figura. 20. Una ilustración de la segunda ley de Kepler: Si el planeta viaja a lo largo de los arcos AB, CD y EF en tiempos iguales, los sectores sombreados deben tener áreas iguales.

El “radio vector” de una órbita es la línea recta que une el Sol con el planeta, la Tierra en nuestro caso. La Tierra se desplaza a través de su órbita junto a su radio—vector, barriendo cierta área con este último. Sabemos por la segunda ley de Kepler que las secciones de un área de la elipse, barridas en el mismo tiempo, son iguales.

En puntos cercanos al Sol, la Tierra tiene que moverse más rápido a lo largo de su órbita que en puntos más lejanos, en caso contrario, el área barrida por un radio—vector más corto no igualaría el área cubierta por uno más largo. (Fig. 20).

Aplicando esto a nuestra órbita imaginaria deducimos que entre diciembre y febrero, cuando la Tierra está más cerca del Sol, se mueve más rápido a través de su órbita que entre junio y agosto. En otros términos, el invierno del Hemisferio Norte es de corta duración. Mientras que el verano al contrario, es de larga duración, como si estuviera compensando el poco calor ofrecido por el Sol.

La Fig. 21 presenta una idea más exacta de la duración de las estaciones bajo nuestras condiciones imaginadas. La elipse muestra la nueva órbita de la Tierra, con una excentricidad 0,5. Los puntos 1 al 12 dividen la trayectoria de la Tierra, en las secciones que cruza, a los intervalos iguales; según la segunda ley de Kepler, las secciones de la elipse divididas por los radios—vectores tienen áreas iguales.

La Tierra alcanzará el punto 1, el 1 de enero; el punto 2, el 1 de febrero; el punto 3, el 1 de marzo; y así sucesivamente.

Figura 21. Así giraría la Tierra alrededor del Sol, si su órbita fuese una elipse muy prolongada. (El planeta cubre las distancias entre cada punto, en el mismo tiempo, un mes.)

El dibujo nos muestra que en esta órbita el equinoccio primaveral (A) debe darse al principio de febrero, el otoñal (B) al final de noviembre.

Así el Invierno del Hemisferio Norte durará poco más de dos meses, desde finales de noviembre a comienzos de febrero. Por otro lado la estación de días largos y un Sol de mediodía alto, durará desde el equinoccio primaveral hasta el otoñal, y por lo tanto serán más de 9 meses y medio.

Lo contrario sucederá en el Hemisferio Sur. El Sol permanecerá bajo y los días serán cortos, cuando la Tierra se encuentre más lejos del Sol diurno y el calor de este mengüe, al menos una novena parte. El Invierno será mucho más riguroso y más largo que en el Norte. Por otro lado, el Verano, aunque corto, será demasiado caliente.

Otra consecuencia de nuestro “Si.” En enero el movimiento orbital rápido de la Tierra hará que el mediodía medio y el verdadero mediodía sean tiempos considerablemente distintos, con diferencia de varias horas. Esto hará inadecuado seguir el tiempo solar medio que observamos ahora.

Ahora comprendemos los efectos de la posición excéntrica del Sol, en la órbita de la Tierra. En primer lugar, el Invierno en el Hemisferio Norte es más corto y más suave, y el Verano más largo que en el Hemisferio Sur. ¿Realmente es así? Indiscutiblemente, sí.

En enero la Tierra está más cerca del Sol que en julio por 2×1/60, es decir, 1/30. Por eso, la cantidad de calor recibida se incrementa (61/59)2 veces, es decir, en un 6%.

Esto alivia un poco la severidad del Invierno en el Hemisferio Norte.

Además, el Otoño y el Invierno del Hemisferio Norte juntos, son aproximadamente ocho días más cortos que las mismas estaciones del Hemisferio Sur; mientras que el Verano y la Primavera en el Hemisferio Norte, son ocho días más largos que en el Hemisferio Sur.

Quizás sea esta la razón por la que el hielo es más denso en el Polo Sur.

Seguidamente encontramos una tabla que nos muestra la longitud exacta de las estaciones en los Hemisferios Norte y Sur:

Como se puede ver, el Verano en el Hemisferio Norte es 4,6 días más largo que el Invierno, y la Primavera 3 días más larga que el Otoño.

El Hemisferio Norte no tendrá esta ventaja eternamente. El eje mayor de la órbita de la Tierra está cambiando gradualmente de posición en el espacio, en consecuencia, los puntos más cercano y más lejano a lo largo de la órbita del Sol se transfieren a otro lugar. Estos movimientos representan un ciclo completo cada 21.000 años y se calcula que 10.700 después de Cristo, el Hemisferio Sur disfrutará las ventajas antes dichas que ahora posee el Hemisferio Norte[23]

La excentricidad de la órbita de la Tierra tampoco es fija; vacila despacio a lo largo de las épocas entre casi cero (0,003), cuando la órbita es casi un círculo, y 0,077, cuando la órbita es mas alargada, en esto se parece a Marte[24]. Actualmente su excentricidad esta menguando; disminuirá durante otros 24 milenios hasta quedar en 0,003, e invertirá el proceso durante 40 milenios. Estos cambios son tan lentos que solo tienen importancia teórica.

15. ¿Cuándo estamos más cerca del Sol, al mediodía o por la tarde?

Si la órbita terrestre fuera estrictamente circular, con el Sol en su punto central, la respuesta sería muy simple. Estaríamos a mediodía más cerca del Sol, cuando los puntos correspondientes de la superficie del globo, pertenecientes a la rotación axial de la Tierra, estuvieran en conjunción con el Sol. Los puntos más cercanos al Sol estarían sobre el ecuador, a 6400 km. más cerca del Sol; este valor corresponde a la longitud del radio de la Tierra.

Pero la órbita de la Tierra es una elipse con el Sol en uno de sus focos (Fig. 22).

Figura 22. Un diagrama del tránsito de la Tierra alrededor del Sol.

Como consecuencia, a veces la Tierra está más cerca del Sol y a veces más lejos. Durante los seis meses, entre el 1 de enero y el 1 de julio, la Tierra se mueve alejándose del Sol y durante los otros seis meses se aproxima. La diferencia entre la distancia más grande y la más pequeña es de

2 × 1/60 × 150.000.000, es decir, 5.000.000 kilómetros.

Esta variación en la distancia promedia unos 28.000 km al día. Por consiguiente, entre el mediodía y el ocaso (en un cuarto de día) la distancia recorrida de ese promedio es de 7500 km, es decir, más que la distancia de la rotación axial de la Tierra.

De aquí se deduce la respuesta: entre enero y julio estamos más cerca del Sol al mediodía, y entre julio y enero estamos más cerca por la tarde.

16. Agregando un metro

Pregunta

La Tierra se mueve alrededor del Sol, a una distancia de 150.000.000 km. Supongamos que agregamos un metro a esta distancia.

¿Cuánto se alargaría el camino de la Tierra alrededor del Sol y cuánto se alargaría el año, con tal de que la velocidad del movimiento orbital de la Tierra permaneciera invariable (ver Fig. 23)?

Figura 23. ¿Cuánto se alargaría la órbita de la Tierra, si nuestro planeta estuviera 1 metro más lejos del Sol? (ver el texto para la respuesta).

Respuesta

Un metro no es mucha distancia, pero, teniendo en cuenta la enorme longitud de la órbita de la Tierra, podríamos pensar que al agregar esta insignificante distancia, aumentaría notoriamente la longitud orbital e igualmente la duración del año.

Sin embargo, el resultado, es tan infinitesimal que nos inclinamos a dudar de nuestros cálculos. Pero no hay razón para sorprenderse; la diferencia es realmente muy pequeña.

La diferencia en la longitud de dos circunferencias concéntricas no depende del valor de sus radios, sino de la diferencia entre ellos. Para dos circunferencias trazadas en el suelo el resultado será exactamente igual que para dos circunferencias cósmicas, siempre que la diferencia entre los radios sea de un metro, en ambos casos. Un cálculo nos mostrará cómo es posible esto.

Si el radio de la órbita de la Tierra (aceptada como un círculo) es, R metros, su longitud será 2πR. Si nosotros hacemos ese radio 1 metro más largo, la longitud de la nueva órbita será:

La suma a la órbita es, por consiguiente, sólo 2π, en otras palabras, 6,28 metros, y no depende de la longitud del radio.

De aquí que la trayectoria de la Tierra alrededor del Sol, al agregar ese metro, será solo 6 1/4 metros más larga. El efecto práctico de esta variación en la longitud del año será nulo, ya que la velocidad orbital de la Tierra es de 30.000 metros por segundo. El año será sólo 1/5000 parte de un segundo, más largo qué el actual, por lo que lógicamente nunca lo notaríamos.

17. Desde diferentes puntos de vista

Siempre que dejes caer algo, observarás que cae verticalmente. Te parecerá raro que otra persona haya observado que dicho objeto no caía en línea recta. Hay algo que si es cierto, en el caso de que el observador no esté involucrado con nosotros en los movimientos de la Tierra.

Imaginemos que estamos mirando un cuerpo que cae, a través de los ojos del mencionado observador. La figura 24 muestra una pesada bola que se deja caer libremente desde una altura de 500 metros. Al caer, participa naturalmente y de forma simultánea, de todos los movimientos terrestres.

Figura 24. Cualquier observador ubicado en nuestro planeta, verá caer libremente un objeto, a lo largo de una línea recta

La única razón por la qué no notamos esos movimientos suplementarios y rápidos del cuerpo que cae, es porque nosotros también estamos envueltos en ellos. Si pudiéramos evitar la participación en uno de los movimientos de nuestro planeta, veríamos que ese cuerpo no cae verticalmente, sino que sigue otro camino.

Supongamos que no estamos mirando el cuerpo que cae desde la superficie de la Tierra, sino desde la superficie de la Luna. Aunque la Luna acompaña a la Tierra en su movimiento alrededor del Sol, no está implicada en su rotación axial. Así que desde la Luna veremos a ese cuerpo hacer dos movimientos, uno vertical, hacia abajo y otro, qué no habíamos observado antes, hacia el este en una dirección tangente a la superficie de la Tierra.

Los dos movimientos simultáneos se suman, de acuerdo con las reglas de la mecánica, y, como uno es variable y el otro uniforme, el movimiento resultante nos dará una curva. La figura 25 muestra la curva con la que un hombre con una vista muy aguda, vería desde la Luna, un cuerpo que cae en la Tierra.

Figura 25. El hombre en la Luna vería la caída como una curva

Supongamos que nos alejamos de la Tierra y llegamos al Sol, y que observamos desde allí, a través de un telescopio muy potente, la caída sobre la tierra, de esta pelota pesada. En el Sol estaremos fuera de la rotación axial de la Tierra y de su revolución orbital. Veremos simultáneamente tres movimientos del cuerpo que cae (Fig. 26):

1) una caída vertical hacia la superficie de la Tierra,

2) un movimiento hacia el este a lo largo de una tangente con la superficie de la Tierra y

3) el giro debido al movimiento alrededor del Sol.

Figura 26. Un cuerpo que cae libremente hacia la Tierra al mismo tiempo se mueve en una dirección vertical y otra dirección tangencial, descrita por los puntos de la superficie de la Tierra debido a la rotación.

El movimiento número 1 cubre 0,5 km. El movimiento número 2, durante los 10 segundos que tarda el descenso del cuerpo, cubre, a la latitud de Moscú, 0,3 × 10 = 3 km.

El tercero, y más rápido de los movimientos, será de 30 kilómetros por segundo, por lo que en los 10 segundos que dura el descenso del cuerpo a la Tierra, viajará 300 km. a lo largo de la órbita terrestre.

Figura 27. Esto es lo que vería cualquier observador desde el Sol, al contemplar el cuerpo que cae, mostrado en la Figura 24 (no se ha tenido en cuenta la escala).

En comparación con este pronunciado movimiento, los otros, de 0,5 km. hacia abajo y de 3 km. a lo largo de la tangente, apenas serían perceptibles, desde un mirador en el Sol, es decir, que solo veríamos el vuelo principal. ¿Qué tendríamos? Aproximadamente lo que vemos en la Figura 27 (no se ha respetado la escala real).

La Tierra se desplaza hacia la izquierda, mientras el cuerpo cae desde un punto sobre la Tierra en la posición mostrada a la derecha, a un punto correspondiente en la Tierra mostrada a la izquierda. Como se dijo anteriormente, la escala correcta no ha sido respetada; en los 10 segundos de caída, el centro de la Tierra no se habrá desplazado 14.000 kilómetros, como nuestro artista ha reflejado en el dibujo persiguiendo una mayor claridad, sino sólo 300 kilómetros.

Permítanos dar otro paso e imaginarnos en una estrella, por ejemplo, en un Sol remoto, más allá incluso de los movimientos de nuestro propio Sol. Desde allí observaríamos, aparte de los tres movimientos expuestos anteriormente, un cuarto movimiento del cuerpo que cae con respecto a la estrella en la que nosotros nos encontrásemos. El valor y la dirección del cuarto movimiento dependen de la estrella que nosotros hayamos escogido, es decir, en el movimiento de todo el sistema solar con respecto a esa estrella.

Figura 28. Cómo vería un observador situado en una estrella distante un cuerpo cayendo hacia la Tierra.

La Figura 28 es un caso probable cuando el sistema solar se mueve con respecto a la estrella escogida en un ángulo agudo respecto a la eclíptica, a una velocidad de 100 kilómetros por segundo (las estrellas tienen velocidades de este orden.) En 10 segundos este movimiento desplazaría al cuerpo que cae unos 1000 kilómetros y, naturalmente, complicaría su vuelo. La observación desde otra estrella nos daría para esta misma trayectoria, otro valor y otra dirección.

Podríamos ir incluso más lejos e imaginar que características podría tener el vuelo de un cuerpo que cae hacia nuestro planeta, para un observador que se encuentra más allá de la Vía Láctea, y que por lo tanto no estaría involucrado en el rápido movimiento de nuestro sistema estelar con respecto a otras islas del universo.

Mas no existe finalidad alguna para hacerlo. A estas alturas, los lectores ya sabrán que, observando desde diferentes puntos el vuelo de un cuerpo que cae, este vuelo se verá de forma diferente.

18. Tiempo no terrenal

Usted ha trabajado una hora y después ha descansado durante una hora. ¿Son estos dos tiempos iguales? Indiscutiblemente sí, si utilizamos un buen reloj, la mayoría de las personas así lo dirían. ¿Pero qué reloj deberíamos usar? Naturalmente, uno verificado por la observación astronómica, o en otros términos, uno que repique con el movimiento de un globo que gira con la uniformidad ideal, volviendo a los mismos ángulos en exactamente el mismo tiempo.

¿Pero cómo, puede uno preguntarse, sabemos que la rotación de la Tierra es uniforme? ¿Por qué estamos seguros de que las dos rotaciones axiales consecutivas de nuestro planeta tardan en realizarse el mismo tiempo? Lo cierto es que no podemos verificar esto mientras que la rotación de la Tierra sea una medida de tiempo.

Últimamente algunos astrónomos han encontrado útil en algunos casos reemplazar de forma provisional este modelo de movimiento uniforme por otro. A continuación se exponen las razones y las consecuencias de este paso.

Un cuidadoso estudio reveló que en sus movimientos, algunos de los cuerpos celestes no se comportan de acuerdo a las suposiciones teóricas, y que la divergencia no puede explicarse por las leyes de la mecánica celestial. Se encontró que la Luna, los satélites de Júpiter I y II, Mercurio, e incluso los movimientos anuales del Sol, es decir, el movimiento de nuestro propio planeta a lo largo de su propia órbita, tenían variaciones para las que no había ninguna razón aparente.

Por ejemplo, la Luna se desvía de su órbita teórica al menos 1/6ª parte de un minuto de un arco en algunas épocas, y el Sol llega a un segundo de arco. Un análisis de estas incongruencias descubrió un rasgo común entre todos: en un período determinado, la velocidad de estos movimientos aumenta y, más tarde, se ralentiza. Naturalmente se dedujo que estas desviaciones tenían una causa común.

¿No se deberá esto a la “inexactitud” de nuestro reloj natural, a la desafortunada opción de la rotación terrestre como un modelo de movimiento uniforme?

La cuestión de reemplazar el “reloj terrestre” fue planteada. Provisionalmente este quedó descartado, y el movimiento investigado pasó a medirse por otro reloj natural basado en los movimientos de los satélites de Júpiter, la Luna, o Mercurio (los movimientos de ambos o de uno u otro de estos elementos).

Esta acción inmediatamente introdujo el orden satisfactorio en el movimiento de los cuerpos celestiales antes nombrados. Por otro lado, la rotación de la Tierra medida por este nuevo reloj resultó ser desigual: desacelerando durante unas docenas de años, ganando velocidad en las próximas docenas, y reduciendo después esa velocidad una vez más.

En 1897 el día era 0,0035 segundos más largo que en años anteriores y en 1918 esta cantidad ya era menor que entre 1897 y 1918. El día es ahora aproximadamente 0,002 segundos más largo que hace cien años.

Figura 29. La línea nos muestra lo lejos que la Tierra se desvió del movimiento uniforme entre 1680 y 1920. Si la Tierra realizase este movimiento uniformemente, este quedaría reflejado en el gráfico como una línea horizontal. Sin embargo, el gráfico nos muestra un día más largo cuando la velocidad de rotación de la Tierra se redujo, y un día más corto cuando la velocidad de rotación empezó a incrementarse.

En este sentido podemos decir que nuestro planeta gira irregularmente con respecto a otros de sus movimientos y también con respecto a los movimientos en nuestro sistema solar convencionalmente aceptados como movimientos regulares.

Ir a la siguiente página

Report Page